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Abstract This paper presents the robust implementation of
a cohesive zone model based on extrinsic cohesive laws (i.e.
laws involving an infinite initial stiffness). To this end, a two-
field Lagrangian weak formulation in which cohesive trac-
tions are chosen as the field variables along the crack’s path
is presented. Unfortunately, this formulation cannot model
the infinite compliance of the broken elements accurately,
and no simple criterion can be defined to determine the load-
ing–unloading change of state at the integration points of
the cohesive elements. Therefore, a modified Lagrangian
formulation using a fictitious cohesive traction instead of
the classical cohesive traction as the field variable is pro-
posed. Thanks to this change of variable, the cohesive law
becomes an increasing function of the equivalent displace-
ment jump, which eliminates the problems mentioned previ-
ously. The ability of the proposed formulations to simulate
fracture accurately and without field oscillations is investi-
gated through three numerical test examples.

Keywords Failure · Finite element · Lagrangian multiplier

1 Introduction

According to Griffith’s theory [1], the fracture of a brittle
material can be modeled by introducing a discontinuity into
the structure if the work of some forces acting between the
two sides of the crack is taken into account in the global
energy balance. In that early study of fracture, the zone where
the two sides of the crack interact was assumed to be small
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with regard to the size of the structure, which was justified
by the brittleness of the material being studied. More recent
models have been proposed taking into account the inter-
action forces between the two sides of the crack, i.e. the
cohesive forces, not only in the energy balance of the struc-
ture, but also in the equilibrium equations of the mechanical
problem. This improvement to Griffith’s original model leads
to a more accurate estimation of the mechanical fields near
the crack’s tip [2,3] and enables the application of crack-
ing models to non-brittle materials, such as ductile materials
[4] and quasi-brittle materials [5]. These models, generally
designated as cohesive zone models (CZM), were cast in a
sound thermodynamic framework in [6]. The behavior of the
cohesive zone is usually described by a function, called a
cohesive law, which provides the relation between the cohe-
sive traction and the displacement jump.

Using the finite element method, the numerical imple-
mentation of CZM can be carried out in different ways. If
the crack’s path is known beforehand, zero-width elements,
called cohesive elements, can be introduced at the interfaces
between a selection of volume elements [5,7,8]. Cohesive
elements can also be introduced at the interfaces between all
the volume finite elements if the crack’s path is unknown; this
approach is most often used in the case of dynamic calcu-
lations [9]. The embedded finite element method (E-FEM)
[10,11] and the eXtended finite element method (X-FEM)
were proposed in order to reduce the mesh dependency of
the crack paths. One should note that the X-FEM was first
introduced for Griffith models [12,13], but is also compatible
with CZM [14–16]. This paper deals with standard cohesive
elements placed either between a selection of volume finite
elements or between all the finite elements of the mesh.

The earliest formulation involving cohesive elements was
a single-field displacement-based formulation [8]. This for-
mulation is limited to cohesive laws with strictly positive
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initial compliance, i.e. intrinsic laws, because the existence
of an infinite stiffness at an integration point of the cohesive
zone would lead to infinite terms in the global system of equa-
tions. The additional compliance introduced by CZM may be
physically motivated, e.g. considering molecular forces of
cohesion [3] or due to the finite thicknesses of pre-existing
interfaces [17]. Unfortunately, in the case of an intrinsic law,
as established in previous works on the initiation of cohesive
zones [18], the initiation stress is equal to zero, which means
that cracks should appear in all the regions of the domain in
which the stress tensor is not equal to zero. This theoretical
difficulty is partially eliminated in numerical calculations
using cohesive elements because a crack can appear only
where cohesive elements have been introduced, but a spuri-
ous compliance is still introduced into the structure before
the physical crack initiation criterion is met. This additional
compliance can be reduced by means of a penalty method
which consists in choosing a large initial slope, but this can
lead to numerical instabilities, as can be seen in [19] for static
problems and in [20] for dynamic problems.

These problems, which are related to the initial compli-
ance of the cohesive elements, can be solved using other
formulations which are compatible with extrinsic cohesive
laws. In [21], a three-field augmented Lagrangian formula-
tion is used with the displacement as the field variable for
the continuous part of the domain, and both the cohesive
traction and the displacement jump as the field variables for
the discontinuous part of the domain. In [22] and [23], an
extrinsic law is implemented using a two-field truly mixed
formulation with the displacement and the stress over the
entire domain as the field variables. Both these mixed for-
mulations can be used to implement extrinsic CZM, but the
discretization must be chosen carefully because the inf-sup

condition [24,25] must be satisfied in order to avoid spu-
rious oscillations of the field variables. For the augmented
Lagrangian formulation, the order of the volume elements
must be higher than that of the cohesive elements. For the
truly mixed formulation, a Johnson-Mercier element [26] is
used in [23] to ensure the smoothness of the numerical results.
According to [27], an alternative would be to force the two
sides of the crack to remain in contact prior to initiating the
cohesive zone using the discontinuous Galerkin method (or
Nitsche’s method).

When standard displacement-based formulations are used
with extrinsic cohesive laws, a way to circumvent the prob-
lem of the infinite initial stiffness is to introduce the cohesive
elements only at the place where the crack is initiated, e.g.
using extended finite elements. In this case, the size of the
system of equations increases while the crack propagates.
This method requires to recover the cohesive tractions at the
crack’s tip to evaluate the propagation criterion. To this end, a
non-local averaging procedure [14] can be defined: the values
of the stress in the volume elements surrounding the crack are

used to approximate the cohesive stress at the crack tip. Nev-
ertheless, when contact between the two sides of the crack
is considered, it is still usefull to use a mixed formulation
in combination with the X-FEM [28] to evaluate the contact
condition precisely. In this paper, cohesive elements that are
introduced from the beginning of the calculation between
volume elements of the mesh will be used, which avoids
changing the discretization while the crack propagates, and
avoids to compute non-local stresses at the crack tip as the ini-
tiation criterion is evaluated directly at the integration points
of the cohesive elements.

In this paper, we use a two-field coupled formulation in
which the field variables are the displacement in the volume
and the cohesive traction along the crack’s path. The advan-
tage of this formulation is its simplicity because the cohesive
tractions along the crack can be viewed as standard Lagrange
multipliers. It is compatible with the infinite initial stiffness
of extrinsic cohesive zones as well as with the use of linear
volume elements and linear cohesive elements if the crack’s
path is known beforehand. Unfortunately, this formulation is
unable to deal with broken cohesive elements unless they are
deleted during the calculation, and it is relatively difficult to
differentiate between a loading state and an unloading state
when updating the internal variables of the cohesive zone
because the cohesive traction decreases in both cases. The
main contribution of this paper consists in showing that both
situations can be handled thanks to a change of variable which
modifies the cohesive traction in the local equations of the
problem. Then, the cohesive law is replaced by an increas-
ing law linking a fictitious equivalent cohesive traction to
the equivalent displacement jump of the discontinuity. This
method was presented in [29], but only for the case of straight
crack propagation. This paper also addresses the case of an
a priori unknown crack’s path by introducing cohesive ele-
ments at the interfaces between all the volume elements of
the mesh. In Sect. 2, we design the CZM in order to repro-
duce the behavior of a smeared crack model approximately.
In Sect. 3, we present the cohesive-stress-based Lagrangian
formulation along with a numerical application to the case of
straight crack propagation. In Sect. 4, we introduce the con-
cept of fictitious cohesive traction and use it as a field variable
in the second formulation (the modified Lagrangian formu-
lation). The implementation of this formulation is presented
in detail and applied both to a straight crack propagation and
to the case of a crack whose path is unknown.

2 CZM

Development using a smeared crack model Let us consider
a two-dimensional domain � bounded by Ŵ and filled with
an elastic and isotropic material. A displacement vector u is
defined within � such that
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Fig. 1 Decomposition of the volume/interface problem

Fig. 2 Construction of the
CZM by analogy with a smeared
crack model

(a)

(b)

u =
[

ux u y

]T
, (1)

where ux and u y are the components of the displacement
in the (ex , ey) basis. � is cut by an interface Ŵc defined in
Fig. 1. Along Ŵc, the displacement jump vector [[u]] and the
cohesive traction vector t are defined such that

[[u]] =
[

[[u]]n [[u]]s

]T
, (2a)

t =
[

tn ts
]T

, (2b)

where [[u]]n and [[u]]s are the components of the displace-
ment jump and tn and ts the components of the cohesive
traction in the local basis (n, s). The behavior of the cohesive
zone is given by the equation

[[u]] = ceq C0 t , (3)

where ceq is an equivalent compliance and C0 a matrix
defined as:

C0 =
[

(1− c0) 0
0 β

]

. (4)

c0 is a contact indicator defined along Ŵc and equal to 1 if
the two borders of the discontinuity are in contact and to 0
otherwise, and β is a material parameter linking the com-
pliances of the cohesive zone in shear and in traction. The
CZM is designed to reproduce the behavior of a smeared
crack model [30] in which the internal damage variable D

is homogeneous within a band of width h. In order to deter-
mine the relation between the traction behavior and the shear
behavior in plane stress, we consider successively the two
simple solicitations illustrated in Fig. 2. For the first solici-
tation (traction), the stress components are:

σxx = 0, σyy = σ, σxy = 0, (5)

and for the second solicitation (shear), the stress components
are:

σxx = 0, σyy = 0, σxy = σ, (6)

where σ is a homogenous, positive scalar quantity defined
over �. Using these two solicitations, we obtain the following
two equations, respectively:
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[[u]]n

h
+ tn

E
= tn

(1− D) E
, (7a)

[[u]]s

h
+ ts

G
= ts

(1− D) G
, (7b)

where E is the material’s Young’s modulus, and G the shear
modulus defined as G = E/(2 (1+ν)). According to Eqs. (3)
and (4),

[[u]]s

[[u]]n

= β
ts

tn
. (8)

Besides, Eqs. (7a) and (7b) lead to:

[[u]]s

[[u]]n

= E

G

ts

tn
, (9)

where ν is the material’s Poisson’s ratio. Considering Eqs. (8)
and (9), the identification of β with E/G leads to the follow-
ing value of β:

β = 2 (1+ ν). (10)

Note that in the plane strain case the Young’s modulus E

should be replaced in Eq. (9) by a modified value Ē = E/(1−
ν2), leading to thedefinitionamodifiedparameter β̄ such that:

β̄ = 2

1− ν
. (11)

It should be noted, that the cohesive law may also be derived
according to the damage model that is defined within the
band [31], which is out of the scope of the present paper.

Equivalent cohesive traction and displacement jump As in
Camacho and Ortiz’s model [32], both an equivalent cohe-
sive traction and an equivalent displacement jump are defined
along the crack’s path Ŵc. The equivalent stress, denoted teq ,
satisfies:

teq =
√

(t +
n )

2+ γ 2 t 2
s , (12)

where γ is a material parameter and t+n denotes the positive
part of tn . The initiation occurs when the equivalent cohesive
traction reaches a critical value denoted tc. Figure 3 shows
the corresponding initiation yield surface. The equivalent dis-
placement jump [[u]]eq is defined as

[[u]]eq = ceq teq . (13)

Fig. 3 The initiation yield surface in the cohesive traction space

Using Eqs. (8), (9), and (12), this leads to the following
expression of [[u]]eq :

[[u]]eq =

√

[[u]]2
n + γ 2

β2 [[u]]2
s . (14)

The maximum value of [[u]]eq over time is stored in the var-
iable κ defined as:

κ = max
t

(

[[u]]eq

)

. (15)

Using CZM, it is common to enforce that the total surface
cracking energy Gc is independent of the loading history of
the cohesive zone [32,33]. Accordingly, the following con-
dition is assumed (see justification in Appendix A):

γ =
√

β. (16)

3 The Lagrangian formulation

In this section, we define a weak formulation, called Lagrang-
ian Formulation, in which the unknown fields are the dis-
placement field u over � and the cohesive traction field t

along Ŵc. This formulation will be the basis of an improved
formulation, called the Modified Lagrangian Formulation,
using a modified definition of the cohesive traction to
improve the robustness of the calculations. In Sect. 4, we
will show that this formulation can be seen as a limit case of
the proposed modified Lagrangian formulation.

3.1 The weak formulation

Since the boundary conditions are limited to prescribed
forces along the boundary Ŵ of domain �, the equilibrium
of the structure can be written as:
∫

�

∇
s(u

∗)T σ d� +
∫

Ŵc

[[u∗]]T
t dŴc =

∫

Ŵ

u
∗T

Fd dŴ,

∀ u
∗∈F, (17)

where F denotes the space of the continuous and regular
displacement vectors defined over �, ∇

s is the symmetri-
cal gradient operator, [[.]] the displacement jump operator
(including its projection onto the local basis), σ the stress
vector, u the displacement vector, and Fd the vector of the
prescribed external forces. According to Eq. (17), a weak for-
mulation is defined with field variables u over � and t along
Ŵc. The space of the cohesive traction fields, defined along Ŵc,
is denoted G. These fields may be continuous or discontinu-
ous at the junction between cohesive elements depending on
the approximation used. (A continuous approximation will be
assumed for examples A and B, and a discontinuous approx-
imation will be assumed for example C.) Then, according to
Eq. (17), we have the following weak formulation:
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A(u
∗)+ B(u

∗)+ C(t
∗) = D(u

∗), (18)

∀ (u
∗, t

∗)∈(F,G),

with

A(u
∗) =

∫

�

∇
s(u

∗)T σ (u) d�, (19a)

B(u
∗) =

∫

Ŵc

[[u∗]]T
t dŴc, (19b)

C(t
∗) =

∫

Ŵc

t
∗T

(

[[u]]− [[u]](t)
)

dŴc, (19c)

D(u
∗) =

∫

Ŵ

u
∗T

Fd dŴ. (19d)

In Eq. (19a), σ (u) designates the stress calculated using the
behavior of the continuous elastic material and the displace-
ment field. In Eq. (19c), the term C introduces the behav-
ior of the cohesive zone into the coupled formulation and
expresses the gap between the displacement jump [[u]] cal-
culated according to the displacement field of the continu-
ous material and the displacement jump [[u]](t) calculated
according to the cohesive law and the cohesive traction t .

Remark If one compares the Lagrangian formulation to a
truly mixed formulation applied to a problem with a cohesive
crack [22,23], one can observe the following differences:

− The stress (defined over �) is a field variable of the
Truly Mixed Formulation, whereas the cohesive traction
(defined along Ŵc) is a field variable of the Lagrangian
formulation.

− Both formulations use a compliance operator to describe
the behavior of the cohesive zone, but the truly mixed
formulation also uses a compliance operator to describe
the behavior of the continuous material, whereas the
Lagrangian formulation uses a stiffness operator.

− The truly mixed formulation is obtained from the Hellin-
ger-Reissner principle, whereas the Lagrangian formula-
tion is a displacement-based formulation combined with
an approximation of the cohesive traction field which
plays the role of a Lagrange multiplier. Also, according
to the definition provided in [34], the Lagrangian formu-
lation is a coupled formulation which can be considered
to be a mixed formulation only until the crack initiation
criterion is met at all the integration points of the crack
(see Appendix E).

Equation (19) is discretized in the usual finite element way.
The discretized equations for this formulation are not shown
in detail, but they will be given in Sect. 4 for the modified
Lagrangian formulation. Since the behavior of the cohesive

Fig. 4 Test example A: exponential cohesive law

zone is nonlinear, the numerical implementation uses an iter-
ative-incremental approach in which the loading factor incre-
ments are provided by a continuation method.

3.2 Test example A

The first test example concerns the analysis of a rectangu-
lar slab of width L1 = 300 mm and height L 2 = 200 mm
(see Fig. 5). A zero-width horizontal interface cuts through
the middle of this slab. The material is elastic and isotro-
pic, and plane stress conditions are assumed. Figure 4 shows
the exponential cohesive law being used. According to this
cohesive law, the equivalent compliance ceq satisfies:

ceq(κ) = κ

tc exp(−b κ)
, (20)

where tc and b are material parameters. When loading is
applied, the equivalent cohesive traction is given by

teq = tc exp(− b [[u]]eq ). (21)

Using the notations of Fig. 5, the loading consists of pre-
scribed displacements denoted ud applied along Ŵ1 = [AB]∪
[C D], which satisfy

ud = λ u1, along Ŵ1, (22)

where λ represents the loading factor, and u1 is defined such
that u1 = 0 along [ AB ] and

u1 =
[

0 10 − 0.02 x
]T

mm, along [C D] (23)

using the referential (A, ex , ey). The material parameters
were chosen to be E = 40 GPa (Young’s modulus), ν = 0.2
(Poisson’s ratio), tc = 4 MPa, β = 2.4 (to be consistent with
the value of Poisson’s ratio), γ =

√
β, and b = 40 (leading to
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Fig. 5 Test example A:
geometry and boundary
conditions

Fig. 6 Test example A: the
meshes of density levels 1 to 4

Gc = 0.1 N.mm-1). Figure 6 shows the 4 rectangular meshes
which were used for the calculations. The mesh of density
level i consisted of 6×4 (i−1) volume elements and 3×2 (i−1)

interface elements. The volume elements were linear quad-
rilaterals with 4 nodes and 4 Gauss integration points, and
the interface elements were linear elements with two nodes
and two Newton-Cotes integration points. Starting from the
beginning of the calculation, the cohesive elements were
placed along the prescribed crack’s path Ŵc shown in Fig. 5.
Internal variables were used to define the decohesion state
at the integration points. Figure 7 shows the norm F of the
resultant of the forces applied to segment [C D] as a function
of the loading factor λ for the four meshes. One can observe
that this curve converges when the mesh density increases.

3.3 Discussion

Influence of the spatial integration The quadrature used to
perform numerical integrations along the crack’s path must

be chosen carefully. In general, Gauss quadrature is not used
with displacement-based cohesive elements because it would
lead to oscillations in the cohesive traction field. In [35],
based on a study of Eigenmodes, it was shown that the use
of Newton-Cotes points limits the oscillations of the cohe-
sive traction field. The Lagrangian formulation also leads to
better results when Newton-Cotes points are used. Figure
8 shows equivalent cohesive traction fields obtained using
Newton-Cotes points and Gauss points for the same test (test
example A and mesh density level 4). These plots show that
Gauss points may lead to instabilities which can be avoided
using Newton-Cotes points.

Advantages and limits of the formulation When a stan-
dard displacement-based formulation is used to implement
cohesive elements, an artificial initial compliance has to
be introduced in the constitive law of the discontinuity to
avoid that very large (theoretically infinite) terms appear
in the stiffness matrix. This leads to an ill conditioned
stiffness. The Lagrangian formulation provides a solution
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Fig. 7 Test example A: Superposition of the loading curves obtained with the 4 meshes

Fig. 8 Test example A: two
equivalent stress fields obtained
for mesh density level 4 using
a Newton-Cotes points and
b Gauss points (1,000×
magnification)

(a) (b)

to this problem, as a compliancy matrix is computed for
the cohesive zone (infinite terms in the stiffness matrix of
the displacement-based formulation becomes zero terms in
the compliancy matrix of the Lagrangian formulation). On
the other hand, a drawback of the Lagrangian formulation
is that, if the cohesive zone breaks at an integration point,
it becomes impossible to calculate the corresponding ele-
mentary compliance matrix because some of its terms go
to infinity. This problem can be solved if one deletes the
broken elements during the calculation. This solution was
implemented by the authors, but the resulting computa-
tions were not robust. The numerical instabilities that were
observed may come from the fact that the cohesive trac-
tion were not strictly equal to zero in an element when
it was deleted. Another drawback is there is no available
clear criterion to determine the loading state of the cohe-
sive zone while the internal variables of the cohesive ele-
ments are being updated. Indeed, since the field variable
is the cohesive traction along the crack’s surface, the cri-
terion for the evaluation of the loading state should be
based on the cohesive traction field. Looking at point P in
Fig. 4, one can observe that the equivalent cohesive trac-
tion decreases as well during loading and during unload-
ing, so there is no obvious criterion based on the cohesive

traction that enables one to distinguish between loading
and unloading of the cohesive zone. In the remainder of
the paper, in order to eliminate these difficulties, we pro-
pose an alternative formulation, called the modified Lagrang-
ian formulation, in which a change of variable is used to
substitute a fictitious cohesive traction ζ , which depends
on both the cohesive traction and the displacement jump,
for the cohesive traction t in the local equations of the
problem.

4 The modified Lagrangian formulation

4.1 Quadratic cohesive law

To show the ability of the second formulation to deal with
broken cohesive zones, a quadratic cohesive law will be used
in the next two sample analyses (test examples B and C). This
law is defined in such a way that when loading is applied the
equivalent cohesive traction teq satisfies

teq = tc − a [[u]]eq + b ([[u]]eq)2, (24)

with
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(a) (b)

Fig. 9 a Quadratic cohesive law (used in test examples B and C and b the corresponding fictitious cohesive law

a = tc

[[u]]0
, (25a)

b = tc

(

1

[[u]]0 [[u]]c

− 1

([[u]]c)
2

)

, (25b)

where tc, [[u]]0, and [[u]]c are material parameters. The cor-
responding expression of the equivalent compliance ceq is

ceq(κ) = κ

tc − a κ + b κ2 . (26)

Figure 9a shows this quadratic cohesive law with the material
parameters chosen as tc = 4 MPa, β = 2.4 (corresponding
to Poisson’s ratio ν = 0.2), γ = √

β, [[u]]0 = 0.02 mm, and
[[u]]c = 0.03 mm (leading to Gc = 0.05 N mm−1). These
were the numerical parameters used in test examples B and C.

4.2 The fictitious cohesive traction

The difference between the Lagrangian formulation and the
modified Lagrangian formulation is that in the latter the cohe-
sive traction t is replaced in the local equations of the problem
by a fictitious cohesive traction denoted ζ and defined as

ζ = t +α [[u]], along Ŵc , (27)

with,

α = α

[

1 0
0 1/β

]

, (28)

where α is a user-defined constant. The cohesive law is
replaced by a law linking the equivalent displacement jump
[[u]]eq to a fictitious equivalent stress ζeq defined as

ζeq = teq + α [[u]]eq . (29)

Let us note that making α equal to 0 reverts back to the
original cohesive law. In practice, one chooses α to be large
enough for the fictitious cohesive law to be an increasing

function of the equivalent displacement jump. This property
holds if α is chosen such that

α = −k min

(

∂teq

∂κ

)

, (30)

where k is a numerical parameter greater than 1. In the case
of the quadratic law, according to (24), one obtains:

α = k a, if b > 0, (31a)

α = k (a − 2 b [[u]]c), otherwise. (31b)

According to the numerical parameters given in Sect. 4.1,
choosing k = 3 leads to α = 600 N mm−3. The ficti-
tious cohesive law corresponding to this value of α, shown
in Fig. 9b, will be used in test examples B and C. There is
no direct connection between ζeq and ζ , so the expression of
ζeq is derived from Eqs. (12) and (14):

ζeq =
√

(t+n )
2+ γ 2 t 2

s + α

√

[[u]]2
n + γ 2

β2 [[u]]2
s . (32)

The fictitious equivalent compliance deq is defined as

[[u]]eq = deq ζeq . (33)

Therefore, according to Eqs. (13) and (29),

deq = ceq

1+α ceq

. (34)

Using Eqs. (3), (4), (27), and (28), one obtains

[[u]] = ceq

1+α ceq

C0 ζ , (35)

and, thus,

[[u]] = deq C0 ζ . (36)
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Remarks If the cohesive zone breaks, the equivalent compli-
ance ceq becomes infinite, which was one of the main prob-
lems associated with the implementation of the Lagrangian
formulation (see Sect. 3.3). One should note that according
to Eq. (35) a broken cohesive law leads to deq = 1/α; there-
fore, the problem does not exist for the modified Lagrangian
formulation.

The fact that the fictitious cohesive law is an increasing
function of the equivalent displacement jump simplifies the
determination of the state of the cohesive zone at a point.
Indeed, if Eq. (30) is satisfied, the initiation of the cohesive
zone can be evaluated using the criterion:

max
t

(ζeq) > tc, (37)

the cohesive zone is in a loading state if:

dζeq

dt
> 0, (38)

the two sides of the crack are in contact if:

ζn ≤ 0, (39)

and the cohesive zone is completely broken if:

max
t

(

ζeq

)

> α [[u]]c. (40)

4.3 The finite element problem

Weak formulation Now the field variables are the displace-
ment u over the domain and the fictitious cohesive traction
ζ along the crack’s path:

A(u
∗)+ B(u

∗)+ C(ζ ∗) = D(u
∗),

∀ (u
∗, ζ ∗)∈(F,G), (41)

with,

A(u
∗) =

∫

�

∇
s(u

∗)T σ (u) d�, (42a)

B(u
∗) =

∫

Ŵc

[[u∗]]T(ζ −α [[u]])dŴc, (42b)

C(ζ ∗) =
∫

Ŵc

ζ ∗T
(

[[u]]− [[u]](ζ )
)

dŴc, (42c)

D(u
∗) =

∫

Ŵ

u
∗T

Fd dŴ. (42d)

These equations are derived from the weak Eqs. (19) and (19)
of the Lagrangian formulation using a change of variable to
replace t by ζ according to Eq. (27).

Remark If one compares the modified Lagrangian formula-
tion with an augmented Lagrangian formulation (see [21]),
one can observe the following differences:

− The augmented Lagrangian formulation is a three-
field formulation (the displacement jump [[u]] is also
an unknown of the problem), whereas the modified
Lagrangian formulation is a two-field formulation.

− The augmented Lagrangian formulation is obtained from
a modification of the cohesive traction of the form t ←
t + r

(

[[u]]−[[u]](t)
)

, whereas the modified Lagrangian
formulation is based on a change of variable which does
not modify the mechanical problem.

− With the augmented Lagrangian formulation, the penalty
parameter r is chosen to be large enough so that [[u]] ≈
[[u]](t), whereas the numerical parameter α used in
the modified Lagrangian formulation is chosen such that
the fictitious cohesive law is an increasing function of the
equivalent displacement jump [[u]]eq .

Spatial discretization A first mesh is generated for domain
� and a second mesh is generated for the discontinuity Ŵc.
These two meshes do not need to be compatible, but this is
the most natural choice. The nodal displacement components
expressed in the (ex , ey) basis form the column vector:

U =
[

ux
1 u

y
1 . . . ux

n u
y
n

]T
, (43)

where n is the number of nodes in the mesh of �. The nodal
components of the fictitious cohesive traction expressed in
the (n, s) basis form the column vector:

Z =
[

ζ n
1 ζ s

1 . . . ζ n
m ζ s

m

]T
, (44)

where m is the number of nodes in the mesh of Ŵc. The matrix
of shape functions E is defined in order to approximate the
cohesive traction t along an element:

t(ξ) = E(ξ) Ze, (45)

where ξ is the abscissa of a point along a reference cohesive
element and Ze the restriction of Z to the degrees of freedom
of a cohesive element. We also define an intermediary vector
[[U]], related to U , which contains the components of the
nodal displacement jumps in (ex , ey):

[[U]] =
[

[[u]]x
1 [[u]]

y
1 . . . [[u]]x

nc
[[u]]

y
nc

]T
, (46)

where nc is the number of nodes (possibly different from m)
in the mesh of � which are adjacent to Ŵc. Matrix T defines
the relation between the element vectors [[U]]e and Ue:

[[U]]e = T Ue. (47)

Along Ŵc, the matrix of shape functions C and the change-
of-base matrix P are defined such that [[u]] takes the form

[[u]](ξ) = C(ξ) P [[U]]e. (48)
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Matrix C depends on the approximation of the displacement
field along the edges of the volume elements which are adja-
cent to the cohesive element being considered. For example,
if the meshes of � and Ŵc are compatible and if linear vol-
ume elements are used, the displacement jump obtained with
Eq. (48) is also linear along the cohesive elements. More
details about the cohesive elements used in this paper can
be found in Appendix D. Matrices K , J , H and vector Fext

are defined such that if the test field ζ ∗ is equal to zero, then
Eq. (41) takes the discrete and incremental form

U
∗T

(

K−J
)

dU+U
∗T

H d Z=U
∗T

d Fext , ∀ U
∗∈ F̄, (49)

where F̄ denotes the set of the column vectors of dimension
2 n. J is obtained by assembling the elementary matrices Je

which satisfy

U
∗
e

T
Je dUe =

∫

Ŵ̂c
e

[[u∗]]Tα d[[u]] Jc dξ, (50)

where Ŵ̂c
e is the domain of a reference cohesive element and

Jc is the Jacobian determinant of the transformation linking
the reference element Ŵ̂c

e to the physical element Ŵc
e . Conse-

quently, one has:

J e =
∫

Ŵ̂c
e

T
T

P
T

C
Tα C P T Jc dξ. (51)

The stiffness matrix K is calculated in the usual way.
H is calculated by assembling the elementary matrices He

which satisfy

U
∗
e

T
He d Ze =

∫

Ŵ̂c
e

[[u∗]]T
dt Jc dξ. (52)

Consequently, one has

He =
∫

Ŵ̂c
e

T
T

P
T

C
T

E Jc dξ. (53)

Concerning the behavior of the cohesive zone, the compli-
ance matrix L is defined such that if the test field u∗ is equal
to zero, then Eq. (41) takes the discrete and incremental form

Z
∗T

H
T

dU − Z
∗T

L d Z = 0, ∀ Z
∗∈ Ḡ, (54)

where Ḡ denotes the set of the column vectors of dimension
2 m. Matrix L is obtained by assembling the matrices Le

which satisfy

Le =
∫

Ŵ̂c
e

E
T

M E Jc dξ, (55)

where M is the tangent operator defined as

d[[u]] = M dζ . (56)

Equations (49) and (54) lead to the following global system
of equations:
[

K − J H

HT − L

][

dU

d Z

]

=
[

d Fext

0

]

. (57)

The iterative-incremental approach used for the numerical
implementation and the corresponding algorithms are pre-
sented in Appendix B.

4.4 Test example B

This test example refers to the same geometry, boundary con-
ditions and discretizations as test example A. The continuous
material is also the same (elastic, isotropic, E = 40 GPa,

Fig. 10 Test example B: superposition of the loading curves obtained with all the meshes
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Fig. 11 Test example B: superposition of the loading curves obtained
for the 4 values of k using mesh 4

ν = 0.2) and plane stress conditions are assumed. Con-
trary to test example A, however, this test example uses
the quadratic cohesive law presented in Sect. 4.1 in order
to show the capability of the modified Lagrangian formula-
tion to deal with broken cohesive elements (see the param-
eters in Sect. 4.1). The numerical parameter α was chosen
according to Eq. (30) with k = 3, which led to α = 600.
Figure 10 shows the resulting force F applied to segment
[C D] as a function of loading factor λ for all the meshes. As
in the case of test example A, the loading curves converge
when the mesh density increases. Another computation has

been performed using the mesh 4 to show the ability of the
proposed implementation to cope with different values of the
numerical parameter α and with the unloading and the con-
tact of the cohesive zone. α is computed according to Eq. (30)
with k = 1.2, k = 3, k = 10, k = 100. Figure 11 shows
the projection Fy of the resultant of the forces applied on the
segment [DC] on ey versus the loading factor λ for the 4
values of k. One can observe that the 4 curves are superim-
posed, which is natural as the 4 calculations only differ by
a change of variable in the weak formulation. On the other
hand, before the convergence is reached for a loading step,
the 4 calculations may behave differently because of the dif-
ferent values of α. Figure 12 shows the number of iterations
required at each loading step to reach convergence. One can
observe that the number of iterations it slightly larger for the
lower values of k (the total number of iterations is 2,583 for
k = 1.2, 2341 for k = 3, 2288 for k = 10, 2229 for k = 100).
However, the differences are not huge in this case.

4.5 Test example C

In test examples A and B, cohesive elements were used for
cracks with known paths along which the normal and tan-
gential components tn and ts of the cohesive traction were
assumed to be C0-continuous. This assumption is valid only
if the crack’s path is not excessively curved. This section
presents a test example for which cohesive elements were
introduced at the interfaces between all the volume elements
of the mesh. Thus, the crack’s path was allowed to bend

Fig. 12 Test example B: number of iterations at each loading step for 4 values of k
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Fig. 13 Test example C: volume elements and cohesive elements

significantly and, consequently, the assumption of the conti-
nuity of the components of the cohesive traction was affected.
Therefore, the following three modifications were made com-
pared to test examples A and B:

− 6-node quadratic triangular elements instead of linear
elements were used in the volume. Accordingly, the
matrix of shape functions C of the cohesive elements
was calculated using the quadratic displacement fields
of the neighboring quadratic elements.

− The degrees of freedom of a cohesive element were
considered to be independent of those of the neighbor-
ing cohesive elements (i.e. interelement continuity of
the components of the cohesive traction was no longer
assumed).

− Gauss points (instead of Newton-Cotes points for test
examples A and B) were used for the numerical integra-
tion over the cohesive elements.

These modifications enable the proposed formulation to
be used with kinks, irregular crack paths or branching cracks.
Figure 13 shows the volume and cohesive elements used for
test example C. Contrary to test examples A and B, these

Fig. 14 Test example C:
geometry and boundary
conditions

Fig. 15 Test example C: the five meshes used for the calculations
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Fig. 16 Test example C:
equivalent cohesive traction at
load increment 1,200 (500×
magnification)

volume elements were not compatible prior to crack initia-
tion. Figure 14 shows the geometry of the structure and the
boundary conditions used; these boundary conditions were
the same as for test examples A and B. The geometric param-
eters were chosen to be L1 = 300 mm, L2 = 200 mm
and R1 = 40 mm. Figure 15 shows the five meshes used
for the calculations; the density was multiplied by a factor√

2 between each density level and the next. The continuous
material was the same as for test examples A and B, and
plane stress conditions were assumed. Similar to test exam-
ple B, the calculations were based on the quadratic cohesive
law of Sect. 4.1 using the modified Lagrangian formulation
with the numerical parameter α = 600. Figure 16 shows the
equivalent cohesive traction teq plotted over the deformed
structure after 1,200 load increments (out of ≈ 2,000). One
should note that no stress oscillations were observed as a

result of using Gaussian quadrature with the quadratic/lin-
ear approximation. Figure 17 shows the crack paths obtained
for the different meshes at the end of the calculation. Figure
18 shows the loading curves corresponding to the different
meshes. These are in relatively good agreement, although no
real convergence can be observed because of the mesh depen-
dency of the crack’s path. From this test example, one can
conclude that the modified Lagrangian formulation is capa-
ble of dealing with crack paths which are a priori unknown by
using a quadratic/linear interpolation and introducing cohe-
sive elements at the interfaces between all the volume ele-
ments of the mesh. One may wonder why the crack path is
not stabilized with mesh 5. This is typical of this type of
approach of crack propagation with CZM in which the crack
path is forced to follow the edges of the volume elements.
The method converges only with infinitely fine meshes.

13



Fig. 17 Test example C: crack
paths at the end of the
computation for all the meshes
(100× magnification)

5 Conclusion

In this paper, we presented a CZM based on an analogy with
a smeared crack model which provides a relation between
a parameter of the cohesive zone and the Poisson’s ratio of
the continuous material. This model was simulated using a
two-field formulation capable of dealing with extrinsic cohe-
sive laws, in which the field variables are the displacement
over the continuous domain and the cohesive traction along
the discontinuity. Contrary to standard displacement-based
formulations, this Lagrangian formulation enables to cope
with the infinite stiffness preceding the initiation of the cohe-
sive elements. On the other hand, the Lagrangian formulation
presents some difficulties in dealing with the fracture and
the unloading of cohesive elements, which led to the devel-
opment of the modified Lagrangian formulation in which,
thanks to a change of variable, a fictitious cohesive traction
is substituted for the cohesive traction in the weak equations

of the mechanical problem. This change of variable also mod-
ifies the cohesive law, which becomes an increasing function
of the displacement jump. The use of this increasing law
provides an elegant way of dealing with the fracture and
loading/unloading of cohesive elements. Both formulations
were used to implement cohesive laws with standard linear
volume elements and linear cohesive elements in the case
of a straight crack propagation (test examples A and B). In
this case, the cohesive elements are placed along the pre-
scribed path of the crack and the approximate components
of the cohesive traction are assumed to be continuous along
this path. No oscillations of the calculated cohesive traction
field were observed using Newton-Cotes integration points
for the numerical integrations over the cohesive elements.
Also, convergence of the global loading curve was observed
as the mesh density increased. In test example C, the modified
Lagrangian formulation was also used to simulate the prop-
agation of a crack with an unknown path. In this example,
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Fig. 18 Test example C: superposition of the loading curves for all the
meshes

cohesive elements were placed at the interfaces between all
the volume elements of the mesh; quadratic volume elements
were used; interelement continuity of the components of the
cohesive traction was not assumed; and Gauss points were
used for the numerical integration over the cohesive zone.
Again, no oscillations of the cohesive traction were observed.
The loading curves did not converge as well as in the case of a
straight crack because the crack’s path is dependent upon the
distribution of the volume elements in the mesh. This mesh
dependency of the crack’s path could be reduced by combin-
ing the proposed formulation with an Extended (X-FEM) or
Embedded (E-FEM) Finite Element Method.
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Appendix A: Thermodynamic of the CZM

This Appendix provides the thermodynamic equations of the
CZM, justifying Eq. (16) linking the parameters γ and β of
the model.

Thermodynamic potential The surface free energy poten-
tial, denoted ψc, is a function of [[u]] and κ:

ψc = ψc([[u]], κ). (58)

The dual potential ψ∗
c (t, κ), which is equal to the Legendre

transform of ψc with respect to the displacement jump [[u]],
satisfies:

ψ∗
c = ψc − t

T [[u]]. (59)

According to [6], a surface dissipated energy increment dφc

can be expressed as:

dφc = t
T

d[[u]] − dψc, (60)

and, according to (59):

dφc = − [[u]]T
dt − dψ∗

c . (61)

From the previous equation and the decomposition of dψ∗
c

into

dψ∗
c = ∂ψ∗

c

∂ t
d t + ∂ψ∗

c

∂κ
dκ, (62)

we obtain:

[[u]]T = − ∂ψ∗
c

∂ t
, (63)

dφc = − ∂ψ∗
c

∂κ
dκ. (64)

According to Eq. (3) which defines the displacement jump
[[u]], the potential ψ∗

c satisfies:

ψ∗
c = − 1

2
ceq(κ) t

T
C0 t. (65)

According to Eq. (65), the internal variable associated with
κ , denoted B = ∂ψ∗

c /∂κ , satisfies

B = − 1

2

∂ceq

∂κ
t

T
C0 t. (66)

Consequently, Eq. (64) leads to

dφc = 1

2

∂ceq

∂κ
t

T
C0 t dκ. (67)

Path-independent dissipated energy It may be useful to define
a surface free energy ψc which depends on κ alone because,
then, the final surface dissipated energy is independent of the
loading history. In order to do that, we enforce the following
condition on the material parameters:

γ =
√

β. (68)

Then, according to Eqs. (9) and (12), B satisfies

B = − 1

2

∂ceq

∂κ
t 2
eq. (69)

The critical elastic energy release rate Gc, which is defined as
the surface energy dissipated at a point of the crack through-
out the decohesion process, is equal to:

Gc =
[[u]]c
∫

0

dφc =
[[u]]c
∫

0

1

2

∂ceq

∂κ
t 2
eq dκ, (70)

where [[u]]c is the equivalent displacement jump at rupture
(which may be infinite). From Eq. (13), ceq = [[u]]eq/teq and,
thus, if the cohesive law is in a loading state,

∂ceq

∂κ
= 1

teq

− κ

t 2
eq

∂teq

∂κ
. (71)
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Introducing the previous equation into (70), we obtain

Gc =
[[u]]c
∫

0

1

2

(

teq dκ − κ dteq

)

. (72)

This equation shows that if Eq. (68) is satisfied, then Gc is
independent of the loading history and is equal to the area
under the cohesive law (leading to teq as a function of [[u]]eq ).
This case reverts back to the definitions of the equivalent
cohesive traction and of the equivalent displacement jump
proposed in [32] (see also [33]). This assumption will be
used in the remainder of the paper.

Appendix B: Implementation of the modified

Lagrangian formulation

This Appendix provides the details of the iterative-incremen-
tal approach used for the implementation of the modified
Lagrangian formulation and the corresponding algorithms.
The iterative-incremental approach In the first iteration, the
calculation is performed by substituting in (57) the discrete
increments δU , δZ and �Fext for the infinitesimal incre-
ments dU , d Z and d Fext :
[

K − J H

HT −L

][

δU

δZ

]

=
[

�Fext

0

]

. (73)

From the weak Eq. (41), the residuals R1 and R2 are defined
as

R1 = Fext + J U − H Z − Fint , (74a)

R2 = − H
T

U + Y, (74b)

where Fint is calculated in the usual way and Y is calculated
from the elementary vectors Ye defined as:

Ye =
∫

Ŵ̂c
e

E
T [[u]](ζ ) Jc dξ. (75)

The values of these residuals at iteration i are assumed to
satisfy the linearized equations:

R
i
1 = R

i−1
1 − (K− J)δU − H δZ, (76a)

R
i
2 = R

i−1
2 − H

TδU + L δZ. (76b)

By enforcing that Ri
1 and Ri

2 in Eqs. (76a) and (76b) are
equal to zero, we obtain
[

K− J H

HT − L

][

δU

δZ

]

=
[

R
i−1
1

R
i−1
2

]

. (77)

From this system of equations, the residuals R1 and R2 are
minimized iteratively in the Newton algorithm until a pre-
scribed error is reached.

Algorithms Algorithm 1 represents the global calculation
procedure. I denotes the current loading step, I max the final
loading step, (.)(I ) the converged value of a variable at step I ,
(.)i the value of a variable at iteration i of current step I , and
IPs represent the integration points. Algorithm 2 represents
the iterative calculation of the fictitious equivalent cohesive
traction ζeq and of the other internal variables. For each inte-
gration point, ini t , load, c0 and rupt are the variables which
provide the initiation state, the loading state, the contact state
[according to Eq. (4)] and the fracture state respectively. The
iterations are carried out until a residual res, which mea-
sures the gap between two successive values of ζeq , reaches
a prescribed value. An advantage of the modified Lagrang-
ian formulation which is illustrated in Fig. 19 is that one can
easily distinguish a loading situation from an unloading sit-
uation by looking at the sign of the increment of variable ζeq

between two loading steps.

Appendix C: Resolution of the systems of equations

The systems of equations resulting from the Lagrangian and
the augmented Lagrangian formulations may be ill-condi-
tioned because the orders of magnitude of the nonzero terms
of the submatrices are different. Therefore, a change of vari-
able is performed in order to improve the conditioning of the
global matrix. Let us consider a system of the form:
[

K 11 K 12

K 21 K 22

] [

X1

X2

]

=
[

R1

R2

]

. (78)

The change of variable is performed by solving the system
[

a1 b1 K 11 a1 b2 K 12

a2 b1 K 21 a2 b2 K 22

] [

Y1

Y2

]

=
[

a1 R1

a2 R2

]

, (79)

with

X1 = b1 Y1, (80a)

X2 = b2 Y2. (80b)

Ideally, coefficients a1 b1, a1 b2, a2 b1, and a2 b2 should be
set independently for each submatrix K i j . These coefficients,
thereafter denoted γi j , are stored in a matrix γ which satisfies

γ =
[

γ11 γ12

γ21 γ22

]

=
[

a1 b1 a1 b2

a2 b1 a2 b2

]

. (81)

Since the determinant of γ is equal to zero, its components
must satisfy

γ11 γ22 − γ12 γ21 = 0. (82)

First, one calculates a matrix γ ∗ in which each coefficient
γ ∗

i j is equal to the inverse of the mean value of the nonzero
terms of matrix K i j . Then, one calculates a matrix γ close
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I := 1;
U (1), Z(1) and the vectors containing the strains, stresses, and
internal variables are initialized to 0;
calculation of matrix K ;
while I ≤ I max do

U 0 := U (I );
Z0 := Z(I );
i := 1;
calculation of matrix L;
calculation of δλ;
calculation of δU and δZ;

while 1 = 1 do

U i := U i−1 + δU ;
Z i := Z i−1 + δZ;

for all the IPs in the volume, do

calculation of ε i from U i ;
calculation of σ i from ε i ;

end

for all the IPs at the interface do

calculation of ζ i from Z i ;
calculation of ζ i

eq , [[u]]i, t i, ini t i, load i, κ i, ci
0, and

rupt i from ζ i, ζ
(I )
eq , ini t (I ), rupt (I ), and κ(I ) (see

Algorithm 2);
end

calculation of R i
1 from σ i ;

calculation of R i
2 from [[u]]i ;

if the errors are less than the tolerance, then

break;
end

updating of matrix L;
calculation of δλ;
calculation of δU and δZ;
i := i + 1;

end

saving of U (I+1), Z(I+1) and the vectors containing the
strains, stresses and internal variables;
I := I + 1.

end

Algorithm 1: Modified Lagrangian formulation: global
equilibrium

to γ ∗ and such that Eq. (82) is satisfied; the components of
γ are calculated as:

γ 11 = γ ∗
11 + �γ ∗, (83a)

γ 22 = γ ∗
22 + �γ ∗, (83b)

γ 12 = γ ∗
12 − �γ ∗, (83c)

γ 21 = γ ∗
21 − �γ ∗, (83d)

with �γ ∗ defined as:

�γ ∗ = γ ∗
12 γ ∗

21 − γ ∗
22 γ ∗

11

γ ∗
12 + γ ∗

21 + γ ∗
22 + γ ∗

11
. (84)

a1 is chosen arbitrarily (e.g., a1 = 1), and the remaining
coefficients b1, a2, and b2 are obtained from the relations
b1 = γ11/a1, a2 = γ21/b1 and b2 = γ22/a2.

Data: ζ i , ζ
(I )
eq , ini t (I ), rupt (I ), and κ(I );

j := 1;
calculation of (ζeq ) j as a function of ζ

(I )
eq and δζ by linearizing

the variation of ζeq ;

while 1 = 1 do

ini t i := max
(

ini t (I ), arg((ζeq ) j > tc)
)

;
ci

0 := arg(ζ i
n < 0);

rupt i := max
(

rupt (I ), arg
(

(ζeq ) j > α [[u]]c

)

;
if ini t i = 1, then

load i := arg
(

(ζeq ) j > ζeq (κ (I ))
)

;
if load i = 1, then

calculation of κ i := [[u]]i
eq from ζ i

eq ;
else

κ i := κ(I );
end

calculation of d i
eq from κ i and rupt i ;

calculation of [[u]]i from d i
eq , ci

0 and ζ i ;

calculation of t i from [[u]]i and ζ i ;
else

[[u]]i := 0 ;
t i := ζ i ;
κ i := κ(I );
ci

0 := 0;
rupt i := 0;

end

calculation of (ζeq ) j+1 from [[u]]i and t i ;

res :=
(

(ζeq ) j+1 − (ζeq ) j

)

/(ζeq ) j ;
if res is less than the tolerance, then

break;
end

j := j + 1;
end

(ζeq )i := (ζeq ) j ;

Output: ζ i
eq , [[u]]i, t i, ini t i, load i, κ i, ci

0, and rupt i

Algorithm 2: Modified Lagrangian formulation: updating
of the internal variables

Appendix D: Cohesive elements

This section presents the shape functions and the rotation
operators of the linear interface elements considered. x

denotes the position vector of a point M of Ŵc, and x and
y denote its projections onto ex and ey :

x = x ex + y ey . (85)

The Jacobian Jc is defined by

dŴc = Jc dξ, (86)

where ξ is the curvilinear abscissa of a point of the reference
cohesive element. Consequently, Jc satisfies

Jc =
√

x2
,ξ + y2

,ξ . (87)

Let Xno and Yno denote the column vectors containing the
coordinates of the nodes of the physical element. N is a line
vector containing the shape functions which satisfy
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Fig. 19 Distinction between a loading state and an unloading state
using the fictitious cohesive law

x(ξ) = N(ξ) Xno , (88a)

y(ξ) = N(ξ) Yno . (88b)

The differentiation of these two equations with respect to
ξ leads to the values of x,ξ and y,ξ used in the calculation of
Jc [Eq. (87)]. The shape functions of the element are

N1(ξ) = (1− ξ)/2, (89a)

N2(ξ) = (1+ ξ)/2. (89b)

The rotation matrix P is calculated as follows:

P(ξ) =

⎡

⎢

⎢

⎣

nx ny 0 0
−ny nx 0 0

0 0 nx ny

0 0 −ny nx

⎤

⎥

⎥

⎦

, (90)

where nx and ny are the coordinates of the unit vector normal
to the cohesive element in the (ex ,ey) basis, which satisfy

nx = − y,ξ /Jc , (91a)

ny = x,ξ /Jc . (91b)

(a) (b)

Fig. 20 Test examples A and B: a A reference element; b a physical
element

Matrix E satisfies

E(ξ) =
[

N1 0 N2 0
0 N1 0 N2

]

. (92)

If one uses linear volume elements (see test examples A and
B and Fig. 20), matrix C is identical to matrix E:

C(ξ) =
[

N1 0 N2 0
0 N1 0 N2

]

. (93)

If one uses quadratic volume elements as in test example
C and Fig. 21, a different sequencing of the nodes must be
used for the approximation of the displacement jump and the
calculation of matrix C . In this case, matrix E is the same
as if linear volume elements were used [Eq. (92)], but matrix
P is recast as a matrix of dimension 6 × 6, and matrix C is
modified to

C(ξ) =
[

N
q
1 0 N

q
2 0 N

q
3 0

0 N
q
1 0 N

q
2 0 N

q
3

]

, (94)

with,

N
q
1 (ξ) = 1

2
(ξ − 1) ξ, (95a)

N
q
2 (ξ) = (1 + ξ) (1 − ξ), (95b)

N
q
3 (ξ) = 1

2
(ξ + 1) ξ. (95c)

Appendix E: Connection of the formulations proposed

with mixed formulations

From the definition provided in [36], a mixed formulation
leads to the resolution of a system of equations of the form
[

A BT

B 0

] [

X1

X2

]

=
[

F1

F2

]

. (96)

Neither the modified Lagrangian formulation nor the Lagrang-
ian formulation is a true mixed formulation because no matrix
is equal to zero in the expression of Systems (73) and (77).
However, one should note that if zero terms appear on the
diagonal of matrix L the system of equations can be recast
into the form of Eq. (96), which leads to a mixed formula-
tion. This occurs if there remain cohesive elements which
are not initiated. In particular, prior to initiating the first
cohesive element, all the terms of matrix L are equal to
zero. This must be taken into account in the implementa-
tion because, in order to ensure the stability of the numer-
ical calculations, the mixed formulations must satisfy the
inf-sup condition [24,25,37]. In particular, one can show
that if BT [with the notations of Eq. (96)] or H (for the
two-field formulations presented) is not injective, then the
inf-sup condition is not satisfied. Figure 22 shows an exam-
ple of this situation in the case of a mesh consisting of
two linear cohesive elements and two linear quadrilateral
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Fig. 21 Test example C: a A
reference element; b a physical
element

(a) (b)

Fig. 22 Sample meshes of the
continuous material and of the
cohesive zone. When
assembled, the cohesive element
connects Nodes 3–5 and Nodes
4–6 of the volume elements

elements. If matrix L is equal to zero, the following three
equations can be isolated from the global system of equa-
tions (using full integration in the case of this example):

5

6

(

u
y

5 − u
y
3

)

+ 1

6

(

u
y
6 − u

y
4

)

= 0, (97a)

(

u
y

5 − u
y
3

)

+
(

u
y
6 − u

y
4

)

= 0, (97b)

1

6

(

u
y

5 − u
y
3

)

+ 5

6

(

u
y
6 − u

y
4

)

= 0. (97c)

These three equations are linearly dependent because

(97a)+ (97c) = (97b). (98)

Consequently, the global matrix is not invertible. From this
example, one can conclude that one should avoid using more
degrees of freedom for the approximation of the cohesive
traction t than for the calculation of the displacement jump
[[u]] along the sides of the crack.
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