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Abstract

This paper is devoted to the design of a decentralized optimal batch L(Q state observer for state estimation of large-scale
interconnected systems, well suited for implementation on a sensor network. The here-proposed approach relies on both the use
of an augmented Lagrangian formulation and a price-decomposition-coordination algorithm. The state estimation of an open-
channel hydraulic system illustrates the effectiveness of this approach and is used to provide a comparison with alternative

methods.
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1 INTRODUCTION

The design of decentralized or distributed state estima-
tion or control algorithms is an important research topic
which has attracted a great interest for more than 30
years [1-11]. On the one hand, estimation of large-scale
complex systems is of the greatest importance for moni-
toring applications in various engineering fields, such as
power grids, road traffic networks, environmental sys-
tems (open-channel hydraulic systems, water supply net-
works, weather, ...). On the other hand, sensor networks
[12] are now recognized for being well suited for measure-
ment, monitoring, tracking of distributed physical phe-
nomena, such as environmental phenomena (weather,
seismic events, wildfires, air / soil / river pollution [13],
sound or vibration monitoring ...) or complex indus-
trial systems. Sensor networks are defined as a collection
of embedded sensors with communication capabilities.
Large scale deployment of such ad hoc networks mainly
relies on the availability of cheap embedded sensors. For
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that reason, it is necessary to consider algorithmic ar-
chitectures capable of performing low complexity com-
putations distributed on each sensor node. Here the at-
tention is paid to sensor network-based monitoring ap-
plications for large-scale systems, in which local mea-
surements are made and a local state estimation with
low computational complexity is performed by each sen-
sor agent while some computation results are provided
to the other agents connected to it. Furthermore a sys-
tematic way to manage decentralized state estimation
through the application of dual optimization theory and
the deterministic interpretation of the continuous-time
Kalman filter as described in [18] is provided. Unlike the
approaches in [1,9], the proposed approach provides an
exact decentralized solution to the centralized Kalman
filter and does not require strong structural properties
of the system. The here-proposed approach is related to
some previous works in [8], where dual decomposition is
used. However the authors in [8] only consider the case
of coupling of the subsystems via the measurement out-
puts. The here-proposed approach also differs from ap-
proaches based on consensus (see [5,4]), since the local
systems are never some overlapping subsystems. It can
be compared to the approach proposed in [6] since decen-
tralization leads to the solution of distributed small-size
moving horizon estimators without overlapping. How-
ever to the best of our knowledge, such an augmented
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Lagrangian formulation is used for the first time. It will
be also shown that the proposed observer algorithm can
be used to derive a moving horizon state observer. The
paper is now organized as follows: In section II, the state
estimation problem is stated. The decentralized design,
based on both the use of an augmented Lagrangian for-
mulation and a relaxation technique, together with some
backgrounds on dual optimization, is then presented in
section ITI. Section IV will be devoted to the derivation
of a moving horizon observer based on the decentralized
algorithm. Section V proposes an environmental state
estimation application that illustrates the effectiveness
of the approach. In this section, the proposed approach
will be also compared to alternative approaches. Finally,
the paper ends with some conclusions.

2 PROBLEM STATEMENT

We consider the problem of designing a decentralized
state observer for large-scale interconnected linear sys-
tems defined by:

xl(t) = All‘l (t) + Biui (t

N
)+DiZFijxj(t)7 (1)

where the full state vector x € R™ and the full input
vector u € R™ are partitioned as z = (21,23 ..., 2%)T
and u = (uf ud, ..., uL)T respectively, where z; € R™
and u; € R™, and each subsystem admits a measure-
ment output y; € RPi. The overall system is assumed to

be observable.

System (1)-(2) may be equivalently defined as the fol-
lowing algebraic-differential system:

N
— Y Fiyz;(t) =0, (4)
Jj=1

where the s;’s represent some slack variables. We seek
to derive an optimal Linear Quadratic (LQ) state ob-
server with a finite horizon by solving the following op-
timal output tracking problem, based on the knowledge
of y;(t),u;(t), Vt € I =10, T]:

z it 2
L min teIQZ/ {19:() — w112,

1 .
+5 Z 12:(0) = ;3 -+ (6)
i=1

s.t. (1) = Aiii(t) + Byug(t)i + Eywi(t) + Didi(t),

o o) Yt

7i(t) = Cit4(t),
N
5:(t) = ZF &5(t)

where Q;, R; and M,;, ¢ = 1,..., N are some symmetric
positive-definite matrices of adequate dimensions, and
E;’s are also matrices of appropriate dimensions. z, is
the a priori most likely value of z;(0). This problem is an
equivalent formulation to the continuous Kalman filter
design problem which seeks the minimum variance state
estimate of the overall state & of the system (see [18,20]),
where @; is interpreted as the covariance matrix of a
zero mean gaussian noise affecting the state equation of
x; through matrix F;, and R; is the covariance of a zero
mean gaussian noise affecting the measurement output
y;. M; is the covariance matrix of random initial state

3 STATE OBSERVER DESIGN

The optimal output tracking problem (6) is closely re-
lated to the classical optimal trajectory tracking prob-
lem, except that the cost penalizes the initial states
rather than the terminal states. For that reason, it ap-
pears to be very convenient to reverse time by consider-
ing the change (t — T — t) and interval I’ = [T, 0], and
thus turning the optimal output tracking problem into:

Cix (OI2_,
vl(t),njgl iel’ 2 Z/ {lICiz(t gi ()l :
~ 1 ~
+Hwi ()l Yt + 5 E 1 12:(T) — 2,13,

Zi(t) = —AiE(t) — Biiig(t) — Eiti(t) — Dyi3(t),

N
5(t) = ZFijij(t)» (7)

where Z;(t) = &;(T — t),0;(t) = w(T —t), 0;(t) =
vi(T —t) and §;(t) = §;(T — t). Let us now consider
an augmented Lagrangian formulation of the problem as
follows (in the spirit of [14,15] for instance):

Lo(3,5.7) = / {0 ~ (013
- 1 N
¥ Hw(t)ﬂg;l}dt S
i=1
N T
+Z/0 < fi(t) ZFZJ$J
=1



ZF”:EJ > dt (8)

s.t.

Zi(t) = —A;%;(t) — By (t) — E;0;(t) — D;38,(1),

where ¢ > 0 is the coefficient of the augmented La-
grangian, which should be chosen large enough to en-
sure the existence of a saddle-point. v, §, fi denote the
vectors of all the v;’s, §;’s and fi;’s, respectively. < .,. >
represents the usual scalar product. u is the vector of
Lagrange multipliers associated to the interconnection
constraints. The interest of considering an augmented
Lagrangian rather than the ordinary one may be found
in the fact the problem is not strongly convex with respect
to the slack variables s;. The augmented Lagrangian for-
mulation may be viewed as a regularization technique
which strongly convexifies the problem and therefore en-
sures the existence of a saddle-point of the constrained
problem for non-strongly convex problems. As a conse-
quence, the relaxation algorithms, such as Uzawa algo-
rithm [21], will converge by using a constant step gradi-
ent method, rather than a gradient method with ”small
steps” of type o !, which tend to zero as the number of
dual iterations tends to infinity (see [14]), and therefore,
cannot be easily handled in practice. On the basis of the
augmented Lagrangian defined by (9), the problem con-
sists in finding a saddle-point (o, 5, i ) of L., defined by

minmax L,(5, 3, ) = max min L(, 5, i) (9)
v,8 I M v,s
where w(ft) = ming sL.(0,5, ) is the so-called dual

function, which has to be maximized.

3.1 Some background on dual optimization and aug-
mented Lagrangians

In this paper, we consider iterative computation of a
saddle-point solution of (9) by using a relaxation algo-
rithm of the family of ”Uzawa algorithms”. In order to
illustrate such an algorithm, let us consider the follow-
ing constrained ”separable” optimization problem:

mln J(u

= manJ u;) (10)

s.t. O(u ZH u;) = 0. (11)

and the ordinary Lagrangian

L(u, p) = J(u)+ < p, 0 Z{J ;) + pfi(ui)}

+oo
L steps p® with p* > 0, Zp ——|—ooandz

=0 =0

< +o00.

where J is a convex functional defined on a Hilbert space
U = Uy X ... xUpn and the 6;’s are some vectorial mapping
from U; to C. O(u) = 0 means that §(u) € —C = —{0},
where C' is the closed convex cone in C reduced to zero.
In this case, the Uzawa algorithm becomes the so-called
7 price-decomposition-coordination algorithm” (PDCA)
defined by:

(1) Initialization (k = 0): Choose u? and p?.
(2) At iteration k: Compute N independent subprob-
lems: uf*t = argmin J;(u;)+ < w0 (ug) >, i =

1,..N.
N
= pF o+ pF Y 0wt
i=1
(4) if |u*tt — u¥|| < €, then stop, else k + 1 — k and
go to step (2).

(3) Update p: pk+?

At step (2), the problem splits into N subproblems (de-
composition procedure), which may be solved in par-
allel with less complexity. This interesting feature was
well exploited for computation of large-scale optimiza-
tion problems, for which existence of a saddle-point is
ensured (otherwise convergence is not obtained). Step
(3) is the coordination procedure which consists in ad-
justing the Lagrange multipliers g in order to satisfy
the constraint f(u) = 0. ¥ is sent to each subproblem
at step (2) in order to compute the dual functional of
the problem evaluated at p*: w(p*) = min L(u, pu*). p*
u

is used to find a consensus in the sense of constraint
satisfaction. Unfortunately, introducing an augmented
Lagrangian with the penalty term £[|0(u)||* would in-
duce the loss of the separability property. Of course, it
would be interesting to combine the advantage of aug-
mented Lagrangians (existence of a saddle-point) with
separability (leading to parallel or decentralized com-
putations with lower complexity). In Cohen et al. [14],
a "norm-linearization technique” has been proposed to
meet these two requirements. For that purpose, step (2)
of the Uzawa algorithm is simply replaced by

1
uF ! = argmin J(u) + 2—||u — uF||?
u €
+ < pF + k), 0 (uF)u >, (12)

where 0 < € < 1/c7?, with 7 being the Lipschitz constant
of O(u), and 6'(u) is the Jacobian matrix of #, while, in
the same time, p* can be chosen constant, p* = p, with
0<p<2e

3.2 Application to state observer design

In our case, in order to circumvent the loss of separability

Z Fija;(t)

induced by f||sz 2 and according to



(12), we consider the modified Lagrangian
Bi(t) %

_gl”?w:l

N
- 1 -
T ()18 Yt + 5 Y 17(T)
i=1

1L T

1 ) k(]2
+5 ;_1/0 |Z:(t) — 27 (t)||*dt

1L T

1 21y _ R [12
+o Eﬁ /O 13:(t) — 57 (1) ||dt

s.t.

Ti(t) = — A (t) — Bty (t) — E;ti(t) — Did;(t)

where 0 < € < 1/cr?, with 7 being the Lipschitz con-
N

stant of the vector of constraints $;(¢) — ZF z

i=1,..,N. L. is obviously the sum of N independant

optimal LQ tracking problems, defined at each dual it-

eration k, and whose solutions are given by the following
Lemma.

Lemma 3.1 The optimal solution to each LQ tracking
problemi,i=1,...., N

R N N o
Lmin 5 [ ca O

+ BN Yt + 5 IIwz() =] [

+ o2 T||~»<t> 4 (1) 2dt
% J, Z; Z;
o L s - Foea
26 0 ' i
T N
+ / <[:L’]L€( U ]
0 =
N
Z )>dt (14)

is given, for allt € I', by

0i(t) = QBT (Pi(D)T:(t) + 5:(1)),
5i(t) =7 (8) + e(DY (Py(8)E:(t) + i (1)) — iy (1)

N
= FyEf)), (15)
j=1
where Py(t), §i(t) and Z;(t) are solutions of the canonical
equations

—Py(t) = —ATP(t) — P(t)A; — Bi(t) EiQi BT Bi(1)
~P,()DDIP(t) + CTRIC,4 Ta, (16)

Pi(T)=M;",

—gi(t) =—AT gi(t) — ePi(t)gi(t) —
—P;(t)D; (35 (1) — e(fi; (1)

N
0= 2 Pyl
) ~
=Y L) + el55 (1) — Z Fjiak (1))

CIR (1)

—PZ(t)Biai(t) - P (t)EiQiE} Gi (t)

—sak), a7)
gZ(T) = _Mzilxi’
Fill) = —Aidi(t) — Bitia(t) — Egii(t) — Digi(t), (18)
2;(0) = —P;(0)""3:(0) (19)

Proof of Lemma 3.1. This optimal LQ tracking prob-
lem is well documented in the literature. Equations (16)-
(17)-(18)-(19) are easily obtained in closed-loop form
both by application of the Pontryagin maximum prin-
ciple and by considering that the adjoint state p;(t)
has a separable form in both time and space p;(t) =
P;(t)Z;(t) + gi(t), where P;(t) is a symmetric matrix and
gi(t) is a vector of the same dimensions as those of state
Z;(t) (see e.g. [19]). Furthermore (19) reflects the fact
that each #;(0) has to minimize L. (7, §, fi*).

Theorem 3.2 The optimal trajectory solution ;(t), t €
1, to each LQ tracking problem (14), i = 1,...,N, ex-
pressed in positive time, at each dual iteration k, is given
by

Wi(t) = Wi () AT + A, Wi(t) + EiQ, E;
DD~ Wit (CT RO+ ~TL)Wilt),  (20)
W;(0) = M.
(1) = (A — Wi(t)CT RN Ci) (1)
Wi(t)CF Ry yi(t) + Biug(t)



N
si(t) = 57 (t) = e(uf () + clsf (t) — Z Fya§t)]).  (22)

Proof of Theorem 3.2. Coming back to positive time
and using the notations Z; (t) = &; (T —t), Pi(t) = Py(T—
t), 9i(t) = 3i(T — t), ui(t) = 4 (T —t), vi(t) = 0;(T —t),
si(t) = §(T —t) and p(t) = f;(T — t), differential
system (16)-(17) given by Lemma 3.1 becomes

Pi(t)=—AT Pi(t) — Pi(t) A;
—P,(t) E;Q;ET P;(t)
—ePi(t)D; DI P;(t) + C R; 1Oy + %Id, (23)
Pi(O) = Mi_la
gi(t) = —Al gi(t) — ePi(t)D; D] g;(t) — CT Ry ()
—Pi(t)Di(sy (t) — e(ur (t)

N
+efsi () - Z Fizy (1)) — Pi(t) Biui(t)

N N
=57 FR @) + elsh0) = 3 Bk o)
~P(OEQEL (1) - 17k (0) (24)

gi(0) = _Mfliz"

If we set W;(t) = P, '(t), differential Riccati equation
(23) becomes differential Riccati equation (20). We rec-
ognize in equation (20) the differential Riccati equation
of the optimal LQ state observer, solution of each LQ
tracking problem (14), ¢ = 1,...N. Furthermore, the
state observer equation is derived by considering esti-
mated state &;(t) = —W;(t)g:(t), Vt € I = [0,T], by
using (20) and (24) (since according to (19), &;(T) =
—W;(T)g;(T)), which leads to subsystem i observer (21),
i=1,...,N.#(0) =z, since g;(0) = —M; 'z, (that is
equivalent to g;(T") = 0 given by Lemma 3.1). Finally
setting Z;(t) = 2:(t), and z¥(t) = 2F(¢), Vt € I leads to
(22).

3.3 A decentralized LQ) state observer (DSO)

Finally, the decentralized optimal LQ state observer may
be described as follows:

(1) Initialization (k = 0): Choose 2% (), s9(¢) and p9(t),
vte[0,T),i=1,..,N.

(2) Atiteration k: For each subsystemi,: =1,...,N:
Integrate on the interval [0,T], each optimal LQ
state observeri,i = 1,..., N to get estimated trajec-
tory ¥ (t), by using the solution W;(t) of Riccati
equation (20) (computed off-line if M; is constant):

Gt = (A — Wi()CT RV CHEML(E) + Biua(t)
+ Wi ()CT R My (t) + Dys¥ (1)

N
+ Wi(t)(z FJ (5 (1) + cls (1)

N
=3 Bt )
W) — 2 0),
#0) = 2, (25)
where

N
sEHL(t) = sR(t) — e(ub (8) + sk () — Z Fiy &5 (1))
T )

(3) Coordination: Update the u;’s:
N

) = () + (i) = D FigE T (E). (27)
j=1

vt e [0,T],i=1,..,N.

7

N
(4) ifz |t — k|2 < €2/p® then stop, else k+1 — k
i=1
and go to step 2).
The following theorem can be stated:

Theorem 3.3 ¢ Convergence: if 0 < € < 1/cT where
T 1s the Lipschitz constant of the interconnection con-
straints and 0 < p < 2c, then the sequence (2, s¥, u¥),
it =1,...,N generated by algorithm (DSO) is bounded
and the related cluster point is a saddle-point of L.

e Qualification of the solution: The obtained cluster
point is solution to the decentralized optimal LQ) state
estimation problem (6), which is equivalent to a cen-
tralized finite-horizon Kalman filter for system (1)-(2).

Proof of Theorem 3.3. The first statement is proved
by using Theorem 15 in Cohen et al. [14], where the as-
sumptions on convexity of both the cost functionals and
the constraints, and the so-called Constraint Qualifica-
tion Condition are satisfied in our case. The second state-
ment is proved by verifying that the cluster point satis-



fies the necessary conditions for optimality of problem
(6) (due to the lack of place, this is left to the reader).

Some Remarks:

e This algorithm is well suited for decentralized state
estimation through communication networks, such as
sensor networks, since each of the N interconnected
agents has to compute its own state estimation on the
basis of information (2%(t), u5(t)), vt € [0,T], pro-
vided by the others agents j connected to it and then
has to send its computation results (257 (t), u¥ (1)),
Vvt € [0,T] at each iteration k, only to these con-
nected agents j € C;, where C; is the set of indices of
agents connected to i. For n and N large, the compu-
tational complexity can be dramatically reduced from
a n-dimensional LQ estimation problem to N n;-
dimensional LQ estimation problem solved in parallel
with additional (n; + ns, )-dimensional exchange data
(Ti(t), 8:(t), us(t) ), ¥t € [0,T], where nyy g5, is vector
si(t) dimension.

o Step (2) of algorithm (DSO) is equivalent to the com-
putation of N small-scale finite horizon Kalman filters.

e Coordination step (3) can be decentralized through
each agent i, without needing a central coordinator
agent.

e Existence of a bounded and positive definite matrix
P;(t) over the interval [0, T is ensured by the regular-
ization term %Id in the Riccati equation (23), even if
pairs (C;, A;) are not observable. This assumption is
often needed in other approaches (see [6] for instance).

e The main parameter to be tuned is the regularization
coefficient c. It is well known (see [14] for example)
that ¢ must be chosen not too small to ensure ex-
istence of a saddle-point in the case of non-strongly
convex problems, but not too large to avoid bad nu-
merical conditioning in solving step (2) of the price-
decomposition-coordination algorithm.

e The practical implementation of this continuous-time
decentralized observer may be easily performed by us-
ing a piece-wise constant discretization of the inter-

N
connection constraints s;(t) — Z F;;z(t) and the re-
j=1

lated Lagrange multipliers p;(t), induced by a time
discretization of the interval [0, T, while the differen-
tial equations (including the Riccati equations) may
be solved by using standard integration schemes, to-
gether with an approximation of the cost function in-
tegral by an appropriate quadrature scheme.

4 A MOVING HORIZON STATE OBSERVER
BASED ON ALGORITHM (DSO)

To get on-line state estimation rather than batch esti-
mation, algorithm (DSO), which provides the exact so-
lution to a finite horizon Kalman filter, can be used as

the core of a moving horizon observer approach, by con-
t T
sidering / instead of / . The receding horizon ob-
t—T 0

server uses only measurements on the moving horizon
[t — T,t] and discards past measurements prior to the
current moving horizon (see [17] for instance). Here a
sampled moving horizon observer with observation hori-
zon T' = Ny, that updates the estimated state at time
samples t; = l7s, where 75 denotes the measurement
sampling period, is defined as follows:

Zi(t) = Si(yiy! ), i=1,...,N, I > Ny (28)

where S;(y;;. ) denotes the estimated state obtained

at time ¢; from iterative algorithm (DSO)?, based on
the output measurements y;(7), 7 € [t;—n, ], denoted
as ying, for each subsystem i, ¢ = 1,..., N. At time
sample t;, each observer (25) is initialized with estimated
state Z;(t;) computed at time sample t;_; (i.e. on moving
interval [tl—l—Natl—l])-

4.1  Conwvergence of the moving horizon state estimation

In this section, we will consider two particular versions
of the tuning parameters T' and M;, 1 = 1, ..., N leading
to simple convergence results:

e Version 1: Deadbeat property: Following [22],
moving horizon observer (28) exhibits a deadbeat
property provided that T > 0 and M[l = 0,
i = 1,...,N (assumption of infinite covariance of the
initial state). The implementation of this version re-
quires a new filter form for (25) which can be derived
by using change of coordinates v;(t) = W, '4;(t) (see
eqn. (9) in [22] for more details). T may be chosen
arbitrarily small since system (1) is time-invariant
and the initial estimated state of each observer (25)
may be anything at each time sample ¢;.

e Version 2: Asymptotic convergence property:
Choosing T = 7, (Ns = 1), z; = &;(t;—1), where
#;(t;—1) denotes the local state estimate computed
at previous time sample ¢;_1, and M; = W;(t1)e,_,,
it =1,...,N, where W;(#;)¢,_, denotes the solution at
time sample ¢; of Riccati equation (20) computed at
previous time sample ¢;_1, leads to an asymptotic con-
vergence property. In that case, Riccati equations (20)
have to be computed on-line, if the estimation hori-
zon T is unknown. However the computational com-
plexity of steps (2) and (3) of algorithm (DSO) is re-
duced to a minimum since the horizon is limited to
one time sample. Since algorithm (DSO) computes the

2 At each time sample #;, algorithm (DSO) can be initial-
ized at k = 0 with any initial trajectory. However experi-
ments show the use of the optimal solution computed at t;_;
can significantly reduce the number of dual iterations, i.e.,
increase the convergence speed of algorithm (DSO).



exact solution to a Kalman filter at each time sam-
ple, as | — +00, the moving horizon observer solution
tends to the solution of the infinite horizon Kalman
filter, which is known for providing state estimation
error dynamics stability under the assumption that
the overall system is observable.

5 AN ILLUSTRATIVE EXAMPLE

The main objective is to build a state observer in order
to estimate the water velocity distribution along an ir-
rigation canal from distributed level measurements. In
practice, using a state observer for such systems is very
interesting, since it is very expensive to use velocity or
flow rate sensors in addition to level sensors. It is as-
sumed that a N + 1-sensor network has been distributed
along the canal stretch [0, L], which consists in N — 1
sensor-nodes equipped with only a water level sensor,
while water flow velocity (or flow rate) are also avail-
able at the upstream and downstream nodes via direct
measurements or hydraulic laws. The sensor-nodes have
some limited computational capacities and are able to
communicate with a SCADA master station using for
instance an ethernet link, according to Fig. 1.

Ethernet link | scAbA |
Y Iy 7Y [} A [} m
Y v Y Y Y Y
Sensor 1| |Sensor2| |sensor3 Sensor4| ...  Sensori --- |Sensor N

GG

Canal
Fig. 1. Sensor Network Structure.

A spatial discretization of Saint Venant equations gov-
erning open-channel water flow dynamics, is performed
thanks to a finite-difference scheme with spatial sample
dx, followed by a linearization of the discretized system
around an equilibrium point of Saint Venant equations,
which lead to the following observable linear system:

ha(t) = - (0s(t) ~ via (1)), 1= 0,.N — 1,
1

0 (t) = —(vi—1hi—1(t) + Bi—1vi—1(t) — azhi(t) — Bivi(t))

dx
+(5ihi(t> + %vi(t), i=1,..,N,

yi(t) =hi(t), i=1,..,N —1 (29)

where h;(t), and v;(t) stand for the deviation values from
the equilibrium of the water depth and velocities, ex-
pressed at each spatial coordinate x;. More details on
this derivation are available in [16]. A natural decompo-
sition of this system under form (3)-(5) can be obtained

for each sensor i, i = 1, ..., N, as follows:

) = = (1) = s1(0)

0i(t) = %(ai,ls?(t) + Bi—153(t) — aihy(t) — Bivi(1))

Yi t :hl(t)7 1= ].,...,N— ].,

= (‘izl (t), 812 (t)v S?(t))T = (viJrl(t)v hifl(t)7 Uifl(t))T
= d—(vo(t) - s1(1)),

(an—1sn(t) + By-1s7 (1)

—anhn(t) — Bvon(t)) +dnhn(t) +ynvon (),
yn (t) = (hn (t), on (1)",
sy (t) = (sy(t), sx ()" = (hn-1(t),vn-1 ()"

The interconnection variables correspond to states of the
nearest neighbours of i only. Consequently, the data ex-
changes are limited to the nearest neighbors of each sen-
sor. Table 1 summarizes the parameters of the test sys-
tem, which corresponds to a 10 km-long canal. The de-
centralized observer parameters used in the simulations
are given by table 2, where I,, is the (n x n) identity
matrix and in addition 7 is the Lipschitz constant of the
constraints, p = 1.99¢ and € = %92

CT

Table 1
Test system parameters.

N dx he Ue

20 500m  he(z) =1m  ue(z) =0.839m/s
Table 2
Decentralized observer parameters.

Qi R; M; c €c
107' 107%o0r 1071, 107'Is; 107* 10773N x N,

In this cas study, version 2 of the (DSO)-based decentral-
ized moving-horizon observer (DMHOL1), (where N; =
1), and a version with a larger moving horizon Ny = 4
(DMHOZ2) were implemented with sampling time 7, =
480s on an estimation horizon of M = 20 time samples.
The simulations were performed on a desktop with Intel
Core 15-2320 @ 3.00GHz and 6 Go RAM under SCILAB
software . Fig. 2 and 3 provide a comparison between
the simulated linearized system and the two versions of
the observer, with a Gaussian noise of zero mean and a
standard deviation of 1072 added to the measured out-
puts. Water velocities are effectively estimated, after a

3 SCILAB is an open source software for numerical compu-
tation, trademark of Scilab Entreprises SAS 2013.



10% increase of the upstream water velocity. For both
versions of the observer, the average number of dual it-
erations at each sample time is equal to 57.

Water velocities in meters's
o
°
@
!
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time in sec

Fig. 2. Comparison between the true water velocities and
the estimated ones - with DMHO1.

Water velocities in meters/s
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Fig. 3. Comparison between the true water velocities and
the estimated ones - with DMHO2.

5.1 Comparisons with some alternative methods

Using the same case study with the same covariance
matrices as defined in table 2, the here-proposed ap-
proaches (DMHO1 and DMHO2) are successively com-
pared with the Centralized Infinite-Horizon Kalman Fil-
ter (CIHKF), the Centralized Information Filter (CIF)
described in [4] (page 4922). The centralized infinite-
horizon Kalman filter provides the optimal LQ state es-
timation in the sense of the minimal variance of the state
estimation error in the presence of both state and out-
put noises defined by the covariance matrices in table
2 or, equivalently, the solution of LQ problem (6) when
T — +o00. The Centralized Information Filter is a par-
tially distributed implementation of the finite-horizon
Kalman filter: At each sensor level, the so-called local
observation variables are computed and sent to a cen-
tral location which computes updates of both the global

state estimate and the Riccati equation covariance ma-
trix at each time sample. When the number of sensor
nodes N is large, the number of communications and
the O(n3) computations at the central location (where
n is the state number) are some serious limitations of
the approach, together with large latency and single
point of failure disadvantages. In comparison, approach
(DMHO) does not require a central location, and all
N
the O(n?®) computations are reduced to Z O(n?) where
i=1
n; is the state dimension of subsystem i, i = 1,..., N.
Communications are also limited to connected neighbors
of each subsystem. Table 3 provides some comparisons
of the root-mean-square error of estimation (RMSE:

M

1

i Z lz(k) — &(k)||*), the average time required to
i=1

compute the overall state estimation (denoted as T},o4c)
by each sensor node (subsystem). In the case of CIF, the
time needed to compute the Riccati covariance matri-
ces over the estimation horizon (denoted as T.) by the
central location is also provided.

Table 3
Comparisons (with N = 20, 7 = 480s, M = 20, and the
parameters in Tables 1 and 2).

Approach RMSE Thode (in sec) T. (in sec)
DMHO1  6.16 x 10°° 210 n.a.
DMHO2 6.13 x 1075 541 n.a.
CIHKF  4.44 x107° n.a. n.a.

CIF 6.4 x 107° 78 29549

All the approaches exhibited similar RMSE, with a bet-
ter estimation provided by CIHKF. CIF is the far less
effective approach in terms of computation time needed
at the central location. For both DMHO1 and DMHOZ2,
real-time implementation is possible since each node can
compute the current estimate in less than 7 = 480s (the
worst average computation time per node is given by
541/M = 27.05s).

6 CONCLUSIONS

A decentralized optimal LQ state observer design suit-
able for a sensor-network-based state estimation of large-
scale interconnected systems has been proposed. This
observer design relies on both the use of an augmented
Lagrangian formulation and a price-decomposition-
coordination algorithm. Under mild assumptions, the
algorithm converges to the solution of the centralized
optimal LQ observer (finite-horizon Kalman filter).
This algorithm is the core of a decentralized moving
horizon state estimator. A 20 sensor-network based
hydraulic canal estimation problem illustrated the ef-
fectiveness of the proposed approach, which was also



compared to existing approaches. A very similar version
may be derived in the framework of discrete-time linear
interconnected systems. The extension to the case of
nonlinearly-interconnected linear systems is also possi-
ble, with very similar communication and computation
requirements. Further researches will be devoted to the
analysis of the impact of communication noises or losses
on the observer performance.
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