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CONVEXITY OF PARABOLIC SUBGROUPS IN ARTIN GROUPS

RUTH CHARNEY AND LUIS PARIS

Abstract. We prove that any standard parabolic subgroup of any Artin group is convex
with respect to the standard generating set.

1. Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S indexed
by the elements of S satisfying ms,s = 1 for all s ∈ S, and ms,t = mt,s ∈ {2, 3, 4, . . . }∪{∞}
for all s, t ∈ S, s 6= t. The Coxeter graph which represents the above Coxeter matrix is
the labelled graph Γ = Γ(M) defined as follows. (1) S is the set of vertices of Γ. (2) Two
vertices s, t ∈ S are joined by an edge if ms,t ≥ 3. (3) This edge is labelled by ms,t if
ms,t ≥ 4.

The Coxeter system of Γ is the pair (W,S) = (WΓ, S), where S is the set of vertices of
Γ, and W is the group defined by the following presentation.

W =

〈
S

∣∣∣∣ s2 = 1 for all s ∈ S
(st)ms,t = 1 for all s, t ∈ S, s 6= t and ms,t 6=∞

〉
.

The group W itself is called the Coxeter group of Γ.
If a, b are two letters and m is an integer ≥ 2, we set

Π(a, b : m) =

{
(ab)

m
2 if m is even

a(ba)
m−1

2 if m is odd

In other words, Π(a, b : m) denotes the word aba · · · of length m. Let Σ = {σs | s ∈ S}
be an abstract set in one-to-one correspondence with S. The Artin system of Γ is the pair
(A,Σ) = (AΓ,Σ), where A is the group defined by the following presentation.

A = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for all s, t ∈ S, s 6= t and ms,t 6=∞〉 .
The group A itself is called the Artin group of Γ. Observe that the map Σ → S, σs 7→ s,
induces an epimorphism θ : AΓ →WΓ. The kernel of θ is called the colored Artin group of
Γ, and it is denoted by CAΓ.

The Coxeter groups were introduced by Tits in his manuscript [14]. The latter is one of
the main sources for the celebrated Bourbaki book “Groupes et algèbres de Lie, Chapitres
IV, V et VI” [3]. They play an important role in many areas such as Lie theory, hyperbolic
geometry, and, of course, group theory. Furthermore, there is a quite extensive literature
on Coxeter groups. We recommend [7] for a detailed study of the subject.

R. Charney was partially supported by NSF grant DMS-1106726.

1



2 RUTH CHARNEY AND LUIS PARIS

The Artin groups were also introduced by Tits, as extensions of Coxeter groups [15].
They are involved in several fields (singularities, knot theory, mapping class groups, and so
on), and they have been the object of many papers in the last three decades. Most results,
however, involve only special classes of Artin groups, such as spherical type Artin groups
(where the corresponding Coxeter group is finite) or right-angled Artin groups (where all
ms,t = 2,∞). Artin groups as a whole are still poorly understood. In particular, it is not
known if they are torsion free, or if they have solvable word problem (see [9]). The present
paper is an exception to that rule since it concerns all Artin groups.

The flagship example of an Artin group is the braid group Bn on n strands. It is
associated to the Coxeter graph An−1 depicted in Figure 1, and its associated Coxeter
group is the symmetric group Sn.

s1 s2 s3 sn−2 sn−1

Figure 1. The Coxeter graph An−1.

For T ⊂ S, we denote by WT the subgroup of W generated by T , we denote by ΓT the
full subgraph of Γ spanned by T , we set ΣT = {σs | s ∈ T}, and we denote by AT the
subgroup of A generated by ΣT . By [3], the pair (WT , T ) is the Coxeter system of ΓT , and
by [11], (AT ,ΣT ) is the Artin system of ΓT . The group AT (resp. WT ) is called a standard
parabolic subgroup of A (resp. of W ).

Let m and n be two positive integers such that m ≤ n. A fundamental example of a
standard parabolic subgroup is the braid group Bm embedded in Bn via the homomorphism
which sends the standard generators of Bm to the first m− 1 standard generators of Bn.

Let G be a group, and let S be a generating set for G. An expression for an element
α ∈ G is a word α̂ = sε11 · · · s

ε`
` on S t S−1 which represents α. The length of α (with

respect to S), denoted by lgS(α), is the minimal length of an expression for α. A geodesic
for α is an expression of length lgS(α). Geometrically, this corresponds to a geodesic path
from 1 to α in the Cayley graph of (G,S).

Let T be a subset of S, and let H be the subgroup of G generated by T . We say that
H is convex in G with respect to S if for all α ∈ H and all geodesic α̂ = sε11 · · · s

ε`
` of α,

we have s1, . . . , s` ∈ T . Or equivalently, the Cayley graph of (H,T ) is a convex subspace
of the Cayley graph of (G,S). In particular, if H is convex, then lgS(α) = lgT (α) for all
α ∈ H, that is, H is isometrically embedded in G.

The following is of importance in the study of Coxeter groups.

Theorem 1.1 (Bourbaki [3]). Let Γ be a Coxeter graph, let (W,S) be its Coxeter system,
and let T be a subset of S. Then WT is a convex subgroup of W with respect to S.

In the present paper we prove that the same result holds for Artin groups. That is:

Theorem 1.2. Let Γ be a Coxeter graph, let (A,Σ) be its Artin system, and let T be a
subset of S. Then AT is a convex subgroup of A with respect to Σ.
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Our original motivation for studying the convexity of parabolic subgroups in Artin groups
comes from a question asked us by Arye Juhász. In a work in preparation [10], he provides
a solution to the word problem for a certain class of Artin groups, and he proves that
these groups are torsion free. His proof uses a condition on the groups that he calls the
A-S condition, a form of convexity for a certain type of word. It follows immediately from
Theorem 1.2 that this condition is satisfied by all Artin groups. More generally, as for
Coxeter groups, the study of Artin groups often goes through the study of their (standard)
parabolic subgroups. So any result on these subgroups is likely to be useful in further
developments in the theory of Artin groups.

Although Theorem 1.2 may seem natural, it is a surprise for the experts. As far as
we know, it was not even known for the braid group Bm embedded in Bn, although the
proof in this case is easy (see Proposition 2.1 below). Theorem 1.2 also comes as a surprise
because, in general, the family of standard generators (that is, Σ) is not the best for
studying combinatorial questions on Artin groups. In the most well understood case, when
A is of spherical type, a larger generating set is generally used. This is called the set of
simple elements and we denote it by S. It follows from [5] that (AT ,ST ) is isometrically
embedded in (A,S), but the image is not convex since there are S-geodesics for elements
of AT whose terms do not belong to ST t S−1

T .

2. The proof

As promised, we start with the proof of Theorem 1.2 in the particular case of the braid
group Bm embedded in Bn. We treat this case separately for two reasons. Firstly, because
some readers may want to use Theorem 1.2 in that case without necessarily learning all
the background on Artin groups needed to prove our theorem. Secondly, because the proof
of Theorem 1.2 is, in a sense, a (non trivial) extension of the proof of Proposition 2.1. So,
the reader may want to keep in mind the proof of Proposition 2.1 when reading the proof
of Theorem 1.2.

Recall that a braid on n strands is an n-tuple β = (b1, . . . , bn) of paths, bi : [0, 1]→ R3,
such that

(1) bi(0) = (i, 0, 0) for all i ∈ {1, . . . , n}, and there is a permutation w ∈ Sn such that
bi(1) = (w(i), 0, 1) for all i ∈ {1, . . . , n};

(2) (p3 ◦ bi)(t) = t for all i ∈ {1, . . . , n} and t ∈ [0, 1], where p3 denotes the projection
of R3 on the third coordinate;

(3) bi ∩ bj = ∅ for all i, j ∈ {1, . . . , n}, i 6= j.

The isotopy classes of braids form a group, called the braid group on n strands and denoted
by Bn. By Artin [1, 2], this group has the following presentation.

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2
σiσj = σjσi for |i− j| ≥ 2

〉
.

In other words, Bn is the Artin group associated to the Coxeter graph An−1 depicted in
Figure 1.
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Proposition 2.1. Let m,n ∈ N, m ≤ n. Then Bm is a convex subgroup of Bn with respect
to {σ1, . . . , σn−1}.

Proof. Let p1,3 : R3 → R2 denote the projection on the first and third coordinates. Let
β = (b1, . . . , bn) be a braid. We project each bi on the plane R2 via p1,3 and, up to isotopy,
we may suppose that these projections form only finitely many regular double crossings.
As usual, we indicate in each crossing which strand goes over the other. We obtain in
this way a braid diagram which represents the isotopy class of β. Recall also that each
generator σi has a “canonical” diagram with precisely one crossing.

Let α̂ = σε1i1 · · ·σ
ε`
i`

be a word which represents an element α ∈ Bn. By concatenating

the canonical diagrams of the σεii ’s, we obtain a diagram of α with precisely ` crossings.
Conversely, by applying standard methods, from a diagram of α with ` crossings, we can
define a (non unique) word α̂ = σε1i1 · · ·σ

ε`
i`

of length ` which represents α.

Let α ∈ Bm, and let α̂ = σε1i1 · · ·σ
ε`
i`

be a geodesic of α with respect to the generating set of
Bn. Let D be the diagram of α obtained from α̂. By removing the strands bm+1, . . . , bn from
D, we obtain another diagram D′ of α, but now viewed as an element of Bm. Since no new
crossings are introduced by this procedure, D′ has at most ` crossings. But α̂ was geodesic,
so the number of crossings cannot be less than `. This means that the only strands involved
in the crossings in D are b1, . . . , bm, and therefore σi1 , . . . , σi` ∈ {σ1, . . . , σm−1}. �

We turn now to the proof of Theorem 1.2. We fix a Coxeter graph Γ, and denote by
(W,S) its Coxeter system, and by (A,Σ) its Artin system.

Let X,Y be two subsets of S, and let w be an element of W . We say that w is (X,Y )-
minimal if it is of minimal length among the elements of the double-coset WXwWY . The
following will be implicitly used throughout the paper.

Proposition 2.2 (Bourbaki [3]). Let X,Y be two subsets of S, and let w ∈W .

(1) There exists a unique (X,Y )-minimal element lying in WXwWY .
(2) The following are equivalent.

• w is (∅, Y )-minimal,
• lgS(ws) > lgS(w) for all s ∈ Y ,
• lgS(wu) = lgS(w) + lgS(u) for all u ∈WY .

(3) The following are equivalent.
• w is (X, ∅)-minimal,
• lgS(sw) > lgS(w) for all s ∈ X,
• lgS(uw) = lgS(u) + lgS(w) for all u ∈WX .

Now, set Sf = {X ⊂ S | WX is finite}. Then the following can be easily proved using
the previous proposition (see for instance [12, Lemma 3.2]).

Lemma 2.3. Let � be the relation on W × Sf defined as follows. Set (u,X) � (v, Y ) if
the following three conditions hold,

(1) X ⊂ Y ,
(2) v−1u ∈WY , and
(3) v−1u is (∅, X)-minimal.
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Then � is a partial order relation on W × Sf .

Recall that the derived complex of a partially ordered set (E,≤) is defined to be the
abstract simplicial complex made of the finite nonempty chains of E. The Salvetti complex
of Γ, denoted by Sal(Γ), is defined to be the geometric realization of the derived complex
of (W × Sf ,�). Note that the action of W on W × Sf defined by w · (u,X) = (wu,X)
leaves invariant the order relation �, hence it induces a “natural” (free and properly
discontinuous) action of W on Sal(Γ). The quotient space will be denoted by Sal(Γ) =
Sal(Γ)/W .

The spaces Sal(Γ) and Sal(Γ) admit cellular decompositions. Recall that a finite Coxeter
group WX can be realized as an orthogonal reflection group acting on Rk, k = |X|. The
Coxeter cell for WX is the convex hull of the orbit of a generic point p in Rk. Viewed as a
combinatorial object, it is independent of choice of the point p. Its 1-skeleton is the Cayley
graph of (WX , X). The cell decompositions of Sal(Γ) and Sal(Γ), which we now describe,
are made up of Coxeter cells for the subgroups WX , X ∈ Sf .

For (u,X) ∈W × Sf , we set

C(u,X) = {(v, Y ) ∈W × Sf | (v, Y ) � (u,X)} ,

and we denote by B(u,X) the simplicial subcomplex of Sal(Γ) spanned by C(u,X). It is
shown in [12] that B(u,X) is a closed disc of dimension |X| for all (u,X) ∈W ×Sf ; in fact
it is naturally isomorphic to the Coxeter cell for WX . The set {B(u,X) | (u,X) ∈W ×Sf}
is a regular cellular decomposition of Sal(Γ) (see also [13, 6]).

Observe that every w ∈ W \ {1} sends the closed disc B(u,X) homeomorphically onto
B(wu,X), and that int(B(u,X)) ∩ int(B(wu,X)) = ∅, for all (u,X) ∈ W × Sf . It follows
that the cellular decomposition of Sal(Γ) induces a cellular decomposition of the quotient
Sal(Γ) = Sal(Γ)/W . This decomposition has one cell for each X ∈ Sf , corresponding to
the orbit of B(1, X) under W . The closure of this cell will be denoted by B̄(X). Note that
this cellular decomposition is not regular in general.

The k-skeletons of Sal(Γ) and Sal(Γ) for k = 0, 1, 2 can be described as follows.
The 0-skeleton. Let u ∈W . Then C(u, ∅) = {(u, ∅)}, and B(u, ∅) is a vertex of Sal(Γ).

We denote it by x(u). So, the 0-skeleton of Sal(Γ) is the set {x(u) | u ∈ W}, which is in
one-to-one correspondence with W . The 0-skeleton of Sal(Γ) is reduced to a single point,
B̄(∅), that we denote by x0.

The 1-skeleton. Let u ∈ W and s ∈ S. Then C(u, {s}) = {(u, ∅), (us, ∅), (u, {s})},
and B(u, {s}) is an edge of Sal(Γ) connecting x(u) to x(us). We denote it by a(u, s) and
orient it from x(u) to x(us). Note that there is another edge connecting x(u) to x(us),
namely a(us, s), but this edge is oriented in the other direction (see Figure 2). Observe
that the action of W preserves orientations of edges. Since all edges are of this form, we
see that the 1-skeleton of Sal(Γ) is just the Cayley graph of (W,S). Descending to Sal(Γ),
the 1-skeleton consists of a loop at x0 formed by the edge ās = B̄({s}), for each s ∈ S (see
Figure 2).

The 2-skeleton. Let s, t ∈ S, s 6= t. Set X = {s, t}. First, notice that X ∈ Sf if
and only if ms,t 6= ∞. Now, assume ms,t 6= ∞, set m = ms,t, and take u ∈ W . Then
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x(u)

a(u, s)

a(v, s)

x(v)
q

x(us)
x0 ās

Figure 2. 1-skeletons of Sal(Γ) and Sal(Γ).

B(u,X) is isomorphic to the Coxeter cell for WX . Namely, it is a 2m-gon with vertices
{x(uw) | w ∈WX}. The boundary of B(u,X) is the loop

a(u, s)a(us, t) · · · a(uΠ(s, t : m− 1), r)a(uΠ(t, s : m− 1), r′)−1 · · · a(ut, s)−1a(u, t)−1

where r = t and r′ = s if m is even, and r = s and r′ = t if m is odd (see Figure 3). Hence,
B̄(X) is a 2-cell whose boundary is

āsāt · · · ārā−1
r′ · · · ā

−1
s ā−1

t = Π(ās, āt : m)Π(āt, ās : m)−1 .

a(u, t)

a(u, s)

a(ut, s)

a(us, t)

a(uts, t)

a(ust, s)

āt

ās

ās

āt

āt

ās

Figure 3. 2-skeletons of Sal(Γ) and Sal(Γ).

From the above it follows that the 2-skeleton of Sal(Γ) is precisely the Cayley 2-complex
associated with the standard presentation of A.

Proposition 2.4. We have π1(Sal(Γ), x0) = A, π1(Sal(Γ), x(1)) = CA, and the exact
sequence associated to the regular covering Sal(Γ)→ Sal(Γ) is

1 −→ CA −→ A −→W −→ 1.

Now, assume we are given a subset T of S, and set SfT = {X ∈ Sf | X ⊂ T}. Observe

that the embedding WT × SfT ↪→ W × Sf induces an embedding ιT : Sal(ΓT ) ↪→ Sal(Γ).
The following provides our main tool for proving Theorem 1.2.
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Theorem 2.5 (Godelle, Paris [8]). The embedding ιT : Sal(ΓT ) ↪→ Sal(Γ) admits a retrac-
tion πT : Sal(Γ)→ Sal(ΓT ).

In the proof of Theorem 1.2, we will need the following explicit description of the map
πT . Let (u,X) ∈ W × Sf . Write u = u0u1, where u0 ∈ WT and u1 is (T, ∅)-minimal. Set

X0 = T ∩ u1Xu
−1
1 . Note that, since u1WXu

−1
1 is finite, WX0 is finite, hence X0 ∈ SfT .

Then we set πT (u,X) = (u0, X0). It is proved in [8] that the map πT : W ×Sf →WT ×SfT
induces a continuous map πT : Sal(Γ)→ Sal(ΓT ) which is a retraction of ιT .

Now, the following lemma follows from the above description.

Lemma 2.6. Let u ∈W . Write u = u0u1, where u0 ∈WT and u1 is (T, ∅)-minimal. Then

(1) πT (x(u)) = x(u0).
(2) Let s ∈ S and set t = u1su

−1
1 . If t ∈ T , then πT (a(u, s)) = a(u0, t). If t /∈ T , then

πT (a(u, s)) = x(u0).

Proof. We leave Part (1) to the reader and turn to Part (2). We take u ∈ W and s ∈ S,
and define u0, u1 and t as in the Lemma. Recall that C(u, {s}) = {(u, ∅), (us, ∅), (u, {s})},
and that a(u, s) is the edge of Sal(Γ) spanned by C(u, {s}).

Assume first that t ∈ T . We have us = u0u1s = u0tu1, u0t ∈ WT and u1 is (T, ∅)-
minimal, hence πT ((u, ∅)) = (u0, ∅), πT ((us, ∅)) = (u0t, ∅), and πT ((u, {s})) = (u0, {t}).
Therefore, πT (a(u, s)) = a(u0, t).

Assume now that t 6∈ T . We claim that u1s is (T, ∅)-minimal. If lgS(u1s) < lgS(u1), then
this is clear since u1 is (T, ∅)-minimal. Suppose that lgS(u1s) > lgS(u1). If u1s were not
(T, ∅)-minimal, then there would exist s0 ∈ T such that lgS(s0u1s) < lgS(u1s) and since
u1 is (T, ∅)-minimal, lgS(s0u1) > lgS(u1). By the “folding condition” (see [4, Chap. II,
Sec. 3]), this would imply that s0u1s = u1, that is, t = u1su

−1
1 = s0 ∈ T , a contradiction.

Thus, if t 6∈ T , then us = u0u1s, u0 ∈ WT , and u1s is (T, ∅)-minimal. It follows that
πT ((u, ∅)) = πT ((us, ∅)) = πT ((u, {s})) = (u0, ∅), hence πT (a(u, s)) = x(u0). �

Proof of Theorem 1.2. Let α̂ = σε1s1 · · ·σ
ε`
s`
∈ (ΣtΣ−1)∗ be a word in the alphabet ΣtΣ−1.

Set

γ̄(α̂) = āε1s1 · · · ā
ε`
s`
.

This is a loop in Sal(Γ) based at x0. Note that, if α is the element of A represented by the
word α̂, then α is the element of A = π1(Sal(Γ), x0) represented by the loop γ̄(α̂).

Denote by γ(α̂) the lift of γ̄(α̂) in Sal(Γ) with initial point x(1). The path γ(α̂) can be
described as follows. For i ∈ {0, 1, . . . , `} we set ui = sε11 s

ε2
2 · · · s

εi
i = s1s2 · · · si ∈ W . For

i ∈ {1, . . . , `}, we set ai = a(ui−1, si) if εi = 1 and ai = a(ui, si) if εi = −1. Then

γ(α̂) = aε11 · · · a
ε`
` .

Let i ∈ {1, . . . , `}. Write ui = viwi, where vi ∈ WT and wi is (T, ∅)-minimal. If εi = 1,
let ti = wi−1siw

−1
i−1. If εi = −1, let ti = wisiw

−1
i . Define

τi =

{
σεiti if ti ∈ T
1 if ti /∈ T
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τ̂ = τ1τ2 · · · τ` ∈ (ΣT t Σ−1
T )∗.

Note that lg(τ̂) ≤ lg(α̂).
By Lemma 2.6, the projection of πT (ai) in Sal(ΓT ) is the edge āti if ti ∈ T , and the

vertex x0 otherwise. Thus the image of πT (γ(α̂)) in Sal(ΓT ) is the loop corresponding to
τ̂ . In other words, πT (γ(α̂)) = γ(τ̂).

Claim 1. If α̂ ∈ (ΣT t Σ−1
T )∗, then τ̂ = α̂.

Proof of Claim 1. In this case we have ui ∈ WT , hence vi = ui and wi = 1 for all
i ∈ {0, 1, . . . , `}. It follows that ti = si ∈ T , so τi = σεisi for all i. Hence,

τ̂ = τ1τ2 · · · τ` = σε1s1σ
ε2
s2 · · ·σ

ε`
s`

= α̂ .

Claim 2. Suppose α̂ ∈ (ΣtΣ−1)∗ represents the element α ∈ AT . Then τ̂ ∈ (ΣT tΣ−1
T )∗

also represents α.
Proof of Claim 2. Choose a word α̂′ ∈ (ΣT tΣ−1

T )∗ which represents α. By construction,

γ̄(α̂′) and γ̄(α̂) represent α, hence they are homotopic in Sal(Γ) relative to x0. So, γ(α̂′)
is homotopic to γ(α̂) relative to endpoints. It follows that πT (γ(α̂′)) = γ(α̂′) is homotopic
to πT (γ(α̂)) = γ(τ̂) in Sal(ΓT ). We conclude that τ̂ and α̂′ represent the same element of
AT , namely, α.

Claim 3. Let α̂ ∈ (Σ t Σ−1)∗. If lg(τ̂) = lg(α̂), then α̂ ∈ (ΣT t Σ−1
T )∗.

Proof of Claim 3. In order to have lg(τ̂) = lg(α̂), we must have ti ∈ T for all i ∈
{1, . . . , `}. We will prove by induction on i that si also lies in T for all i.

Let i = 1. Suppose first that ε1 = 1. Then u0 = w0 = 1, so s1 = w0s1w
−1
0 = t1 ∈ T .

Suppose now that ε1 = −1. If we had s1 6∈ T , then s1 would be (T, ∅)-minimal and we
would have u1 = w1 = s1. In this case, s1 = w1s1w

−1
1 = t1 ∈ T , a contradiction. So,

s1 ∈ T .
Now assume that i ≥ 2. By induction, we have ui−1 = s1 · · · si−1 ∈ WT . Suppose first

that εi = 1. Since ui−1 ∈ WT , we have vi−1 = ui−1 and wi−1 = 1, hence si = ti ∈ T .
Suppose now that εi = −1. If we had si 6∈ T , then we would have vi = ui−1 and wi = si,
which would imply that si = ti ∈ T , a contradiction. So, si ∈ T .

We can now complete the proof of the theorem. Let α ∈ AT , and let α̂ ∈ (ΣtΣ−1)∗ be
a geodesic for α. By Claim 2, τ̂ is also an expression for α. By construction, lg(τ̂) ≤ lg(α̂),
hence lg(τ̂) = lg(α̂) since α̂ is a geodesic. By Claim 3 we conclude that α̂ ∈ (ΣTtΣ−1

T )∗. �
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