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SUMMARY

A method is presented for simulating dynamic crack propagation using a coupled molecular dynamics
/ extended finite element method. Molecular dynamics is used at the crack tip while the extended
finite element method naturally models the crack in the wake of the tip as a traction-free discontinuity.
After recalling the basic molecular dynamics equations, the discretization of the continuum and the
traction-free discontinuity via the extended finite element method, and the zonal coupling method
between both domains, two-dimensional computations of dynamic fracture are presented, including
a discussion how to move and/or expand the zone in which molecular dynamics is used upon crack
propagation.
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1. INTRODUCTION

Quantum mechanics is probably the most appropriate theory to describe fracture from
a physics point of view, but the difficulties to relate quantum mechanics to continuum
mechanics, e.g. via Density Functional Theory [1, 2] presently seem insurmountable. One
scale of observation higher is to use molecular dynamics to describe fracture processes from
a fundamental physics point of view. Indeed, researchers have recently used this approach to
describe fracture, e.g. [3, 4, 5]. A disadvantage of the approach is that it is computationally
demanding. For this reason multi-scale approaches have been introduced, in fracture [6], as well
as in plasticity [7], in which only a part of the body is analysed using molecular dynamics, while
the remaining part of the body is modelled using continuum mechanics and discretized using
a finite element method. This contribution furthers along this line and combines molecular
dynamics for modelling the fracture process at the crack tip with an extended finite element
method (xfem), where the partition-of-unity property of the polynomial shape functions is
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exploited to model the crack in the wake of the tip as a traction-free discontinuity. It is noted
that recently another approach has been published that couples atomistics and extended finite
elements [8], but the current paper makes a further advancement in that it includes dynamic
crack propagation.

Partition-of-unity based finite element methods [9, 10, 11] have been used before in
computational methods for analysing and predicting fracture, since they provide elegant
solutions to incorporate stress singularities in domain-based discretization methods. More
recently, partition-of-unity finite element methods have also been shown to be very versatile
regarding the incorporation of cohesive-zone models for fracture, e.g. [12, 13, 14]. In particular,
it naturally enables crack propagation, also in dynamics [15, 16, 17, 18] and in multi-phase
continua [19].

This paper is organized as follows. First, we briefly recall the equations of molecular
dynamics, the main equations that describe the partition-of-unity based finite element method,
and indicate how both domains can be coupled. For a full analysis of the coupling method
the reader is referred to [20]. Then, the main body of the paper follows which is concerned
with a full two-dimensional coupled analysis of dynamic crack propagation. A major problem
is that when the crack tip touches the boundary of the zone around the tip that is modelled
using molecular dynamics, crack arrest occurs artificially. For this reason a strategy has been
devised to expand and move the zone that is modelled using molecular dynamics during the
computation. The numerical results, which are given for different loading rates, shows multiple
branching, shear banding and local mixed-mode behaviour, and resemble recent simulations
on dynamic fracture using cohesive-zone models [18, 21].

2. MULTISCALE MODEL

2.1. Molecular Dynamics

The classical Newtonian equations of motion for an atom i with mass mi and position ri are:

mir̈i = −
∂U (r1, . . . , rN )

∂ri

= −∇iU
.
= fi (1)

The force fi derives from the potential energy function U and can be viewed as the sum of all
the interatomic contributions:

fi = −
∂U

∂ri

=
∑

j 6=i

fij (2)

2.2. Partition-of-Unity Based Finite Element Method

In the part of the domain that is modelled as a continuum a weak formulation is used as
point of departure for the finite element discretization. In a manner which is by now standard,
the interpolation of each component of the displacement field is enriched with discontinuous
functions in order to properly capture the traction-free discontinuity in the wake of the crack
tip:

u =
∑

i∈NM

Niūi +
∑

i∈Ncut

NiHΓd
ûi (3)
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Figure 1. Discretized domain with the coupling region. The dark, “pear-shaped” area is the domain
where an MD calculation is carried out (Ωm). The coupling region Ωc consists of elements that are

surrounded by a bold line

where Ni are standard finite element shape functions supported by the set of nodes NM

included in the discretized domain ΩM . Nodes in Ncut have their support cut by the
discontinuity. In addition to the standard degrees of freedom ūi they also hold degrees of
freedom ûi that correspond to the discontinuous function HΓd

defined by:

HΓd
(x) =

x · nΓd

‖x · nΓd
‖

(4)

with nΓd
the normal to the discontinuity Γ. Symbolically, eq. (3) can be written as

u = NU (5)

where the matrix N contains the standard interpolation polynomials Ni as well as the
discontinuous function HΓd

, and the array U contains the displacement degrees of freedom ūi

and ûi. The transition within the domain ΩM between the subdomain where the nodes are
“enriched” and the part which has just the standard interpolation can be achieved in various
ways, e.g. [22].

2.3. Coupling Method

In order to enable an efficient coupling between the two domains, a coupling zone is defined
and a coupling function is computed which will be used to obtain the global energy.

First a coupling length Lc must be chosen that will be the characteristic length of the
coupling region. Subsequently, the patch of atoms, Ωm, is included in the continuum at a
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given position. Atoms at a distance r ≤ Lc from the Molecular Dynamics Box (MD-Box)
boundary are then considered to be in the coupling zone Ωc. The finite elements in this zone
are named “coupling elements”. Inside the MD-Box, where only the atomistic model applies,
elements are removed. The resulting, discretized domain is shown in Figure 1.

In order to write a global formulation for the entire domain, we partition the energy between
both models using the functions:

α : ΩM → [0, 1] (6)

β : Ωm → [0, 1] (7)

where






α(x) = 1 for x ∈ ΩM\Ωc

β(x) = 1 for x ∈ Ωm\Ωc

α(x) + β(x) = 1 for x ∈ Ωc

(8)

The function α has to be computed in the coupling zone, β being its complement to 1, subject
to the boundary conditions:

{

α(x) = 1 for x ∈ ΩM\Ωc

α(x) = 0 for x ∈ Ωm\Ωc
(9)

The global formulation utilizes Lagrange multipliers in order to ensure a velocity coupling
in the domain Ωc, see [20] for details. In principle each atom must be coupled to the finite
element discretization of the underlying continuum. However, in practice it suffices to take
only a limited number of atoms which have to be coupled via Lagrange multipliers.

3. DYNAMIC FRACTURE

3.1. Mechanical quantities in the atomistic domain

In order to extract mechanical quantities from the atomistic domain, we adopt a continuum
mechanics point of view to derive classical stress quantities.

The atomistic stress tensor at an atom i is a measurement of the interatomic interactions of
the atom with its neighbours. A widely used stress quantity defined on the atomistic domain
is the virial stress, which takes into account the interactions and a kinetic energy contribution.
Many formulations have been derived from this virial stress [23, 24, 25], but, as pointed out by
Zhou [26], these definitions, even perfectly correct in a statistical and thermodynamical sense,
do not correspond to the Cauchy stress or to any other mechanical stress. However, it can be
shown that the interatomic interactions part of the virial stress reduces to the Cauchy stress
with a physical meaning. We therefore adopt this definition for the stress tensor:

σσσi =
1

2Vi

∑

rij<rc

fji ⊗ rij (10)

where Vi is the volume of the atom i, rij = ri − rj , and rij = |rij |. Subsequently, the average
of this atomistic stress tensor is computed over the volume around i within the cut-off radius
rc. The average atomistic stress at the atom i thus reads:

σσσi
avg =

1

Nn,i

Nn,i
∑

j=1

σσσj (11)
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(a) Energy indicator at t = 9.488 ps. (b) Threshold E at t = 9.488 ps

(c) Energy indicator at t = 13.442 ps (d) Threshold E at t = 13.442 ps

(e) Energy indicator at t = 17.395 ps. (f) Threshold E at t = 17.395 ps

Figure 2. Atomistic potential energy variation during propagation. Vp = 47.4 ms−1
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Figure 3. Crack tips and branches for an evolving fracture pattern

Finally, the Von Mises atomistic stress σc at an atom i is defined as follows:

2(σc,i)
2 =

(

σavg
xx − σavg

yy

)2
+

(

σavg
yy − σavg

zz

)2
+ (σavg

xx − σavg
zz )2

+ 6
(

σavg
xy

2 + σavg
yz

2 + σavg
xz

2
)

(12)

3.2. Moving Molecular Dynamics Box

At a generic stage during the loading process the crack tip will touch the boundary of the
MD-Box and, at this point, the crack will be artificially arrested. In order to adapt the MD-
Box to the dynamic evolution of the cracks, the crack path has to be identified during the
computation. Indeed, even in a perfect crystal with a Mode-I loading, crack branching can
develop and the crack path cannot easily be predicted a priori.

Fundamentally, a crack opening corresponds to a dissipation of energy. The basic idea for
the evolution of the MD-Box is that when the energy stored at the crack tip exceeds a preset
value, propagation can occur. Within the atomistic framework, the crack propagates when
bonds are broken, which means that some atoms have displaced sufficiently to be out of the
local potential well. Thus, the local atomistic potential energy can be considered to be a good
indicator for the identification of the location of cracks. In the intact, undeformed zone, a
given atom is at equilibrium, surrounded by its neighbours. If crack propagation occurs in this
zone, the atom will move, “lose” some of its neighbours and consequently, its potential energy
is affected.

At each time step, the local potential energy Ui is computed for each atom i and is compared
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with the initial value U0
i . We build a discrete field E , which is named the “energy indicator”:

Ei = 100 ×
Ui − U0

i

U0
i

(13)

and is defined for each atom i. From Figures 2(a), 2(c) and 2(e) it is observed that this
indicator is zero almost everywhere in the atomistic domain, except at the atoms near the
crack. Moreover, the highest value of the energy indicator is located around the crack tip. In
Figures 2(b), 2(d) and 2(f), we have put a threshold on Ei:

{

E i = 0 if Ei < 10
E i = 1 if Ei ≥ 10

(14)

which corresponds to a 10% variation of the potential energy Ui. The discrete field E clearly
indicates the crack path in the atomistic domain. One can even distinguish between crack
openings and shear bands, depending on the displacement field. Accordingly, this indicator
provides useful information: At each time step, the crack tips can be located and their paths
can be stored. Considering the “cracked” atoms, i.e. those for which E i = 1, the nearest
neighbours are counted and the Von Mises atomistic stress is computed in order to pin-point
the crack tips. Indeed, the tips can be viewed as the extremities of the discrete domain of the
“cracked” atoms. Using a basic graph theory routine, the global crack path can be viewed as
a tree, with a clear identification of extremities and branches. Then, branches are stored and
the positions of the crack tips are tracked.

The global crack path consists of the successive positions of all crack tips and the number
of cracks is assumed to be equal to the number of branches in the tree. At time step n, we
then define, for atom Ai:

{

Bn = {Ai | E i ≥ 1} ⇒ branches
T n = {Ai | E i = 2} ⇒ tips

(15)

Each tip Ti contains the following information, Figure 3:

• The initial position X
i
0, corresponding to the coordinates of the atom that was holding

the crack tip at the onset of the corresponding branch;
• The reference position X

i
r, initialized by: X

i
r = X

i
0, and subsequently updated during

propagation;
• The current position X

i
c, which corresponds to the current coordinates of the atom that

holds the tip.

During crack evolution, a displacement indicator δδδi
X is used at each time step n:

∀Ti ∈ T n , δδδi
X = X

i
c − X

i
r. (16)

In order to construct an adapted geometry where the cracks and discontinuities are kept within
the MD-Box, an update criterion has been used that compares the displacement indicator to
a given value Lu:

∀Ti ∈ T n , if ‖δδδi
X‖ ≥ Lu ⇒ MD-Box update (17)

This criterion states that after a prescribed amount of crack growth, the geometry of the
atomistic region has to be updated in order to keep the crack tip within the MD-Box. If Eq.
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(17) results in an update, X
i
r = X

i
c is re-initialized, and a lattice is built centered around

X
i
c, in the direction δδδi

X . At each update of the MD-Box, a new configuration is constructed.
Thus, elements have to be removed from the atomistic lattice and the coupling region changes.
The weighting functions are computed on this new configuration and the global matrices are
re-initialized.

Figure 4. Initial configuration of the MD-Box

3.3. Examples: Crack propagation under velocity loading

We now proceed with a two-dimensional simulation. A copper single crystal is considered
in its (111) plane, so that the two-dimensional lattice is hexagonal. The Lennard-Jones
potential is used in the molecular dynamics simulation with parameters [27]: a = 0.415 eV and
b = 0.2277 nm. The Young’s modulus E and Poisson’s ratio ν for the continuum then become:
E = 79.334 GPa and ν = 0.25 [28]. The copper atomic mass is taken as m = 0.105520602596×
10−24 kg (mCu = 63.546

NA
g with NA the Avogadro number: NA = 6.02214179× 1023 mol−1),

which corresponds to a mass density ρ = 1865.250812586× 103 kgm−3. In the present study,
the temperature has not been taken into account, since the focus is on the coupling of Molecular
Dynamics to an (extended) finite element method for crack propagation. When extending the
methodology to explicitly include the temperature a “thermal equilibrium” has to be achieved
in addition to the mechanical equilibrium. This can for instance be done using the Nose-Hoover
thermostat method [29].

The domain of interest has been plotted in Figure 4. It is 100 nm long and 77.5 nm wide with
an initial crack. A large MD-Box is considered in order to properly trace the crack propagation
during dynamic loading. The finite element mesh consists of 1221 quadrilateral elements and
4868 nodes. The element size is about 10 times the interatomic distance. 8875 atoms are put
in the initial MD-Box. The width of the coupling domain is approximatively 3 nm and 33%
of the atoms in this region hold Lagrange multipliers.
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(a) Cracked specimen 1 (Vp = 3.16 ms−1) at
t = 140.744 ps.

(b) Cracked specimen 2 (Vp = 31.6 ms−1) at
t = 39.535 ps

(c) Cracked specimen 3 (Vp = 47.4 ms−1) at
t = 32.102 ps

(d) Cracked specimen 4 (Vp = 63.2 ms−1) at
t = 29.256 ps

(e) Cracked specimen 5 (Vp = 126.5 ms−1) at
t = 16.605 ps

Figure 5. Cracked specimens at the end of the simulations
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(a) Von Mises stress at the crack tip at t =
9.219 ps

(b) Stress distribution along the crack line at
t = 9.219 ps

(c) Von Mises stress at the crack tip at t =
9.805 ps

(d) Stress distribution along the crack line at
t = 9.805 ps

Figure 6. Crack initiation for specimen 3: Vp = 47.4 ms−1

For computational reasons, the results that are presented from now on have been obtained
by only including the first neighbours in the atomistic interactions. Indeed, the equilibration
techniques and the updates are expensive when we take into account many neighbours.
However, simulations on a smaller scale have indicated that at least qualitatively, the results
are rather similar to those obtained with more neighbours. In order to simulate defects in
the lattice, 0.5% of the atoms are removed in a random manner. Example calculations have
been carried out for five different loading rates, applied to the top and bottom edges of the
specimen:

• Specimen 1: Vp = 3.16 ms−1;
• Specimen 2: Vp = 31.6 ms−1;
• Specimen 3: Vp = 47.4 ms−1;
• Specimen 4: Vp = 63.2 ms−1;
• Specimen 5: Vp = 126.5 ms−1.
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(a) σxx at the crack tip at t = 7.986 ps (b) σxy at the crack tip at t = 7.986 ps

(c) σyy at the crack tip at t = 7.986 ps.

Figure 7. Stress components before crack initiation. Specimen 4: Vp = 63.2 ms−1

For the lowest loading rate we observe from Figure 5 that there is only one main crack, which
propagates in a horizontal sense. For the two next higher loading rates secondary branches
develop, which have a shear-band character, and correspond to evolving dislocations. For the
two highest loading rates multiple crack branching is observed and the main crack no longer
runs horizonally, but shows a tortuous pattern.

Figure 6 shows the Von Mises stress just before and after the crack initiation for the specimen
that is subjected to the medium loading rate. The right plots in this figure give the the stress
distributions along the crack – along a horizontal line. The stress concentration clearly localizes
at the crack tip before opening. Upon exceeding a threshold value, propagation occurs and the
stress decreases rapidly which is accompanied by stress waves that are emitted radially. These
results correspond to those obtained in classical fracture mechanics. Indeed, Figure 7 shows
the stress components at the onset of crack initiation for specimen 4. The shape of the σxx,
σxy and σyy components also corresponds to those predicted by classical fracture mechanics
and the highest value is that of σyy, which corresponds to the fact that we have a Mode-I
loading in the vertical direction.
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Considering the atomistic structure during crack propagation, a distinction can be made
between shear bands and cracks. Figure 8 shows the atomic bonds at different time steps
for specimen 2. While crack propagation is caused by atomic debonding, shear bands are
characterized by a local re-arrangement of the lattice, rather than debonding. Furthermore,
one can observe that, even if the main crack propagates in a horizontal sense, locally its path is
governed by lattice defects. Finally, it is noted that the crack does not propagate in a smooth
manner. Instead, void nucleations are observed ahead of the crack tip. The local process of crack
propagation thus seems a succession of void nucleation, debonding and crack tip propagation.
This phenomenon is known at the atomistic level, and has also been observed in macroscopic
experiments (usually for high velocities, e.g. [30]). Figure 9 shows the same structure, but
now the Von Mises stress has been plotted. It is interesting to note that the maximum value
of the stress is not located at the crack tip (defined in terms of atomic debonding). This is
consistent with the observation that we observe void nucleation ahead of the crack tip. Stress
concentrations occurs around defects and ahead of the tip, atoms locally debond, and the
propagation subsequently follows this path.

Furthermore, the main crack tip has been tracked during propagation for specimens 2, 3, and
4, in order to plot the curvilinear coordinate of the crack tip as a function of time. This enables
the computation of the crack propagation velocity. In Figures 10(a) – 10(c), the evolution of
the crack length has been plotted. For specimen 2 a crack velocity can straightforwardly be
identified as Vcrack,2 ∼ 2815 ms−1. For specimen 3 one observes different regimes. First, the
velocity equals V 1

crack,3 ∼ 1967 ms−1. Then, there is an acceleration at t ∼ 22 ps, resulting in

a crack propagation velocity V 2
crack,3 ∼ 2581 ms−1. Considering the displacement fields from

t ∼ 22 ps onwards, e.g. Figure 10(d)), we observe that main crack is surrounded by two shear
bands. This causes wave reflections, which can affect the crack propagation and its velocity.
Moreover, as the velocity increases, more dislocations seem to arise. Finally, for specimen 4,
three regimes can be identified:

• Initiation: V 1
crack,4 ∼ 1892 ms−1 around t = 8 ps,

• First acceleration: V 2
crack,4 ∼ 2447 ms−1 around t = 15 ps,

• Second acceleration: V 3
crack,4 ∼ 2841 ms−1 around t = 24 ps.

From the displacement field in Figure 11) we observe that around these moments, similar
changes occur as observed for specimen 3. For t ∼ 15 ps, Figures 11(a) and 11(b), shear bands
and dislocations emerge, and the main direction of the crack path changes. Around t ∼ 24 ps,
Figures 11(c) and 11(d), a crack branching occurs. New free surfaces appear and the local
configuration changes. This can be the explanation for the observed acceleration in the crack
propagation.

From the elastic material properties computed above, the following wave speeds can be
deduced:

• Longitudinal wave speed: cL =
√

λ+2µ
ρ

= 7144 ms−1,

• Shear wave speed: cS =
√

µ
ρ

= 4124 ms−1,

• Rayleigh wave speed: cR ∼ 3785 ms−1.

Comparing these values with the numerically obtained velocities, the final crack speed appears
to be around 75% of the Rayleigh wave speed, and for specimens 3 and 4, the initiatial velocity,
i.e. before it accelerates, is around 50% of the Rayleigh wave speed.



DYNAMIC CRACK PROPAGATION USING A COMBINED MD/XFEM APPROACH 13

(a) Displacement field at t = 19.767 ps. (b) Displacement field at t = 20.558 ps.

(c) Displacement field at t = 21.349 ps. (d) Displacement field at t = 22.139 ps.

(e) Displacement field at t = 22.930 ps. (f) Displacement field at t = 23.721 ps.

Figure 8. Debonding and displacement around the crack tip. Specimen 2.
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(a) Von Mises stress at t = 19.767 ps. (b) Von Mises stress at t = 20.558 ps.

(c) Von Mises stress at t = 21.349 ps. (d) Von Mises stress at t = 22.139 ps.

(e) Von Mises stress at t = 22.930 ps. (f) Von Mises stress at t = 23.721 ps.

Figure 9. Debonding and Von Mises stress around the crack tip. Specimen 2.
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(a) Specimen 2: Vp = 31.6 ms−1
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(b) Specimen 3: Vp = 47.6 ms−1
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(c) Specimen 4: Vp = 63.2 ms−1 (d) Displacement field at t = 23.721 ps.

Figure 10. Crack tip coordinate as a function of time and displacement field of specimen 3 at
t = 23.721 ps

We finally examine the evolution of the shear band in specimen 3, Figure 12(a). It arises
from the crack at t = 26.251 ps and propagates in one of the main lattice directions (−60◦), see
Figure 12(b). A propagation velocity Vshear,3 ∼ 5050 ms−1 can be identified, which, compared
with the shear wave velocity cS seems somewhat high, but it is in the same order of magnitude.
The graph also shows that the band propagation is influenced by defects along its path. Indeed,
the global velocity is the result of a interaction between propagations, accelerations and local
bifurcations.

4. CONCLUDING REMARKS

A numerical approach has been proposed for combining a molecular dynamics method and
a finite element method that exploits the partition-of-unity property of finite element shape
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(a) Displacement field at t = 15.814 ps. (b) Displacement field at t = 18.977 ps.

(c) Displacement field at t = 24.512 ps. (d) Displacement field at t = 26.884 ps.

Figure 11. Main crack surrounded by shear bands and crack branching. Specimen 4.

functions (extended finite element method). The aim is to simulate dynamic fracture in an
efficient manner on basis of elementary physical principles. To this end the zone around the
crack tip is modelled using molecular dynamics. Around this so-called Molecular Dynamics
Box a continuum mechanics approach is adopted, with the finite element method used for
discretization. The partition-of-unity property of the finite element shape functions is exploited
to model the crack in the wake of its tip as a traction-free discontinuity. The coupling
between the continuum and molecular dynamics zones has a zonal character where the energy
is partitioned over both models and a weak velocity coupling is enforced. In this manner,
spurious reflections are avoided and energy is conserved when a wave travels from one zone
into another [20].

The computation is limited by the size of the MD-Box. When a crack tip reaches the
boundary of the atomistic domain and intersects the coupling zone, the crack is arrested and
cannot propagate further. For this reason an adaptative MD-Box has been constructed, where
a potential energy criterion in the atomistic domain is used to automatically resize the MD-Box
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(a) Shear band starting from the crack at t = 31.786 ps
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(b) Shear band length as function of time

Figure 12. Shear band evolution for specimen 3: Vp = 47.4 ms−1
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when the crack evolves during the computation. In this manner discontinuities always remain
inside the atomistic domain. Two-dimensional examples are shown for different loading rates.
Depending on the loading rate, different failure modes can be distinguished, ranging from
stable propagation of a single crack to multiple branching, while phenomena like local shear
banding and local mode mixity can also be identified.
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16. Menouillard T, Réthoré J, Combescure A. Efficient explicit time stepping for the extended finite element

method. International Journal for Numerical Methods in Engineering 2006; 68: 911–939.
17. Remmers JJC, de Borst R, Needleman A. A cohesive segments method for the simulation of crack growth.

Computational Mechanics 2003; 31: 69–77.
18. Remmers JJC, de Borst R, Needleman A. The simulation of dynamic crack propagation using the cohesive

segments method. Journal of the Mechanics and Physics of Solids 2008; 56: 70–92.
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