
HAL Id: hal-00938532
https://hal.science/hal-00938532

Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A numerical approach for arbitrary cracks in a
fluid-saturated medium

René de Borst, Julien Réthoré, Marie-Angèle Abellan

To cite this version:
René de Borst, Julien Réthoré, Marie-Angèle Abellan. A numerical approach for arbitrary cracks in
a fluid-saturated medium. Archive of Applied Mechanics, 2006, 75, pp.595-606. �10.1007/s00419-006-
0023-y�. �hal-00938532�

https://hal.science/hal-00938532
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


René de Borst · Julien Réthoré · Marie-Angèle Abellan

A numerical approach for arbitrary cracks
in a fluid-saturated medium

Abstract A finite element method is proposed that can capture arbitrary discontinuities in a two-phase medium.
The discontinuity is described in an exact manner by exploiting the partition-of-unity property of finite element
shape functions. The fluid flow away from the discontinuity is modelled in a standard fashion using Darcy’s
relation, while at the discontinuity a discrete analogon of Darcy’s relation is proposed. The results of this
finite element model are independent of the original discretisation, as is demonstrated by an example of shear
banding in a biaxial, plane-strain specimen.

Keywords Fracture · Shear bands · Multi-phase medium · Finite elements · Partition-of-unity method

1 Introduction

Broadly speaking, two approaches exist to the numerical analysis of the nucleation and propagation of discon-
tinuities in solids, such as cracks, shear bands and faults. Within the classical theory of continuum mechanics,
the approach in which discontinuities are distributed over a finite volume, so that relative displacements across
the faces of a discontinuity are transformed into strains, is perhaps the most natural. Also in an engineering
sense, it offers advantages, since there is no need to keep track of all individual microcracks that arise in a
solid. Indeed, for computations of large structures, any attempt to model each individual crack would exceed
even the currently available computing power. However, from a theoretical point of view, the modelling of
discontinuities in a distributed or smeared sense has a limitation, namely that at a certain level of accumulated
damage, the set of governing equations locally changes character, from elliptic to hyperbolic for quasi-static
loadings, and from hyperbolic to elliptic for dynamic loadings. Unless a regularisation is applied, the resulting
initial/boundary value problem becomes ill-posed, resulting in numerical solutions that depend severely on
the discretisation [1].

Intuitively the most appealing approach is perhaps to model discontinuities in a discrete manner, thus
reflecting the change in topology that actually takes place in the solid when a discontinuity propagates. In
finite element analysis this approach was probably pioneered by Ngo and Scordelis [2]. In their seminal
paper, nodes were simply split when the tensile force in this node exceeded a fracture criterion. Evidently,
this approach suffers from the constraint that discontinuities can only propagate along the mesh lines, thus
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biasing the possible crack directions by the discretisation. Advances in mesh generation and automatic reme-
shing have largely allowed to overcome this restriction, e.g. [3,4]. More recently, finite element methods have
been constructed that exploit the partition-of-unity property of finite element shape functions [5–15]. While
preserving the original discretisation, the addition of extra degrees-of-freedom to elements which are crossed
by a discontinuity allows to construct two continuous displacement fields that are separated by a Heaviside
function at the discontinuity.

Increasingly, contemporary problems in mechanics involve the coupling of the set of equations that describe
the stress evolution and those which describe diffusion-type processes, e.g. water or ion transport. Application
areas include durability problems, where moisture, ion and heat transfer are crucial, joining technologies such
as welding, micro-devices, where thermal and electrical excitations are used to let the device perform certain
mechanical functions, and biomaterials, where electrical, chemical, and hydro-mechanical interactions can
play a role. It is the purpose of this manuscript to formulate a numerical model that is capable of describ-
ing fracture in a porous medium, with a solid skeleton and an interstitial fluid as the constituent phases, in
a mesh-independent manner. The model also exploits the partition-of-unity property of finite element shape
functions, and can therefore be considered to be an extension to earlier works on fracture for single-phase
media. On the other hand, the present methodology can be extended in a fairly straightforward manner to
introduce discontinuities, including cracks, in initial value problems where several diffusion-type problems
prevail.

The manuscript starts with a concise derivation of the governing equations for a fluid-saturated porous
medium. Subsequently, the general methodology and the assumptions regarding the introduction of a dis-
continuity in a finite element model are discussed. The approach is specialised to a medium, where the
(discrete) failure mode is caused by exhaustion of the shear stress capacity on a critical plane. The versatility
of the method is illustrated by an analysis of a biaxial, fluid-saturated, plane-strain specimen that is loaded in
uniaxial compression.

2 Governing equations

We consider a two-phase medium subject to the restriction of small displacement gradients and small varia-
tions in the concentrations [16]. Furthermore, the assumptions are made that there is no mass transfer between
the constituents and that the processes which we consider, occur isothermally. With these assumptions, the
balances of linear momentum for the solid and the fluid phases read:

∇ · σσσπ + p̂π + ρπ g =
∂(ρπ vπ )

∂t
+ ∇(ρπ vπ ⊗ vπ ) (1)

with σσσπ the stress tensor, ρπ the apparent mass density, and vπ the absolute velocity of constituent π . As in
the remainder of this paper, π = s,f, with s and f denoting the solid and fluid phases, respectively. Further,
g is the gravity acceleration and p̂π is the source of momentum for constituent π from the other constituent,
which takes into account the possible local drag interaction between the solid and the fluid. Evidently, the
latter source terms must satisfy the momentum production constraint:

∑

π=s,f

p̂π = 0. (2)

We now neglect convective terms and confine attention to quasi-static processes, so that the momentum bal-
ances reduce to:

∇ · σσσπ + p̂π = 0. (3)

Adding both momentum balances, and taking into account Eq. (2), one obtains the ‘standard’ equilibrium
equation for the mixture:

∇ · σσσ = 0, (4)

where

σσσ = σσσ s + σσσ f = σσσ s − αpI (5)
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with p the fluid pressure, I the second-order identity tensor, and α the Biot coefficient, cf. [17].
In a similar fashion as for the balances of momentum, one can write the balance of mass for each phase as:

∂ρπ

∂t
+ ∇ · (ρπvπ ) = 0. (6)

In consideration of the assumption of small changes in the concentrations, the mass balances can be simplified
to give:

∂ρπ

∂t
+ ρπ∇ · vπ = 0. (7)

We multiply the mass balance for each constituent π by its volumic ratio nπ , add them and utilise the constraint

∑

π=s,f

nπ = 1 (8)

to give:

∇ · vs + nf∇ · (vf − vs) +
ns

ρs

∂ρs

∂t
+

nf

ρf

∂ρf

∂t
= 0. (9)

The change in the mass density of the solid material is related to its volume change by:

∇ · vs = −
Ks

Kt

nf

ρs

∂ρs

∂t
(10)

with Ks the bulk modulus of the solid material and Kt the overall bulk modulus of the porous medium. Using
the definition of the Biot coefficient, 1 − α = Kt/Ks, this equation can be rewritten as

(α − 1)∇ · vs =
nf

ρs

∂ρs

∂t
. (11)

For the fluid phase, a phenomenological relation is assumed between the incremental changes of the apparent
fluid mass density and of the fluid pressure [17]:

1

Q
dp =

nf

ρf
dρf (12)

with the compressibility modulus

1

Q
=

α − nf

Ks
+

nf

Kf
, (13)

where Kf is the bulk modulus of the fluid. Inserting relations (11) and (12) into the balance of mass of the total
medium, Eq. (9), gives:

α∇ · vs + nf∇ · (vf − vs) +
1

Q

∂p

∂t
= 0. (14)

The governing equations, i.e. the balance of momentum of the saturated medium, Eq. (4), and the balance
of mass, Eq. (14), are complemented by the kinematic relation,

ǫǫǫs = ∇sus (15)

with us, ǫǫǫs the displacement and strain fields of the solid, respectively, the superscript s denoting the symmetric
part of the gradient operator, and an incrementally linear stress–strain relation for the solid skeleton,

dσσσ s = Dtan : dǫǫǫs, (16)
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where Dtan is the fourth-order tangent stiffness tensor of the solid material and the d symbol denotes an
infinitesimally small increment. For the pore fluid flow, Darcy’s relation for isotropic media is assumed to
hold,

nf(vf − vs) = −kf∇ p (17)

with kf the permeability coefficient of the porous medium. The boundary conditions

nŴ · σσσ = tp, v = vp (18)

hold on complementary parts of the boundary ∂	t and ∂	v , with Ŵ = ∂	 = ∂	t ∪ ∂	v , ∂	t ∩ ∂	v = ∅, tp

being the prescribed external traction and vp the prescribed velocity, and

nf(vf − vs) = qp, p = pp (19)

hold on complementary parts of the boundary ∂	q and ∂	p, with Ŵ = ∂	 = ∂	q ∪ ∂	p and ∂	q ∩ ∂	p = ∅,
qp and pp being the prescribed outflow of pore fluid and the prescribed pressure, respectively.

3 Discontinuities in a two-phase medium

A finite element method that can accommodate the propagation of discontinuities through elements was pro-
posed by Belytschko and co-workers [6,7], exploiting the partition-of-unity property of finite element shape
functions [5]. Since finite element shape functions ϕ j form partitions of unity,

∑n
j=1 ϕ j = 1 with n the number

of nodal points, the components vi of a velocity field v can be interpolated as

vi =

n
∑

j=1

ϕ j

(

˙̄a j +

m
∑

k=1

ψk
˙̃a jk

)

(20)

with ā j the ‘regular’ nodal degrees-of-freedom for the displacements, ψk the enhanced basis terms, and ã jk

the additional displacement degrees-of-freedom at node j which represent the amplitude of the kth enhanced
basis term ψk . Next, we consider a domain 	 that is crossed by a single discontinuity at Ŵd (see Fig. 1). The
velocity field v can be written as the sum of two continuous velocity fields v̄ and ṽ:

v = v̄ + HŴd ṽ, (21)

where HŴd is the Heaviside step function centred at the discontinuity:

HŴd =

{

0 if x ∈ 	−

1 if x ∈ 	+.
(22)

Fig. 1 Body composed of continuous displacement fields at each side of the discontinuity Ŵd
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The decomposition in Eq. (21) has a structure similar to the interpolation in Eq. (20). This can be seen
directly by rewriting and specialising Eq. (20) as:

v = N( ˙̄a + HŴd
˙̃a) = N ˙̄a + HŴd N ˙̃a = v̄ + HŴd ṽ, (23)

where N contains the standard shape functions ϕ j , and ā and ã collect the conventional and the additional
displacement nodal degrees-of-freedom, respectively. Accordingly, the partition-of-unity property of finite ele-
ment shape functions can be used in a straightforward fashion to incorporate discontinuities, and thus discrete
crack models, in a manner that preserves the discontinuous character of cracks.

With respect to the pore fluid, we consider the case that a diaphragm with a permeability kd is placed at the
discontinuity in the displacement. As a consequence, the fluid pressure can be discontinuous across Ŵd and,
similar to Eq. (21), we have:

p = p̄ + HŴd p̃. (24)

It is noted that this assumption is different from that of Armero and Callari [18], who adopt a smooth pressure
field (and therefore p = p̄) and is also different from that of Larsson and Larsson [19], who assume that
a regularised Dirac distribution is added to the continuous pressure field at the location of the discontinuity
in the displacement field. For the fluid flow, gradients of the pressure need to be computed. Differentiating
Eq. (24), we obtain:

∇ p = ∇ p̄ + HŴd∇ p̃ + δŴd p̃ nŴd . (25)

4 Constitutive model at the discontinuity

The above kinematics and the balance equations for momentum and mass have to be complemented by con-
stitutive equations. For the bulk material the governing equations for the solid skeleton and for the fluid flow
have been outlined in one of the preceding sections. In the example, a linear-elastic constitutive relation for
the skeleton has been adopted, so that Dtan in Eq. (16) reduces to the linear-elastic stiffness tensor D.

Using a maximum shear stress criterion in the spirit of Tresca, τ = |σ2 − σ1|/2, with σ1, σ2 the principal
stresses, a shear-band like discontinuity is created when the criterion exceeds the critical value τc. The orien-
tation of the interface is chosen such that it maximises the shear stress. A maximum shear stress nucleation
criterion is primarily applicable when compressive stress states around the discontinuity prevail, such as in
rocks and soils. Then, the failure mode will only involve sliding at the discontinuity, but no crack opening.
For this reason, in the example calculations only degrees-of-freedom have been added to the finite element
model that describe this sliding mode, which is different from earlier shear-band simulations (for single-phase
media) that have exploited the partition-of-unity property of finite element shape functions [8,9,12,15].

At the discontinuity Ŵd a discrete relation holds between the interface tractions td and the relative displace-
ments δδδ:

td = td(δδδ, κ) (26)

with κ a history parameter. After linearisation, necessary to use a tangential stiffness matrix in an incremen-
tal-iterative solution procedure, one obtains:

ṫd = Tδ̇δδ (27)

with T the material tangent stiffness matrix of the discrete traction-separation law:

T =
∂td

∂δδδ
+

∂td

∂κ

∂κ

∂δδδ
. (28)

A key element is the presence of a mode-II fracture energy, GII
c , which governs the shear band evolution and

enters the interface constitutive relation (26) in addition to the shear strength τc. It is defined as the work needed
to create a unit area of fully developed shear band, e.g. [20]:

G
II
c =

∞
∫

δt=0

τdδt (29)
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τ

δt

Gc

Fig. 2 Relation between relative sliding at the discontinuity and shear tractions

with τ the shear stress across the shear band, and δt the relative sliding between both faces of the shear band.
GII

c equals the area under the decohesion curves shown in Fig. 2.
A discrete equivalent of Darcy’s relation is now defined for the fluid flow qd at the discontinuity as:

nŴd · qd = −kd(p+ − p−) = −kd p̃ |x∈Ŵd , (30)

where kd is the permeability of the diaphragm that has been assumed to coincide with the displacement dis-
continuity Ŵd and p+ and p− are the pressures in the 	+ and 	− domains, respectively. For an impervious
boundary, kd = 0, which implies that nŴd · qd = 0 according to Eq. (30). Conversely, ideal permeability
requires that kd → ∞, so that nŴd ·qd can only be bounded if p+ − p− = 0, which implies that no discontinu-
ity can exist in the pressure field and the formulation of Armero and Callari [18] is retrieved. Another possible
boundary condition for the fluid flow at an internal boundary Ŵd is

nŴd · qd = qd |x∈Ŵd . (31)

Such an internal boundary condition represents the existence of a drain (or a line source) with a capacity qd

per unit length.

5 Weak form and numerical elaboration

To arrive at the weak form of the balance equations, we multiply the momentum balance (4) and the mass
balance (14) by test functions for the velocities of the skeleton and for the pressures. In the spirit of a standard
Bubnov–Galerkin approach, they are assumed to be of the following format:

ηηη = η̄ηη + HŴdη̃ηη (32)

for the velocities, and

ζ = ζ̄ + HŴd ζ̃ (33)

for the pressures. Substitution into Eqs. (4) and (14), and integrating over the domain 	 leads to the corre-
sponding weak forms:

∫

	

(η̄ηη + HŴdη̃ηη) · ∇ · σσσd	 = 0 (34)
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and
∫

	

(ζ̄ + HŴd ζ̃ )

(

α∇ · vs + nf∇ · (vf − vs) +
1

Q

∂p

∂t

)

d	 = 0. (35)

Using the standard procedure of applying the divergence theorem, using the external boundary conditions (18)
and (19), eliminating the Heaviside functions by changing the integration domain from 	 to 	+, eliminating
the Dirac delta functions by transforming the volume integral into a surface integral, and introducing the shorter
notation of a superimposed dot for ∂/∂t , the balance equations take the form:

∫

	

(∇ · η̄ηη) · σσσd	 +

∫

	+

(∇ · η̃ηη) · σσσd	 +

∫

Ŵd

η̃ηη · tdd	 =

∫

Ŵ

(η̄ηη + HŴdη̃ηη) · tp d	 (36)

and

−

∫

	

αζ̄∇ · vsd	 −

∫

	+

αζ̃∇ · vsd	 +

∫

	

kf∇ ζ̄ · ∇ pd	 +

∫

	+

kf∇ ζ̃ · ∇ pd	 +

∫

Ŵd

ζ̃nŴd · qd dŴ

−

∫

	

ζ̄ Q−1 ṗ d	 −

∫

	+

ζ̃ Q−1 ṗ d	 =

∫

Ŵ

(ζ̄ + HŴd ζ̃ )nŴ · qp dŴ, (37)

where for the latter equation also Darcy’s relation (17) has been employed. We now switch to matrix-vector
notation and discretise the trial functions vs and p and the test functions ηηη and ζ as:

vs = N( ˙̄a + HŴd
˙̃a), (38)

p = H(p̄ + HŴd p̃), (39)

ηηη = N(w̄ + HŴd w̃), (40)

ζ = H(z̄ + HŴd z̃). (41)

Inserting Eqs. (40) and (41) into Eqs. (36) and (37) and requiring that the result holds for all admissible w̄, z̄,
w̃ and z̃ gives:

∫

	

∇NTσσσd	 =

∫

Ŵ

NTtpdŴ (42)

∫

	+

∇NTσσσd	 +

∫

Ŵd

NTtddŴ =

∫

Ŵ

HŴd NTtpdŴ (43)

−

∫

	

αHTmT∇vsd	 +

∫

	

kf∇HT∇ pd	 −

∫

	

Q−1HT ṗ d	 =

∫

Ŵ

HTnT
Ŵd

qpdŴ (44)

−

∫

	+

αHTmT∇vsd	 +

∫

	+

kf∇HT∇ pd	 −

∫

	+

Q−1HT ṗ d	 +

∫

Ŵd

HTnT
Ŵd

qddŴ

=

∫

Ŵ

HŴd HTnT
Ŵd

qpdŴ (45)

with, for two dimensions, m = [1, 1, 0]
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For use in a Newton-Raphson solution method, Eqs. (42)–(45) need to be linearised. To this end, the stress
and the pressure are decomposed as

σσσ j = σσσ j−1 + dσσσ (46)

and

p j = p j−1 + dp (47)

with the subscripts j −1 and j signifying the iteration numbers. Substituting these decompositions into the
discrete set of equations (42)–(45), utilising Eq. (5), the kinematic relation (15), the stress–strain relation (16)
for the bulk material and the traction–relative displacement relation (26) at the interface, using Darcy’s relation
for the fluid flow in the porous medium (17), its discrete equivalent (30) at the interface and the expression
(25) for the pressure gradient, and using the interpolations for the displacement and the pressure according to
Eqs. (38) and (39), leads to the following set of equations linearised at iteration j −1:

⎡

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0

KT
ā p̄ KT

ā p̃ K
(1)
p̄ p̄ K

(1)

p̄ p̃

KT
ā p̃ KT

ā p̃ K
(1)

p̄ p̃ K
(1)

p̄ p̃

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎝

˙̄a
˙̃a
˙̄p
˙̃p

⎞

⎟

⎟

⎠

+

⎡

⎢

⎢

⎢

⎣

Kāā Kāã Kā p̄ Kā p̃

Kāã Kãã Kā p̃ Kā p̃

0 0 K
(2)
p̄ p̄ K

(2)
p̄ p̃

0 0 K
(2)

p̄ p̃ K
(2)

p̃ p̃

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎝

dā j

dã j

dp̄ j

dp̃ j

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎝

fext
ā − f int

ā, j−1

fext
ã − f int

ã, j−1

fext
p̄ − f int

p̄, j−1

fext
p̃ − f int

p̃, j−1

⎞

⎟

⎟

⎟

⎠

(48)

with fext
ā . . . . . . . . . fext

p̃ given by the right-hand sides of Eqs. (42)–(45), respectively, and with f int
ā . . . . . . . . . f int

p̃

given by the left-hand sides of Eqs (42)–(45). The stiffness matrices are defined as:

Kāā =

∫

	

BTDBd	, (49)

Kāã =

∫

	+

BTDBd	, (50)

Kãã =

∫

	+

BTDBd	 +

∫

Ŵd

NTTNdŴ, (51)

Kā p̄ = −

∫

	

αBTmHd	, (52)

Kā p̃ = −

∫

	+

αBTmHd	, (53)

K
(1)
p̄ p̄ = −

∫

	

Q−1HTHd	, (54)

K
(1)

p̄ p̃ = −

∫

	+

Q−1HTHd	, (55)

K
(2)
p̄ p̄ = −

∫

	

kf∇HT∇Hd	, (56)

K
(2)

p̄ p̃ = −

∫

	+

kf∇HT∇Hd	, (57)

K
(2)

p̃ p̃ = −

∫

	+

kf∇HT∇Hd	 −

∫

Ŵd

kdHTHdŴ.

To carry out the time integration in (48) a backward finite difference scheme is adopted:

(

d(·)

dt

)t+�t

=
(·)t+�t − (·)t

�t
, (58)
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where �t is the time increment, while (·)t and (·)t+�t denote the unknowns at t and t + �t , respectively.
Furthermore, a decomposition of the arrays that contain the nodal displacements and nodal pressures is adopted
similar to that of the stresses and the pressures, cf. Eqs.(46) and (47), (·) j = (.) j−1 + d(·). Combining this
with Eq. (58) yields

(

d(·)

dt

)t+�t

=
(·)t+�t

j−1 + d(·) − (·)t

�t
. (59)

Substituting this identity into Eq.(48) for all arrays finally gives

⎡

⎢

⎢

⎢

⎣

Kāā Kāã Kā p̄ Kā p̃

KT
āã Kãã Kā p̃ Kā p̃

KT
ā p̄ KT

ā p̃ K
(1)
p̄ p̄ + �tK

(2)
p̄ p̄ K

(1)

p̄ p̃ + �tK
(2)

p̄ p̃

KT
ā p̃ KT

ā p̃ K
(1)

p̄ p̃ + �tK
(2)

p̄ p̃ K
(1)

p̄ p̃ + �tK
(2)

p̃ p̃

⎤

⎥

⎥

⎥

⎦

⎛

⎜

⎝

dā j

dã j

dp̄ j

dp̃ j

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎝

fext
ā − f int

ā, j−1

fext
ã − f int

ã, j−1

�tfext
p̄ − f

int,t+�t
p̄, j−1

�tfext
p̃ − f

int,t+�t
p̃, j−1

⎞

⎟

⎟

⎟

⎠

(60)

with

f
int,t+�t
p̄, j−1 = KT

ā p̄

(

āt+�t
j−1 − āt

)

+ KT
ā p̃

(

ãt+�t
j−1 − ãt

)

+ K
(1)
p̄ p̄

(

p̄t+�t
j−1 − p̄t

)

+K
(1)

p̄ p̃

(

p̃t+�t
j−1 − p̃t

)

+ �tK
(2)
p̄ p̄p̄t+�t

j−1 + �tK
(2)

p̄ p̃p̃t+�t
j−1 , (61)

f
int,t+�t
p̃, j−1 = KT

ā p̃

(

āt+�t
j−1 − āt

)

+ KT
ā p̃

(

ãt+�t
j−1 − ãt

)

+ K
(1)
p̄ p̃

(

p̄t+�t
j−1 − p̄t

)

+K
(1)

p̄ p̃

(

p̃t+�t
j−1 − p̃t

)

+ �tK
(2)

p̄ p̃p̄t+�t
j−1 + �tK

(2)

p̃ p̃p̃t+�t
j−1 . (62)

initial defect

V
0

p = 0

Fig. 3 Geometry and boundary conditions of two-dimensional example problem
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Fig. 4 Evolution of the displacement field at t = 6, 10, 14, 18, 22 and 26 s

6 Example: shear band formation

We consider a two-dimensional specimen with a width w = 0.04 m and a height H = 0.1 m, Figure 3, which
is loaded under plane-strain conditions. The sides are traction free and the external loading is applied via an
imposed constant velocity V0 = −10−4 m/s. The pore pressure at the top of the specimen is the reference
pressure, here zero, and undrained boundary conditions have been imposed on the other boundaries. The solid
constituent is assumed to behave in a linear elastic manner with a Young’s modulus E = 20 GPa and a Pois-
son’s ratio ν = 0.35. The Biot coefficient α has been set equal to 1, the Biot modulus has been assigned a value
Q = 5.0 GPa, while the bulk material was assumed to have a permeability kf = 10−14 m3/Ns. Shear-band for-
mation was triggered by a small imperfection, see Fig. 3. The critical shear stress at which nucleation occurred,
was taken as τc = 100 MPa and after inception the shear-band evolution is controlled by GII

c = 500 J/m2. In the

example calculations, the permeability of the diaphragm has been assigned a value, kd = 0.5 × 10−14 m3/Ns,
which is half of that in the bulk material.

The specimen has been discretised with quadrilateral basis elements with a bilinear interpolation for the
displacements as well as for the pressure. It is recognised that this scheme is not optimal, but the added
complexity which an unequal interpolation would cause in the presence of a propagating discontinuity, and
especially with respect to the integration of the different parts of the load vectors and stiffness matrices in
elements which are crossed by the discontinuity, has led to a decision which favours simplicity over accuracy.
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Fig. 5 Evolution of the pressure field at t = 6, 10, 14, 18, 22 and 26 s

In the simulation of Figs. 4 and 5, 24 elements have been used across the width of the specimen and 60 elements
have been used over the height. The duration of the simulation, which has been carried out in 65 equally sized
time steps, is 26 s.

Figures 4 and 5 show the evolution of the displacement field and the pressure field, respectively. At the
end of the simulation, the discontinuity has traversed the entire specimen. At this point, the bulk has unloaded
elastically and the external loading is transmitted entirely through the discontinuity, at which the deformations
have localised. The global inclination of the interface is approximately 45◦, which is in conformity with the
behaviour in a single phase medium.

The pressure distribution is strongly influenced by the propagation of the interface even if kf and kd are of
the same order of magnitude. Indeed, the pressure discontinuity is significant as observed in Fig. 5. Accord-
ingly, the relatively lower permeability at the discontinuity has a major influence on the fluid flow, and therefore
on the stress distribution inside the specimen.

7 Discussion and conclusions

A finite element method that exploits the partition-of-unity property of finite element shape functions has
been used to analyse the stress evolution and fluid flow in a biaxial, plane-strain specimen with a propagating
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discontinuity, e.g. a crack or a shear band. The approach appears to be accurate and powerful, and enables
analyses that are free from the underlying discretisation. The present formulation is restricted to fluid-saturated
(two-phase) media, but the methodology can be extended to a host of coupled problems in a rather straight-
forward manner.

Nevertheless, some limitations still exist. One of them, which specifically relates to the case studied, con-
cerns the velocity of the tip of the discontinuity. As the underlying two-phase medium appears to have a length
scale that vanishes in the short-wave limit [21], the tip velocity remains undetermined for quasi-static loading
conditions, and, in the simulations, is set by the space and time discretisation vtip = h/�t = 0.004 m/s, where
h is the spacing of the discretisation and �t is the time step. It is believed that the inclusion of inertia terms
in the formulation can remedy this deficiency. This will be the discussed in greater detial in a forthcoming
publication.
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