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Abstract

This paper is dedicated to a new methodology for designing an optimal moni-
toring architecture by using a limited number of PMUs (Phasor Measurement
Units) and PDCs (Phase Data Concentrators). The optimal design problem
consists in defining the optimal location of both PMUs and PDCs by max-
imizing the expected value of the trace of the observability gramian of the
power system over a large number of set point scenarios, while minimizing
some communication infrastructure costs. Furthermore, a nonlinear dynam-
ical state-observer, based on the Extended Kalman Filter, is proposed. This
state-observer allows to take transient phenomena into account for wide-area
power systems described by algebraic-differential equations, without needing
nonlinear inversion techniques. The overall approach is illustrated with the
IEEE 10 generator 39 bus New England power system.

Keywords: Power system monitoring, optimal design of monitoring
achitecture, sensor networks, observability gramian, optimal location of
PMUs and PDCs, dynamical state estimation, extended Kalman filtering.

1. Introduction

The design of some effective real-time monitoring architectures of wide-
area power systems with the main goal of providing some reliable information

1A preliminary version of this paper was presented at IFAC PPPSC 2012, in Toulouse,
France.
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on the health of the system, remains a big challenge, especially in the context
of large transient phenomena. Nowadays communication networks plays a
key role for providing reliable measurement data with minimum latency in
the context of wide-area power systems. Wireless communications (both
WIMAX and 3G/4G) are expected to wide-area data network coverage (see
Akyol (2010)), especially in remote regions where conventional public com-
munication networks are not available. Traditional monitoring of power grids
is ensured by Remote Terminal Units (RTU), which provide real/reactive
power flows, real/reactive power injections and voltage magnitude measure-
ments. The introduction of PMUs by Phadke (1983) is a big step forward
since it provided some additional measurements such as voltage and current
phasor measurements. PMUs can provide very accurate data since they are
synchronized from the common global positioning system (GPS) radio clock.
However it is well recognized that the use of PMUs is more demanding in
terms of data flow rates than traditional RTUs (see Narendra (2008)).

On the one hand, optimal PMU location is not a new topic since some
previous works have been dedicated to this issue (see Baldwin (1993), Gou
(2008), Xu (2004), for instance.) Hovever to the best of my knowledge, the
communication infrastructure costs are never been taken into account in the
design. On the other hand, dynamical state observer design capable of accu-
rately estimating complex nonlinear transients remains a rather widely open
issue (see Huang (2007) for a Kalman Filter application), since most of the
available approaches in the litterature are based on steady-state estimation
techniques.

On the basis of these statements, several issues will be considered in this
paper:

• First, in order to effectively track the complex transient behavior of
power systems, dynamical observability, rather than conventional static
observability, will be considered.

• Second, the optimal location of some PMUs and PDCs will be consid-
ered. Attention will be paid to the issue of providing engineers with
monitoring infrastructure design tools. The monitoring infrastructure
must be understood as the choice of the power system state variables
to be measured (through the optimal location of PMUs) by maximizing
an observability index, together with the optimization of the commu-
nication network which will be used for both the collection and the
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transmission of sensor measurements. The communication network op-
timization will be viewed as the problem of optimally locating some
PDCs at the vicinity of grid buses, by minimizing the induced com-
munication costs. A budgetary constraint involving the PMU-PDC
acquisition costs will be also considered.

• Third, the design of a nonlinear state observer taking advantage of the
here-proposed monitoring infrastructure will be considered.

This paper extends the optimal sensor location approach proposed in
Nguyen (2008) by including communication network design. Furthermore,
Extended Kalman Filtering is used to design a dynamical state observer for
wide-area power systems described by algebraic-differential equations, with-
out needing nonlinear inversion techniques. This paper also extends the work
proposed in Georges (2012), by assuming that the number of both PMUs and
PDCs is not fixed and considering a more complex application, i.e., the IEEE
10 generator 39 bus New England power system. The application of simu-
lated annealing to solve the NP-hard combinatorial optimal location problem
is also considered in this paper.

The paper is now organized as follows: Section 2 is dedicated to some
background on wide-area power system modeling.Section 3 is dedicated to a
discussion on observability measurement tools based on observability grami-
ans. In section 4, the new optimal design methodology for wide-area mon-
itoring is proposed based on observability gramian. Section 5 describes an
EKF-based dynamical state observer. Section 6 is devoted to application of
the methodology to the IEEE 39-bus test system. Finally some conclusions
and perspectives are provided.

Nomenclature

Subscript i denotes the ith generator.
δi Angle of the ith generator in radian.
θi Bus i phase angle, in radian.
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ωi Relative speed in rad/s w.r.t. synchronous speed ω0.
ω0 Synchronous speed in rad/s (ω0 = 2π60, in a 60Hz network).
Pm
i Mechanical input power, in p.u..

PGi Active power delivered, in p.u..
QGi Reactive power, in p.u..
E ′qi Transient EMF in quadrature axis , in p.u..
ω0 Synchronous machine spedd, in rad/s.
Di Per unit damping constant.
Hi Inertia constant in second.
T ′d0i Direct axis transient short circuit time constant, in s.
xdi Direct axis reactance, in p.u..
x′di Direct axis transient reactance, in p.u..
Kai Exciter gain, in p.u..
Tai Exciter time constant in p.u..
Efdi Exciter voltage in p.u..
Efd0i Exciter voltage setpoint in p.u..
Bij Susceptance of admittance matrix element i, j.
Gij Conductance of admittance matrix element i, j.
PLi Load active power at bus i, in p.u..
QLi Load reactive power at bus i, in p.u..
Vi Voltage at bus i, in p.u..
Vrefi Voltage setpoint at bus i, in p.u..
Ci Set of bus indices connected to bus i, including i.

2. Power System Modeling for Wide-Area Monitoring

A multi-machine power system, with N generators connected to a grid
made of M buses, where M ≥ N , is considered in this paper. Using a one-
axis model of each generator2, the model of the ith generator equiped with a
dynamical exciter can be expressed as follows (see Ilic (2000) for example):

Mechanical Dynamics of Generator i:

δ̇i = ωi, (1)

2For sake of simplicity and without any restriction, a two-axis or a more detailed model
of the generators is not considered here.
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ω̇i = − Di

2Hi

ωi +
ω0

2Hi

(Pm
i − PGi). (2)

Electrical Dynamics of Generator i:

Ė ′qi =
1

T ′d0i

(Efdi −
xdi
x′di

E ′qi −
(xdi − x′di)

x′di
Vi cos(δi − θi),

(3)

Ėfdi = − 1

Tai
(Efdi − Efd0i) +

Kai

Tai
(Vrefi − Vi). (4)

Electrical Equations at Generator bus i, i = 1, ..., N :

PGi =
E ′qiVi

x′di
sin(δi − θi), (5)

QGi = (E ′qiVi cos(δi − θi)− V 2
i )/x′di, (6)

PGi =
∑
k∈Ci

ViVk(Gik cos θik +Bik sin θik) + PLi, (7)

QGi =
∑
k∈Ci

ViVk(Gik sin θik −Bik cos θik) +QLi, (8)

where θik = θi − θk.
Electrical Equations at the Non Generator Bus j, j = 1, ...,M−N :

PLj +
∑
k∈Cj

VjVk(Gjk cos θjk +Bjk sin θjk) = 0, (9)

QLj +
∑
k∈Cj

VjVk(Gjk sin θjk −Bjk cos θik) = 0. (10)

The overall dynamical model of the power system may be expressed as
the following algebraic-differential system:

ẋ = F (x, z, u), (11)

0 = G(x, z, w), (12)

where x denotes the vector of theN generator state variables (δi, ωi, E
′
qi, Efdi),

i = 1, ..., N and possibly the state variables of additional controllers such as
PSS or FACTS, z is the 2M vector of the voltage magnitude and phase angle
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at the M buses. u is the vector of reference control inputs, i.e. the mechan-
ical power and the reference inputs of each controllers. w is the vector of
load currents at each bus. w can also include interconnection variables if the
studied system is part of a larger power system. F denotes the vector field
of the differential part of the state-space representation, while G is a nonlin-
ear function with the same dimensions as the ones of vector z. If additional
controllers (PSS, FACTS, AVR) are introduced, system model (11)-(12) can
be extended as follows:

ẋ = F (x, z, u), (13)

ċ = I(c, x, z, v), (14)

0 = G(x, z, w), (15)

u = sat(φ(c)) (16)

where I denotes the vector field of the controllers (PSS, AVR, FACTS con-
trollers), c is the controller state vector, and v is a vector of controller set-
points. x may also include additional states of FACTS devices. stat denotes
a saturation function defined as follows:

sat(u) =


u, if u < u

u, if u ≤ u ≤ ū
ū, if u > ū

(17)

If controller state c is known, an extended-Kalman observer design can be
performed based on the reduced system defined by states x and z, under the
assumption that both F and G are differentiable and a local detectability
property holds.

For the goal of both simulation and state-observer design based on time
integration techniques, it is convenient to use a differential version of the
algebraic equations by introducing the time-derivative of G:

Ġ(x, z, w) =
∂G

∂x
ẋ+

∂G

∂z
ż +

∂G

∂w
ẇ. (18)

and the condition Ġ = 0. However it is more appropriate to ensure numerical
stability by introducing a stabilizing term as follows:

Ġ(x, z, w) = −1

ε
G(x, z, w), (19)
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with ε > 0. This equation is equivalent to

ż = −∂G
∂z

−1

[
∂G

∂x
F (x, z, u) +

∂G

∂w
ẇ +

1

ε
G(x, z, w)], (20)

provided that the Jacobian matrix
∂G

∂z
has full rank (except on a subset of

null measure corresponding to some singular configurations).

Some remarks:

1. The classical approach consists in using the implicit function theorem,
in order to locally express z as a function Ψ(x,w) provided that the

Jacobian matrix
∂G

∂z
has full rank. In most of the cases, it is not

possible to get an explicit expression of Ψ(x,w) and some Newton-
Raphson-like methods are thus needed to compute z. The here-proposed
differential version avoids such iterative computations of the implicit
solution, except for the initial state.

2. Equation (19) may be interpreted as a singularly-perturbated version of
G(x, z, w) = 0, since it may be rewritten as εĠ(x, z, w) = −G(x, z, w).
In the case of long interconnection lines, it is well known that a static
model of the form G(x, z, w) = 0 may be not suitable, since travelling
waves may occur. εĠ(x, z, w) = −G(x, z, w) may also be viewed as a
way of integrating such transient phenomena.

3. It can be easily shown that the solution of (19) is given by

G(x(t), z(t), w(t)) = e
− t
εG(x(0), z(0), w(0)). (21)

This means that the trajectory of x and z are constrained to remain on
the manifold defined by G(x, z, w) = 0, provided that w and its time
derivative ẇ are bounded, when initial states x(0) and z(0) are such
that G(x(0), z(0), w(0)) = 0. When the initial states do not belong to
the manifold, eqn (16) ensures exponential attractivity to the manifold.

4. This also means that any linearized dynamics around a given equilib-
rium state exhibits 2M eigenvalues equal to −1

ε
(in order to prove this

assertion, consider the change of coordinates z → G(x, z, w)).

In addition to the state-representation (11)-(12), measurement vector y
needs to be defined:

y = H(x, z) (22)
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where H(x, z) defines the measured outputs as a function of the states x
and z. H is supposed to be at least continuously differentiable. When some
traditional sensors are used to measure active and reactive powers, the related
measured variables will be expressed as a nonlinear function of the state.
When some sensors (PMUs for example) are used to measure phase angle
and voltage magnitudes, the related component of y will be simply one of
the state components. Again, if some current measurements are performed,
the related output will be a nonlinear function of the states.

Finally, a nonlinear fully-differential state representation of the power
system is given by

ẋ = F (x, z, u), (23)

ż = −∂G
∂z

−1

[
∂G

∂x
F (x, z, u) +

∂G

∂w
ẇ

+
1

ε
G(x, z, w)], (24)

y = H(x, z). (25)

In what follows, it is assumed that the vector of load and interconnection
currents w are known via measurements, together with their time-derivatives
(through some appropriate filters for example)3. This new state representa-
tion will be used to derive a dynamical state observer in section 5.

3. Observability Analysis based on the Observability Gramian

For asymptotically stable linear systems (i.e. the spectrum of matrix A
belongs to the left part of the complex plane) defined by

ẋ = Ax+Bu, (26)

y = Cx+Du, (27)

a measure of observability is given by the output energy function generated
by any intial state x0 (when u = 0) and given by

Eo(x0) =

∫ ∞
0

‖y(t)‖2dt = xT0 [

∫ ∞
0

eA
T tCTCeAtdt]x0. (28)

3An extension to the case of some non measured w is possible, provided that the
system observability condition is satisfied, by introducing an extended version of (23)-(25)
obtained by adding the dynamics ẇ = 0 in the observer design.
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The matrix Wo =

∫ ∞
0

eA
T tCTCeAtdt is called observability Gramian of the

system and is given as solution of the following Lyapunov equation (Moore
(1981))

ATWo +WoA+ CTC = 0. (29)

It is well known that the nullspace of Wo coincides with the unobservable
subspace of the system, i.e, when the pair (C,A) is detectable4, Wo is a
nonnegative definite matrix.

In Zhou (1999), the notion of Gramian has been extended to the case of
unstable systems (without any poles on the imaginary axis), by considering
the solutions Y,Wo of the following algebraic matrix equations:

AY + Y AT − Y CTCY = 0, (30)

AToWo +WoAo + CTC = 0, (31)

where Ao = A− Y CTC and with Wo = W T
o ≥ 0 and Y = Y T ≥ 0.

The first (Bernoulli) equation ensures the projection of the unstable eigen-
values of A to the left part of the complex plane, symmetrically with respect
to the imaginary axis (by using an ”implicit” Kalman filter). When the sys-
tem is stable, we use in fact the trivial solution Y = 0. As a consequence
Wo may be used as a measure of the ”level of observability” induced by a
particular choice or location of sensors in the system. An optimal location of
sensors will consist for instance in maximizing the minimum singular value of
Wo (see Georges (1995)) or the trace of Wo, which represents the sum of the
singular values of Wo (see Georges (2011)). Some efficient numerical meth-
ods were proposed to compute large-scale Lyapunov-type equations. For
instance reference (Jaimoukha (1994)) provides a computational approach
based on Krylov subspaces. This is precisely the approach that will be used
for designing an optimal PMU-based monitoring architecture.

For that purpose, the local linearization of the system (11)-(12) around
any equilibrium set point (denoted by the subscript ”e”) is introduced:

˙̃x = A1
ex̃+ A2

ez̃ +B1
e ũ, (32)

4A system is said to be detectable, if and only if the non observable states of the system
are asymptotically stable.
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0 = A3
ex̃+ A4

ez̃ +B2
e w̃, (33)

ỹ = C1
e x̃+ C2

e z̃, (34)

where A1
e, A

2
e and B1

e are the Jacobian matrices of F with respect to x, z
and u respectively, while A3

e, A
4
e, and B2

e are the Jacobian matrices of G with
respect to x, z, and w respectively, and finally, C1

e and C2
e are the Jacobian

matrices of H with respect to x and z, evaluated at the equilibrium point. .̃
denotes the discrepancy between the variable and its equilibrium value.

By using that A4
e is invertible, z̃ can be expressed as z̃ = −A4

e
−1

[A3
ex̃ +

B2
e w̃]. Consequently, the algebraic part of the model and the state z̃ can be

eliminated:

˙̃x = (A1
e − A2

eA
4
e
−1
A3
e)x̃+B1

e ũ− A2
eA

4
e
−1
B2
e w̃, (35)

y = (C1
e − C2

eA
4
e
−1
A3
e)x̃− C2

eA
4
e
−1
B2
e w̃ (36)

The observability Gramian of the power system is then computed as solution
of (30) and (31), where

(A1
e − A2

eA
4
e
−1
A3
e)Y + Y ((A1

e − A2
eA

4
e
−1
A3
e)
T

−Y (C1
e − C2

eA
4
e
−1
A3
e)
T (C1

e − C2
eA

4
e
−1
A3
e)Y = 0, (37)

AToWo +WoAo

+(C1
e − C2

eA
4
e
−1
A3
e)
T (C1

e − C2
eA

4
e
−1
A3
e) = 0, (38)

where
Ao = (A1

e − A2
eA

4
e
−1
A3
e)− Y (C1

e − C2
eA

4
e
−1
A3
e)
T
.

In what follows, A1
e − A2

eA
4
e
−1
A3
e and C1

e − C2
eA

4
e
−1
A3
e will be denoted as

A and C respectively5.

4. Design of a Monitoring Architecture Based on the Optimal Lo-
cation of PMUs and PDCs

The problem consists in adding Npmu PMUs and Npdc PDCs to an existing
monitoring infrastructure equiped with some traditional sensors or not, where
Npmu and Npdc have to be minimized.

5In order to ensure existence of solutions to (37) and (38), dynamics of the reference
generator has to be eliminated.
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Each of the Npmu PMUs is supposed to be connected to one and only
one of the Npdc PDCs, which are themselves connected to a SCADA master
station, according to Fig. 1.

The main goal is now to derive an optimal monitoring architecture by
taking the following objectives into account:

1. Both the PMUs and the PDCs must be located at some well chosen
system buses. The optimization should be performed on the basis of a
large number of system set point scenarios.

2. The optimal location of both the PMUs and the PDCs must be ensured
to account the objectives of maximizing observability while reducing
the communication infrastructure induced costs (depending on the used
technology, for instance, WIMAX, coaxial, or optical communications).
The communication infrastructure costs are assumed to depend on the
length of the communication link and possibly the geographical location
of the devices in order to take some civil engineering constraints into
account.

These objectives can be fulfilled by solving the following integer programming
problem (denoted OLP):

max
Sij ,αij ,βij∈{0,1}

E[trace(Wo(S, ω))]

−
N̄pmu∑
i=1

N̄pdc∑
j=1

αij max(0, Ibpdcj)×max(0, Ibpmui)× Cc(I
b
pmui

, Ibpdcj) (39)

subject to

M∑
j=1

Sij ≤ 1, i = 1, ..., N̄pmu, (40)

N̄pmu∑
i=1

Sij ≤ 1, j = 1, ...,M, (41)

(
M∑
k=1

Sik − 1)(

N̄pdc∑
j=1

αij) = 0, i = 1, ..., N̄pmu, (42)

(
M∑
k=1

Sik)(

N̄pdc∑
j=1

αij − 1) = 0, i = 1, ..., N̄pmu, (43)
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0xy

PDC 1

G1 G2

G3

PMU1

PMU2

PMU3

PDC 2

PMU4

PMU5

Figure 1: Example of the location of 5 PMUs connected to 2 PDCs.
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M∑
j=1

βij ≤ 1, i = 1, ..., N̄pdc, (44)

N̄pmu∑
i=1

βij ≤ 1, j = 1, ...,M, (45)

Npmu × Ca
pmu +

Npdc∑
i=1

Ca
pdc(N

c
pdci

) ≤ C̄a, (46)

N̄pmu∑
i=1

αij ≤ N̄c, j = 1, ..., N̄pdc, (47)

N̄pdc∑
i=1

M∑
j=1

βij ≥ Npdc, (48)

where Sij is equal to 1 (otherwise 0), when the ith PMU is located at bus j;
αij is equal to 1 (otherwise 0), when the ith PMU is connected to the jth
PDC; βij is equal to 1 (otherwise 0), when the ith PDC is located at bus
j. N̄pmu (resp. N̄pdc) is the maximum number of PMUs (resp. of PDCs);
Ibpmui (resp. Ibpdci) is the bus index of the ith PMU (resp. the bus index

of the ith PDC). Ibpmui (resp.Ibpdci) is equal to 0, when
M∑
j=1

Sij = 0 (resp.

M∑
j=1

βij = 0). Number of PMUsNpmu (resp. number of PDCsNpdc) is given by

Npmu =

N̄pmu∑
i=1

M∑
j=1

Sij (resp. Npdc =

N̄pdc∑
i=1

M∑
j=1

βij). Number of PMUs connected

to PDC i is given by N c
pdci

=

N̄pmu∑
j=1

αji. N̄c is the maximum number of PMU

connexions per PDC allowed. Npdc is the minimum number of PDC. Ca
pmu

is the unitary PMU acquisition cost. Ca
pdc is the unitary PDC acquisition

cost which may be a function of the number of PMUs. C̄a is the maximum

PMU-PDC acquisition cost. Bc
pdci

connected to PMU i, Bc
pdci

=

N̄pmu∑
j=1

αji. Cc

is the unitary communication infrastructure cost of any link connecting a
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PMU to a PDC.

Discussions on the cost functionals:

• E[.] is the expected value defined on a probability space defined by
a large number Nsc of scenarios ωi corresponding each to one (non
necessarily stable) equilibrium set point of the power system. Each
scenario has its own occurence probability P (ωi). Consequently,

E[trace(Wo(S, ω))] =
Nsc∑
i=1

trace(Wo(S, ωi))P (ωi). (49)

Each Wo(S, ωi) is solution of (30) and (31):

A(ωi)Y (S, ωi) + Y (S, ωi)A
T (ωi)

−Y (S, ωi)C
T (S, ωi)C(S, ωi)Y (S, ωi) = 0, (50)

ATo (ωi)Wo(S, ωi) +Wo(S, ωi)Ao(ωi)

+CT (S, ωi)C(S, ωi) = 0, (51)

where Ao = A− Y CTC.

• Cc(Ibpmui , I
b
pdcj

) is the communication infrastructure cost induced by the
location of both the ith PMU and the jth PDC. Cc is defined as an
increasing function of the length of the link connecting the ith PMU
to the kth PDC. Cc may also include some cost components related
to the locations of the considered PMU and PDC by themselves: For
instance, the erection cost of a communication tower in the presence of
environmental obstacles.

Discussions on the constraints:

• Constraints (40) are introduced to ensure that each of the Npmu PMUs
is connected to only one bus.

• Constraints (41) are introduced to avoid that each PMU is connected
to more than one PMU.

• Constraints (42) ensure that if PMU i is not connected to a bus, then
αij, i = 1, ..., N̄pdc (no connexion to a PDC).
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• Constraints (43) ensure that if PMU i is connected to a bus, then PMU
i is also connected to a PDC.

• Constraints (44) are introduced to ensure that each PDC is connected
to only one bus.

• Constraints (45) are introduced to avoid that each of the Npdc PDCs is
connected to more than one PMU.

• Constraint (46) is introduced to bound the upper PMU-PDC acquisi-
tion cost.

• Constraints (47) are introduced to bound the number of possible PMU
connexions to a given PDC with N̄c.

• Constraint (48) is introduced to ensure existence of at least Npdc PDC.

4.1. Numerical computation based on simulated annealing

This large-scale highly combinatorial (NP-hard) optimization problem
(with N̄pmu ×M + N̄pdc × N̄pmu + N̄pdc ×M decision variables and 3N̄pmu +
2N̄pdc+2M+2 constraints) cannot be solved by an enumerative method and
an optimal solution should be computed by using any available integer pro-
gramming methods (such as Branch and Bound methods, simulated anneal-
ing, genetic algorithms ...), (see Gou (2008) for example). The combinatorial
complexity depends on the number of system buses. However the computa-
tion time of the observability index depends on the number of generator and
grid states, but it does not directly affect the combinatorial complexity. It
can be easily shown also that the average computation time linearly depends
on the number of set point scenarios used to define the observability index.

In order to illustrate the combinatorial complexity of the problem, let Tc
denote the CPU time needed to compute the optimal solution a of a rather
simple problem of locating k PMUs on a n-bus power system with a single
PDC connecting the PMUs to the SCADA, which is given by the following
formula:

Tc =
n!

k!× (n− k)!
× tcostcpu ×Nsc, (52)

where tcostcpu is the unitary CPU time needed for evaluating the cost function
related to a given configuration of the PMUs for a given set point scenario.
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For instance, if n = 39, k = 20, tcostcpu = 1ms, and Nsc = 100, the timed need
is greater than 218 years!

In this paper, the computation of a numerical solution is performed by
using simulated annealing (see Kirkpatrick (1983)).

Simulated annealing is an iterative method primarily intended to solving
unconstrained optimization problems. The method mimics the physical pro-
cess of heating a material and then slowly cooling it in order to eliminate
some material defects by reaching an equilibrium state corresponding to a
minimum of the material energy.

At each temperature iteration of the simulated annealing algorithm, a
new solution is randomly generated. The distance of the new solution from
the current one, is based on a probability distribution proportional to the
temperature. The algorithm accepts all new solutions that lower the cost
function, but also, with a certain probability, solutions that increase the
cost function. By generating solutions that increase the cost function, the
algorithm avoids being trapped in local minima and thus has been proved
to provide better minimal solutions. It has been also proved (see Granville
(1994)) that simulated annealing is able to provide an optimal solution to
any unconstrained optimization problem provided that the number of tem-
perature iterations tends to infinity.

Integer programming problem OLP is a constrained optimization prob-
lem which can be solved by simulated annealing thanks to a exterior penalty
method. This method transforms the problem into an unconstrained opti-
mization problem (OLPP), by adding penalty functions to the initial cost
function. The new unsconstrained problem is described as follows:

max
Sij ,αij ,βij∈{0,1}

E[trace(Wo(S, ω))]

−
N̄pmu∑
i=1

N̄pdc∑
j=1

αij max(0, Ibpdcj)×max(0, Ibpmui)× Cc(I
b
pmui

, Ibpdcj)

+Kp

N̄pmu∑
i=1

max(0,
M∑
j=1

Sij − 1)2 +Kp

M∑
j=1

max(0,

N̄pmu∑
i=1

Sij − 1)2

+Kp

N̄pmu∑
i=1

((
M∑
k=1

Sik − 1)(

N̄pdc∑
j=1

αij))
2 +Kp

N̄pmu∑
i=1

((
M∑
k=1

Sik)(

N̄pdc∑
j=1

αij − 1))2
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+Kp

N̄pdc∑
i=1

max(0,
M∑
j=1

βij − 1)2 +Kp

M∑
j=1

max(0,

N̄pmu∑
i=1

βij − 1)2

+Kp max(0, Npmu × Ca
pmu +

Npdc∑
i=1

Ca
pdc(N

c
pdci

)− C̄a)2

+Kp

N̄pdc∑
j=1

max(0,

N̄pmu∑
i=1

αij − N̄c)
2 +Kp max(0, Npdc −

N̄pdc∑
i=1

M∑
j=1

βij)
2 (53)

where Kp is a penalty coefficient, which has to be chosen small, but large
enough to ensure the constraints are satisfied.

5. Dynamical State-Observer Design

The here-proposed derivation of a centralized state observer for wide-area
monitoring is based on both the nonlinear differential model (23)-(25) and
the use of an Extended Kalman Filter, whose gain is computed apart from
the linearized dynamics of the reduced system (35)-(36) around the estimated
state trajectory (see Gibbs (2011) for example):

˙̂x = F (x̂, ẑ, u) + L(x̂, ẑ, u, w)(y −H(x̂, ẑ)), (54)

˙̂z = −∂G
∂z

−1

[
∂G

∂x
F (x̂, ẑ, u) +

∂G

∂w
ˆ̇w +

1

ε
G(x̂, ẑ, w)], (55)

ˆ̇w = kc(w − ŵ), kc > 0 (56)

where gain matrix L is obtained from the solution P (t) of the following
differential Riccati equation:

Ṗ (t) = P (t)A(x̂(t), ẑ(t), u(t), w(t))T + A(x̂(t), ẑ(t), u(t), w(t))P (t)

− P (t)Ca(x̂, ẑ)TR−1Ca(x̂, ẑ)P (t) +Q, (57)

P (0) = Q0, (58)

where A and C are the already-described matrices of the reduced linearized
system (35)-(36), obtained from the Jacobian matrices of the linearized dy-
namics of (11)-(22) evaluated around the estimated trajectory (x̂(t), ẑ(t)),
u(t), and w(t). Matrices Q0, Q and R are chosen in order to represent the
covariance matrix of the initial state, of the state equation disturbance and
of the measurement disturbance, respectively.
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Gain matrix L is given by

L(x̂(t), ẑ(t), u(t), w(t)) = P (t)CT (x̂(t), ẑ(t))R−1. (59)

(56) is the nonideal differentiator which provides an estimate of ẇ.

Some remarks.

1. There is no need to invert the algebraic ”flow” equations (12) of the
grid (for example by using a continuation method) since the observer
does not contain any algebraic part.

2. Gain L computation requires solving a reduced observer Riccati equa-
tion (since grid state z has been eliminated). Thus the computational
complexity depends only on the number of generator states.

3. Furthermore, it can also be easily shown that under the assumption
that the state observer converges, the initial state estimate is not sup-
posed to satisfy (12) to get an estimate of x, z such that (x̂(t), ẑ(t))→
(x(t), z(t)) of the algebraic -differential model (11)-(12), when t→ +∞.

4. In pratice, the effect of various communication delays can be dealed
with provided that all the phasor measurements are synchronized and
the data acquisation time is the same for all the PMUs. Synchronized
PMUs use the American military’s Global Positioning System satel-
lites and are capable of providing measurements with a precision of
a few microseconds (see chapter 5 in Hadjsaid (2008) for instance).
Synchronized PMU measurements, which correspond to a given acqui-
sition time, can be used after data transmission, buffering and data
re-ordering, in order to compute some delayed estimates of the system
states, in a manner similar to video streaming.

6. Application to the IEEE 10-generator 39-bus New England power
system

In order to illustrate both OLP and the proposed state observer behavior,
the well-known IEEE New England power system benchmark was considered
(see Fig. 2). All the generator, lines/transformers, and power/voltage set
point data were retrieved from the website http://sys.elec.kitami-it.ac.jp-
/ueda/demo/WebPF/39-New-England.pdf. New England 39 bus system is
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a 60 Hz system. The network consists of 10 synchronous generators, and 46
transmission lines. Generator 2 at Bus 31 is considered as reference. A full
description of the system is also available in Pai (1989).
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Figure 2: The IEEE 10-generator 39-bus power system.

6.1. OLP solution

The main goal was to compute the best location of a minimum number of
PMUs dedicated to voltage phasor measurement at two of the buses, together
with the optimal location of a minimum number of PDCs linked to the PMUs.
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The communication infrastructure cost was assumed to be a linear func-
tion of the communication link length between each PMU and its PDC:

Cc(I
b
pmui

, Ibpdcj) = γd(Ibpmui , I
b
pdcj

), i = 1, ..., N̄pmu, j = 1, ..., N̄pdc (60)

where γ represents the infrastructure cost per km and d(Ibpmui , I
b
pdcj

) is the
communication link length between PMU i and PDC j. Here γ was assumed
to be equal to 1/km (normalized cost per km).

The normalized unitary PMU-PDC acquisition costs were defined as Ca
pmu =

10, and Ca
pdc = 5 (this unitary cost is not depending on the number of PMU

connexions in this example). 20 scenarios were generated by randomly per-
tubating the load and the generation nominal set point by using a uniform
probability distribution with standard deviation of 0.2.

Problem OLPP was solved by using simulating annealing with penalty
coefficient Kp = 750 on a desktop with Intel Core i5-2320 @ 3.00GHz and 6
Go RAM. The optim sa function of SCILAB software6 was used to compute
the simulated annealing OLPP solution.

In order to analyze the effectiveness of the simulating annealing algorithm,
a comparison was made in computing the cost function value of the simulated
annealing solution and the one obtained with an enumerative solution in the
simple case when N̄pmu = 2 and N̄pdc = 1. Table 1 provides a comparison:

Table 1: Enumerative solution versus simulated annealing solution (60 iterations).

Method Cost CPU Time
Enumerative solution 16788.4 5 hours 33 mns
Simulated annealing 16781.8 5 hours 45 mns

The relative cost discrepancy is limited to 3.9e−4, which is a very good
result. It can be noticed that, in this rather simple case, the enumerative
solution is a little less CPU time consuming.

6SCILAB is an open source software for numerical computation, trademark of Scilab
Entreprises SAS 2013.
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Then the maximum numbers of devices were given by N̄pmu = 25 and
N̄pdc = 5. Npdc = 2 and N̄c = 10. Maximum acquisition budget C̄a was
fixed to 215. Tables 2, 3, and 4 sum up the results obtained with simulated
annealing. In this case, it was not possible to compare simulated annealing
with the enumerative method due to the hudge combinatorial explosion.

Table 2: Simulated annealing solution (60 iterations).

Cost CPU Time
25889.7 6 hours 30 mns

6.2. Nonlinear state observer simulation

The state observer described in section 5 was tested with the optimal
configuration of 20 PMUs and ε = 0.01, with the data defined by Table 5,
when the power system reacts to a sudden 50% load fall at bus 15 at time in-
stant 200ms, without considering frequency control mechanisms. The initial
state estimates were chosen to represent 80% of the unknown states at initial
equilibrium. The PMUs are used to measure voltage angles and magnitudes
at buses where they are optimally located. A Gaussian measurement noise
with zero mean and a standard deviation of 1e−2 was also introduced to alter
the measurements provided by each PMU. Fig. 3, 4, 5 and 6 show how well
the EKF observer behaves in response to the sudden load change occuring at
t = 200ms. On Fig. 3, the 10-generator angle estimation errors are shown
to be bounded by 0.1 in magnitude, after initial transients, whose duration
is limited to 150ms. Those transients are due to the fact the initial states
are supposed to be not precisely known. The occurence of the load change
at t = 200ms does not introduce some new transients, that is an interest-
ing feature of the proposed observer design. Fig. 4 corresponds to results
given by Fig. 3 with a comparison between the real 10-generator angles, ob-
tained by simulation, and the estimated ones. Fig. 5 provides a comparison
between the real 10-generator relative speeds (w.r.t. ω0 and the estimated
ones. Fig. 6 provides a comparison between the real 39-bus voltage angles
and the estimated ones. Figs 5 and 6 show that the state trajectory leaves
the equilibrium state after 200ms: the relative speeds w.r.t. the synchronous
speed of the generators increase (see Fig. 5) and the voltage angles also

21



Table 3: Simulated annealing solution - PMU locations.

(20) PMUs Connexion bus (3) Connexion PDC
1 20 1
2 36 3
3 19 2
4 26 2
5 35 2
6 25 2
7 33 2
8 22 1
9 2 3
10 28 3
11 18 3
12 38 1
13 30 2
14 6 1
15 21 3
16 3 1
17 27 1
18 17 1
19 37 1
20 16 1

Table 4: Simulated annealing solution - PDC locations.

PDC Connexion bus
1 4
2 32
3 14
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increase (see Fig. 6). On all the figures, it can be observed that both the
generator and the grid states are accurately estimated after the initial tran-
sients limited to a 150ms duration. The observer reacts very well to the load
disturbance occuring at t = 200ms by still providing an accurate estimate
of the state variables despite measurement noise. The system appears to be
clearly unstable, since there is no frequency control mechanism in this case
study.

Table 5: EKF data (Index ”e” stands for the setpoint state).

R Q Q0 Initial state estimates
1e−4I40×40 1e−2I40×40 I40×40 (xTe , z

T
e )T × 0.8

7. Conclusions and perspectives

In this paper, a methodology for designing an optimal monitoring archi-
tecture using a limited number of PMUs has been proposed. The optimal
design problem consists in maximizing the observability index of the power
system (which is based on the trace of the linear observability gramian), while
minimizing the communication infrastructure cost. Simulated annealing was
sucessfully applied to solve the optimal location problem for a realistic 39 bus
system test. Furthermore, a nonlinear dynamical EKF-like state-observer
has been proposed, which does not require any on-line ”nonlinear inversion”
technique. Further researches will be devoted to the design of a distributed
version of the here-proposed EKF state observer suitable for both reducing
the computational cost and for taking advantage of the distributed nature of
wide-area power systems. It would be also very convenient for large comm-
munication delays to derive some real-time state estimators based on delayed
measurements. For that purpose, the theory of time-delay systems is needed.
This approach was not investigated in the present paper. It also represents
an important research perspective for future works.
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