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Abstract

In this paper, we present the λµ∧∨-calculus which at the typed level cor-
responds to the full classical propositional natural deduction system. Church-
Rosser property of this system is proved using the standardization and the
finiteness developments theorem. We define also the leftmost reduction and
prove that it is a winning strategy.

1 Introduction

The λµ∧∨-calculus is an extension of the λµ-calculus associated by the Curry-
Howard correspondence to the full classical natural deduction system, it was intro-
duced by P. De Groote [7]. In the λµ∧∨-calculus as in any other abstract reduction
system, termination, confluence and standardization appear among the principal
properties. The question of termination, of course for the typed λµ∧∨-calculus, was
studied by many authors [4], [7], [12] and [13], however the proof of strong normal-
ization in [7] based on the CPS-transaltion did not work, correction for this proof
was given in [9].

Confluence is a very important property, it guarantees the uniqueness of the
normal form (if it exists) independently of the strategy of reduction, i.e, if we are
allowed to write terms which necessarily do not finish under reduction, one expects
at least that the possible result is independent of the strategy of reduction. There
are different methods to prove the confluence property: parallel reduction, com-
plete development, finiteness developments and standardization... For a strongly
normalizable term rewriting system, one needs only to check the local confluence
which suffices when combinated with Newman lemma.

Standardization is classical and a very convenient tool, the issue is the order in
which the reduction steps are performed. In a standard reduction, this is done from
left to right. According to the standardization theorem, any sequence of reductions
can be transformed into a standard one. We find in current literature various
equivalent definitions of this notion. In our work, we adopt the one given by R.
David and W. Py [5] and [16], it is very convenient and has the advantage that we
do not need to formalize the notion of residus “descendant” of a redex.

The presence of the permutative reduction of the form “((t [x.u, y.v]) ε) reduces
to (t [x.(u ε), y.(v ε)])” has certain consequences not only on the termination of
the system, but also on the standardization and the confluence, since the resulting
rewriting system is not orthogonal. Therefore the treatment of these two notions is
not trivial at all. Intuitively standard reduction contract redexes from external to
internal and from left to right. However there is more freedom in the presence of per-
mutative reductions, a permutative redex of the form ((µa.t [x.u, y.v]) [r.p, s.q]) ε
may permute to (µa.t [x.(u [r.p, s.q]), y.(v [r.p, s.q])]) ε and to
(µa.t [x.u, y.v]) [r.(p ε), s.(q ε)] and both possiblities as well as the embedded µ-
redex should be treated equivalently. We can not favour one over the other and
consider for example, the classical one as external or the leftmost one. That would
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be also the same thing for the two permutatives redexes.

In this work we use a definition “à la David” which captures this intuitive no-
tion of standardization, when restricted to the λ-calculus (resp the λµ-calculus)
corresponds exactly to the one given in [5] (resp [16]). As an application of this
definition, we prove that leftmost reduction in a sense which we determinate later
is a gaining strategy.

The finiteness developments theorem says that: if we mark a set R of redex
occurences in a given term t and reduce only the marked redex occurences and redex
occurences which descend from marked redex occurences, the reduction process
always terminates. If we reduce every marked redex occurence, then the order
in which such reductions are performed does not matter, R uniquely determines
a term u to which t is reduced under any complete reduction of marked redex
occurences. In addition, if we mark another set R′ of redex occurences in t and
follow this set through a complete R-reduction, the redex occurences from R′ may
be transformed by substitution or copied. However, it does not matter in what way
we perform a complete R-reduction, the set of redex occurences in u which descend
from R′ is again uniquely determined. This theorem has important consequences
like the confluence property. The proof for this theorem is difficult and required a
standardization theorem, this is what we establish in the major part of this work.

This paper is presented as follows. Section 2 is an introduction to the typed
λµ∧∨-calculus. Section 3, contains some useful technical results, in order to well
define, head and leftmost reduction. In Section 4, we define the standard reductions
and prove the standardization theorem. In Section 5, we introduce a marked version
of λµ∧∨-calculus, to keep traces of the residu of redexes and prove the finiteness
developments theorem. We close this section by the main theorem of this paper,
i.e, the confluence property.

2 Notations and definitions

Definition 2.1 We use notations inspired by the paper [2].

1. Types are formulas of propositional logic built from an infinite set of proposi-
tional variables and the constant ⊥, using the connectors →, ∧ and ∨.

2. Let X and A be two disjoint infinite alphabets for distinguishing the λ-variables
and µ-variables respectively. We code deductions by using a set of terms T
which extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T )

E := T | π1 | π2 | [X .T ,X .T ]

An element of the set E is said to be an E-term. An E-term in the form (T E)
or (A T ) is called an application.

3. The meaning of the new constructors is given by the typing rules below where
Γ (resp ∆) is a context, i.e, a set of declarations of the form x : A (resp a : A)
where x is a λ-variable (resp a is a µ-variable) and A is a formula.

Γ, x : A ` x : A ; ∆
ax

Γ, x : A ` t : B; ∆

Γ ` λx.t : A→ B; ∆
→i

Γ ` u : A→ B; ∆ Γ ` v : A; ∆

Γ ` (u v) : B; ∆
→e
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Γ ` u : A; ∆ Γ ` v : B; ∆

Γ ` 〈u, v〉 : A ∧B; ∆
∧i

Γ ` t : A ∧B; ∆

Γ ` (t π1) : A; ∆
∧1
e

Γ ` t : A ∧B; ∆

Γ ` (t π2) : B; ∆
∧2
e

Γ ` t : A; ∆

Γ ` ω1t : A ∨B; ∆
∨1
i

Γ ` t : B; ∆

Γ ` ω2t : A ∨B; ∆
∨2
i

Γ ` t : A ∨B; ∆ Γ, x : A ` u : C; ∆ Γ, y : B ` v : C; ∆

Γ ` (t [x.u, y.v]) : C; ∆
∨e

Γ ` t : A; ∆, a : A

Γ ` (a t) : ⊥; ∆, a : A
⊥i

Γ ` t : ⊥; ∆, a : A

Γ ` µa.t : A; ∆
µ

4. The cut-elimination procedure corresponds to the reduction rules given below.
They are those we need to obtain the subformula property.

(a) Logical reduction rules:

• (λx.u v) .β u[x := v]

• (〈t1, t2〉 πi) .πi
ti

• (ωit [x1.u1, x2.u2]) .D ui[xi := t]

(b) Permutative reduction rule:

• ((t [x1.u1, x2.u2]) ε) .δ (t [x1.(u1 ε), x2.(u2 ε)])

(c) Classical reduction rule:

• (µa.t ε) .µ µa.t[a :=∗ ε]
where t[a :=∗ ε] is obtained from t by replacing inductively each
subterm in the form (a v) by (a (v ε)).

5. Let ε and ε′ be E-terms. The notation ε . ε′ means that ε reduces to ε′ by
using one step of the reduction rules given above. Similarly, ε .∗ ε′ means
that ε reduces to ε′ by using some steps of the reduction rules given above.
The length of the sequence reductions ε .∗ ε′ is the number of the one step .
reduction.

6. Let ε and ε′ be E-terms and r a redex of ε. The notation ε .r ε′ means that ε
reduces to ε′ by reducing the redex r.

7. An E-term ε is said to be normal iff it has no redexes.

3 Characterization of the λµ∧∨-terms

In this section we develop some results already present in [4]. The presence of the
critical pairs for the standardization, and the fact that a λµ∧∨-term can have more
than one head, unlike the λ-calculus or the λµ-calculus, need such results before
defining the notion of standardization, head or leftmost reductions.

Definition 3.1 1. A term t is said to be simple if it is a variable or an appli-
cation.

2. Let H = {∗1, ..., ∗n, ...} be an infinite set of holes. The set of general contexts
C is given by the following grammar:
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C := H | λx.C | 〈C, C〉 | ω1C | ω2C |µa.C

We consider only general contexts with different holes, i.e, if ∗i1 , ..., ∗in are
the holes of a general context C, then, ∗ip 6= ∗iq for each p 6= q.

3. Let C be a general context with holes ∗i1 , ..., ∗in and f a bijection from N to N,
then, the general context f(C) is the context C with the holes ∗f(i1), ..., ∗f(in),
i.e, f(C) is the general context C just with a different enumeration of its
holes. Let C,C′ be two general contexts. We said that C is equivalent to C′

and denote this by C ' C′, if there exists a bijection f from N to N such that
C′ = f(C). Thus, if C′ ' C, then C and C′ have the same number of holes.

4. A context is an equivalent class for the previous equivalent relation. Then we
can always suppose that the n holes of a context are ∗1, ..., ∗n in this given
order.

5. If C is a context with holes ∗1, ..., ∗n and t1, ..., tn are terms, then C[t1, ..., tn]
is the term obtained by replacing each ∗i by ti. The free variables of ti can be
captured in the term C[t1, ..., tn].

Lemma 3.1 1. Let t1, ..., tn, t
′
1, ..., t

′
m be simple terms and C,C′ two contexts.

If C[t1, ..., tn] = C′[t′1, ..., t
′
m], then C = C′.

2. Each term t can be uniquely written as C[t1, ..., tn], where C is a context and
t1, ..., tn are simple terms.

3. Let t = C[t1, ..., ti, ..., tn] be a term and r a redex of ti. If t .r t′, then ti .
r

C′i[t
i
1, ..., t

i
m] and t′ = C′[t1, ..., ti−1, t

i
1, ..., t

i
m, ti+1, ..., tn] where C′ = C[∗i :=

Ci].

Proof (1) By induction on C. (2) By induction on t. (3) By induction on C. �

Definition 3.2 Let ε̄ = ε1...εn a sequence of E-terms.

1. The length of ε̄ is defined by lg(ε̄) = n.

2. The sequence is said to be nice iff εn is the only E-term which can be in the
form [x.u, y.v].

3. The sequence ε̄ is said to be normal iff each εi is normal.

4. We write ε̄ . ε̄′ iff ε̄ = ε1...εi...εn, and ε̄′ = ε1...ε
′
i...εn where εi . ε

′
i for

1 ≤ i ≤ n.

Lemma 3.2 (and definition) Let t be a simple term.

1. The term t can be uniquely written as one of the figures below.

2. A head of t (denoted as hd(t)) is a set of subterms of t, it is defined by the
figures below.

3. In the cases (1), (2), (3), (4) and (5) (resp. (6)) the sequence ε̄ (resp. εε̄) can
be empty. In the cases (5) and (6) if εε̄ is not nice, then εε̄ = r̄ [y.u, z.v]εis̄.
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t hd (t)
0 x x
1 (a u) ε̄ a
2 ((λx.u ε) ε̄) (λx.u ε)
3 ((〈u1, u2〉 ε) ε̄) (〈u1, u2〉 ε)
4 ((ωiu ε) ε̄) (ωiu ε)

(µa.u ε) or
5 ((µa.u ε) ε̄) any permutative redex in the form

((µa.u r̄[y.v, z.w]) εi)
x, if the sequence εε̄ is nice,

6 ((x ε) ε̄) else, any permutative redex in the form
((x r̄[y.u, z.v]) εi)

Proof By induction on the simple term t. We have either t is a variable, either
t = (a u) or t = (u ε). Therefore we will examine the form of u.

- If u is not a simple term, then u = λx.v, u = 〈u1, u2〉, u = ωiv or u = µa.v.
All these forms give us that t is respectively in the case (2), (3), (4) or (5).

- If u is a simple term, then induction hypothesis concludes.

The uniqueness is clear. �

Remark 3.1 1. Observe that simple terms of the form ((x ε) ε̄) and ((µa.u ε) ε̄)
can have more than one head. hd(t) is a non-deterministic function to sub-
terms of t.

2. Terms of the form (λx.u ε), (〈u1, u2〉 ε) and (ωiv ε) are not always redexes, for
example (λx.u πi), (ωiv u), (〈u, v〉 [x, p.y, q]), ... and obviously they can not
be typed. Therefore hd(t) in the cases (2), (3) and (4) is not always a redex.
This is why, in the rest our proofs such cases are not considered, not because
these terms are not typed but because there is no redex to reduce (if there are,
they are in the subterms, and inductions hypotheses allowed to conclude).

The lemma 3.2 allows the λµ∧∨-term to be characterized in the following corol-
lary, this characterization is useful for the standardization theorem section.

Corollary 3.1 Any term can be written in the one of the following forms (a v) ε̄ or
(t ε̄), where t = x, λx.u, 〈u1, u2〉 , ωiu or µa.u and ε̄ is a finite sequence of E-terms
possibly empty.

Proof Direct consequence of the lemma 3.2. �

4 Standardization theorem

The standardization theorem is a useful result stating that if t .∗ t′, then there is
a sequence of reductions from t to t′ “standard” in the sense that contractions are
made from left to right, possibly with some jumps in between.

Intuitively the standard reduction contracts redexes from the external to the
internal and from left to right. For λ-calculus, a standard reduction from the term
(λx.u v)ε1...εn either starts by reducing the head redex (λx.u v), else this one will
never be converted after performing u, v or the arguments εi, i.e, from external to
internal. An other characteristic, standard reduction from the term ((xu) v) has to
reduce firstly in u and then in v, in this given order from left to right, this last notion
is not captured by our definition given bellow since we consider that reduction in u
and v are independent of each other.
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One of the main consequences of standardization is that normal forms, if ex-
isting, can be reached by leftmost sequence reduction.This will be a simple conse-
quence since standard reduction is defined such a way that leftmost reduction is
just a particular standard one (definition of leftmost reduction is presented in next
section).

The following definition of a standard sequence of reductions is somehow a gen-
eralization of those given by R. David and W. Py in [5] and [16], in the sense that
if we restrict our definition to the λ or the λµ-calculus, it captures exactly their
definitions .

Definition 4.1 1. Let w̄ = r̄[x.p, y.q]εs̄ where r̄ and s̄ are possibly empty. We
define a new reduction relation � by: w̄ � r̄[x.(p ε), y.(q ε)]s̄. As usual �∗
denotes the reflexive and transitive closure of �.

2. Let ε, ε′ be two E-terms such that ε . ε1 . ... . εn = ε′. We denote κ(ε .∗ ε′) =
(n, c) where c stands for the complexity of ε (n is the length of the reduction
ε.∗ε′). We say that this sequence reduction is standard and we write ε .∗st ε

′ iff
it is obtained as follows. This definition is given by induction on the ordered
lexicographic pair (n, c). We use simultaneously the following abreviations:

ε̄ = ε1...εn .
∗
st ε̄
′ = ε′1...ε

′
n means that εi .

∗
st ε
′
i for each 1 ≤ i ≤ n.

(Cλ) If ε = (λx.u ε̄), then ε′ = (λx.u′ ε̄′) with u .∗st u
′ and ε̄ .∗st ε̄

′.

(Cµ) If ε = (µa.u ε̄), then ε′ = (µa.u′ ε̄′) with u .∗st u
′ and ε̄ .∗st ε̄

′.

(Cπ) If ε = (〈u1, u2〉 ε̄), then (ε′ = 〈u′1, u′2〉 ε̄′) with ui .
∗
st u
′
i and ε̄ .∗st ε̄

′.

(Cω) If ε = (ωiu ε̄), then ε′ = (ωi u
′ε̄′) with u .∗st u

′ and ε̄ .∗st ε̄
′.

(Vλ) If ε = (x ε̄), then ε′ = (x ε̄′) with ε̄ .∗st ε̄
′.

(Vµ) If ε = (a u), then ε′ = (a u′) with u .∗st u
′.

• If ε = (t ε̄), where t is a simple term in the form (λx.u v) (resp. (〈u1, u2〉 πi),
(µa.u ε), (ωiu [x1.v1, x2.v2]), x, a ), we denote by r its possible reductom
u[x := v] (resp. ui, µa.u[a :=∗ ε], vi[xi := u]).

(⇒) Either ε . (r ε̄) .∗st ε
′,

(�δ) Either ε . (t ε̄′) .∗st ε
′ with ε̄ � ε̄′.

(�µ) Either ε . (µa.u ε̄′) .∗st ε
′ with εε̄ � ε̄′, and this only if t = (µa.u ε).

(�ω) Or ε . (ωiu ε̄
′) .∗st ε

′ with [x1.v1, x2.v2]ε̄ � ε̄′, and this only if t =
(ωiu [x1.v1, x2.v2]).

• If ε = πi, then ε′ = πi.

• If ε = [x1.u1, x2.u2], then ε′ = [x1.u
′
1, x2.u

′
2] with ui .

∗
st u
′
i.

Remark 4.1 1. In the rules Cλ, ..., Cω the sequence ε̄ is possibly empty and
this corresponds to the cases where ε is not a simple term.

2. Given a λµ∧∨-term of the form (t ε̄) standard reduction strategies can start
with various permutations using the rule �δ (�µ, �ω according to the form of
t) until either we obtain a nice sequence and then reducing the possible head
redex by the rule ⇒ or start performing subterms of the arguments using the
rules Vλ, Vµ or the rules Cλ, ..., Cω.

Lemma 4.1 Assume that ε .∗st ε
′.

1. If v .∗st v
′, then ε[x := v] .∗st ε

′[x := v′].

2. If ε .∗st ε
′, then ε[a :=∗ ε] .∗st ε

′[a :=∗ ε′].
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Proof Only the second assertion will be treated. By induction on κ(ε .∗st ε
′). We

give just the case where the substitution intervenes. If ε = (a u), then ε′ = (a u′)
where u .∗st u

′, thus, ε[a :=∗ ε] = (a (u[a :=∗ ε] ε)) and ε′[a :=∗ ε′] = (a (u′[a :=∗

ε′] ε′)). By induction hypothesis, we have u[a :=∗ ε] .∗st u
′[a :=∗ ε′], then, by

definition, (a (u[a :=∗ ε] ε)) .∗st (a (u′[a :=∗ ε′] ε′)). �

Theorem 4.1 (Standardization theorem) If ε .∗ ε′, then ε .∗st ε
′.

Proof By induction on the length of the reduction ε .∗ ε′ it suffices to prove the
following lemma. �

Lemma 4.2 If ε .∗st ε
′ . ε′′, then ε .∗st ε

′′.

Proof By induction on κ(ε .∗st ε
′) = (n, c). We examine how ε .∗st ε

′ following the
different forms of ε.

– The cases where ε is not a simple term are direct consequences of the induction
hypothesis (decreasing of c).

– If ε is a simple term, we will examine some cases, the others are similar or
more simpler.

(Cλ) Let ε = (λx.u ε̄) .∗st (λx.u′ ε̄′) = ε′ . ε′′, with u .∗st u
′ and ε̄ .∗st ε̄

′ (here
of course ε̄ is not empty since ε is simple). We distinguish three cases:

- If ε′′ = (λx.u′′ ε̄′) (resp. (λx.u′ ε̄′′)), where u′ . u′′ (resp. ε̄′ . ε̄′′),
then the induction hypothesis concludes.

- If ε′′ = (u′[x := v′] ε′2...ε
′
n), then ε̄ = vε2...εn where v .∗st v

′, εi .
∗
st ε
′
i

and ε̄′ = v′ε′2...ε
′
n. Therefore, by the lemma 4.1,

u[x := v] .∗st u
′[x := v′], thus (u[x := v] ε2...εn) .∗st (u′[x := v′] ε′2...ε

′
n).

Finally, by the rule (⇒), we have ε . (u[x := v] ε2...εn)
.∗st (u′[x := v′] ε′2...ε

′
n) is a standard sequence of reductions.

- The last case is ε′′ = (λx.u′ ε̄′′) where ε̄′ � ε̄′′. Therefore ε̄ =
ε1...[y.p, z.q]εi...εn .

∗
st ε
′
1...[y.p

′, z.q′]ε′i...ε
′
n and then ε̄′′ =

ε′1...[y.(p
′ ε′i), z.(q

′ ε′i)]...ε
′
n. We have [y.(p εi), z.(q εi)] .

∗
st

[y.(p′ ε′i), z.(q
′ ε′i)], hence the rule (�δ) allows to conclude:

ε . (λx.u ε1...[y.(p εi), z.(q εi)]...εn) .∗st
(λx.u′ ε′1...[y.(p

′ ε′i), z.(q
′ ε′i)]...ε

′
n) = ε′′.

(Cµ) , (Cπ) and (Cω) are similar to the previous case.

(Vλ) Let ε = (x ε̄), then ε = (x ε̄) .∗st ε
′ = (x ε̄′) . (x ε̄′′) = ε′′, and

- Either ε̄ = ε1...εi...εn .∗st ε
′
1...ε

′
i...ε

′
n = ε̄′ . ε′1...ε

′′
i ...ε

′
n = ε̄′′, hence,

by induction hypothesis, εi .
∗
st ε
′′
i . Therefore, we have ε̄ .∗st ε̄

′′ and
ε = (x ε̄) .∗st (x ε̄′′) = ε′′.

- Or ε̄ = ε1...[y.p, z.q]εi...εn .
∗
st ε
′
1...[y.p

′, z.q′]ε′i...ε
′
n = ε̄′ �

ε′1...[y.(p
′ ε′i), z.(q

′ ε′i)]...ε
′
n = ε̄′′.

We have [y.(p εi), z.(q εi)] .
∗
st [y.(p′ ε′i), z.(q

′ ε′i)], therefore, by the
rule (�δ), (x ε̄) . (x ε1...[y.(p εi), z.(q εi)]...εn) .∗st
(x ε′1...[y.(p

′ ε′i), z.(q
′ ε′i)]...ε

′
n) = (x ε̄′′) is a standard sequence of re-

ductions.

(Vµ) is a direct consequence of the induction hypothesis (decreasing of c).

(⇒) ,(�δ), (�µ) and (�ω) are direct consequences of the application of the
induction hypothesis (decreasing of n).

�
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Remark 4.2 1. In [10], F. Joachimski and R. Matthes presented the ΛJ-calculus
which is an extension of the λ-calculus by a generalized application that gives
rise to permutative reductions, the resulting rewriting system is not orthogonal
(this is also the case of the λµ∧∨-calculus). The definition of the standard-
ization established here produced exactly the same treatment of the logical and
the classical reductions (.β, .πi , .D and .µ) like that of β-reduction in [10],
this means that to avoid difficulties relative to µ-reduction, we need to treat
it similarly as β-reduction. The ΛJ-calculus has served us as a model for
studying our λµ∧∨-calculus. In fact, concerning the standardization, the re-
striction of the λµ∧∨-calculus to the λµ-one can serve as a model for the study
of the rewriting system with permutative and structural reductions, as well as
the ΛJ-calculus serves as a minimal model for the study of term rewriting
systems with permutation.

2. In the definition 4.1, we can be “more restrictive”, by this we mean that, we
have a strong standardization theorem when replacing the rules �δ and �ω
by:

(�λ) ε = ((λx.u v) ε̄) . ((λx.u v) ε̄′) .∗st ((λx.u′ v′) ε̄′′′) = ε′ with u .∗st u
′,

v .∗st v
′ and ε̄ � ε̄′ �∗ ε̄′′ .∗st ε̄′′′.

(�π) ε = ((〈u1, u2〉πi) ε̄) . ((〈u1, u2〉πi) ε̄′) .∗st ((〈u′1, u′2〉πi) ε̄′′′) = ε′ with
ui .

∗
st u

′
i and ε̄ � ε̄′ �∗ ε̄′′ .∗st ε̄′′′.

(�D) ε = ((ωiu [x1.v1, x2.v2]) ε̄) . ((ωiu ε̄
′) .∗st (ωiu

′ ε̄′′′) = ε′ with u .∗st u
′ and

[x1.v1, x2.v2]ε̄ � ε̄′ �∗ ε̄′′ .∗st ε̄′′′.

This can be explained by the fact that:

• For the rules �λ and �π, there are no interactions between v, πi and ε̄
via permutative reductions.

• For the rule �D, even there are interactions between [x1.v1, x2.v2] and
ε̄ via permutative reductions, after a .D-reduction we will always get
(vi ε̄)[xi := u] = (vi[xi := u] ε̄) since xi is not free in ε̄.

Contrary to the case ε = ((µa.u [x.p, y.q]) [r.k, s.l]ε) in which there are more
complications. Suppose that we give the priority to the classical redex, i.e, if
it is not converted in the beginning then it will be never performed, thus the
lemma 4.2 does not hold for this sequence of reductions:
ε . ((µa.u [x.p, y.q]) [r.(k ε), s.(l ε)])
. (µa.u [x.(p [r.(k ε), s.(l ε)]), y.(q [r.(k ε), s.(l ε)])])
.∗st (µa.u [x.p′, y.q′]) = ε′ . µa.u[a :=∗ [x.p′, y.q′]]] = ε′′,
where (p [r.(k ε), s.(l ε)]) .∗st p

′ and (q [r.(k ε), s.(l ε)]) .∗st q
′, for the simple

reason which is: we do not know how these two standard sequence reductions
are made (p [r.(k ε), s.(l ε)]) .∗st p

′ and (q [r.(k ε), s.(l ε)]) .∗st q
′ (it depends on

p and q). To resolve this problem we have to consider the rule �µ.

3. In the rest of this paper, we consider only typed terms, although the results
that we prove here (normalisation of the leftmost reduction and the finiteness
developments theorem) do not use neither the strong normalization theorem
(hard to prove in this context) nor the confluence property (which is here a
consequence the finiteness developements theorem). Untyped terms will not
be considered for reasons of ease of reading. Note that techniques that we
develop here allow to prove our results for all the calculus, but this requires
modifications of some definitions (the head of a term, the head normal form,
...) and the treatment of more cases in proofs.
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5 Head and leftmost reductions

In the λ-calculus, the leftmost reduction of a term consists in reducing its lefmost
redex. Despite its laziness, this reduction has the advantage that is a winning
strategy. By this, we means that: if a term t is normalizable, then leftmost reduction
of t always reaches its normal form. In the λµ∧∨-calculus, a term can have more
than one head, the thing which prevents us from defining the leftmost reduction in
the sameway as in λ-calculus. Therefore, we start this section by introducing the
notion of head reduction (which is also different from the one of the λ-calculus).
This allows, first, to define the leftmost reduction as an iteration of head reduction.
Then, to prove that a sequence of leftmost reductions is a standard one. Finally, to
prove that the definition of the leftmost reduction which we give, provides a gaining
strategy too.

Definition 5.1 1. Let C[t1, ..., tn] as in (2) of the lemma 3.1. A one step head
reduction of a simple term t consists in reducing a head redex if any. We
denote t .hd t

′ if t is reduced to t′ by a head reduction. A one step head
reduction of a term C[t1, ..., tn] corresponds to a one step head reduction of
one of the simple terms ti (1 ≤ i ≤ n). We denote by .∗hd the reflexive and
transitive closure of .hd.

2. A simple head normal form is a simple term in the form (x ε̄) where ε̄ is a
nice sequence, or in the form (a u), the elements of the sequence ε̄ (resp u)
are called the arguments of the head variable x (resp a). The sequence ε̄ is
a nice one, and these are the only cases where we cannot reduce in the head,
because there is no head since the arguments of the sequence cannot interacte
between them via permutative reductions. A head normal form is a term in
the form C[t1, ..., tn] where all the ti are simple head normal forms.

Remark 5.1 Observe that there is no unicity of “the” head normal form.
Take the simple term t = ((x [y.u, z.v]) [r.p, s.q]ε), then
t .∗hd (x [y.((u [r.p, s.q]) ε), z.((v [r.p, s.q]) ε)]) = t1,
t .∗hd (x [y.(u [r.(p ε), s.(q ε)]), z.(v [r.(p ε), s.(q ε)])]) = t2,
and both of t1 and t2 are head normal froms.

Definition 5.2 A leftmost reduction of a term t consists to apply a head reduction
on t until its head normal form C[t1, ..., tn] (if it exists) and reiterate it on the
arguments of ti. We denote t.∗L t

′ if t is reduced to t′ by a leftmost reduction. When
an argument of a head variable is an E-term in the form [x.u, y.v], the reduction
consists simply to reduce in u and v. If t .∗L t

′, then we denote κ(t .∗L t′) = (n, c)
where n stands for the length of the reduction t .∗L t

′ and c the complexity of t.

The following theorem says that every sequence of leftmost reductions is a stan-
dard one.

Theorem 5.1 If t .∗L t′, then this sequence of reductions is a standard one.

Proof By induction on κ(t .∗L t′).

- The cases where t is not a simple term are direct consequences of the induction
hypothesis. For example, if t = λx.u, then t′ = λx.u′ where u .∗L u

′. Therefore,
by induction hypothesis (decreasing of the complexity c), u .∗L u

′ is a standard
sequence reductions, thus λx.u .∗L λx.u′ is a standard one too.

- The cases where t is a simple term:

9



• If t = (µa.u ε) ε̄, then either t .hd (µa.u[a :=∗ ε] ε̄) .∗L t′ or t .hd
((µa.u ε) r̄) .∗L t′ where εε̄ � εr̄. Therefore, by induction hypothesis
(decreasing of the length lg), (µa.u[a :=∗ ε] ε̄) .∗L t

′ and ((µa.u ε) r̄) .∗L t
′

are two standard sequence reductions, thus, by definition, both of t .hd
(µa.u[a :=∗ ε] ε̄) .∗L t′ and t .hd ((µa.u ε) r̄) .∗L t′ are standard sequence
reductions too.

• The other cases are similar to the previous.
�

This theorem gives another way to define a leftmost reduction similarly to the
definition of the standard reduction. The following definition (theorem) can be
easily proven to be “equivalent” to the one given above.

Theorem 5.2 (definition) Let ε, ε′ be two E-terms (resp. ε̄ and ε̄′ two finite
sequences of E-terms) such that ε .∗ ε′ (resp. ε̄ .∗ ε̄′). We say that ε .∗l ε

′ (resp.
ε̄ .∗l ε̄

′) iff it is obtained as follows. This definition is given by induction on the
ordered lexicographic pair κ(ε .∗ ε′) = (n, c) (resp. κ(ε̄ .∗ ε̄′) = (n, c)) where n is
the length of the reduction ε .∗ ε′ (resp. ε̄ .∗ ε̄′) and c stands for the complexity of
ε (resp. ε̄).

1. ε .∗l ε
′

• If ε = λx.u, then ε′ = λx.u′ with u .∗l u
′.

• If ε = µa.u, then ε′ = µa.u′ with u .∗l u
′.

• If ε = 〈u, v〉, then ε′ = 〈u′, v′〉 with u .∗l u
′ and v .∗l v

′.

• If ε = ωiu, then ε′ = ωiu
′ with u .∗l u

′.

• If ε = (a u), then ε′ = (a u′) with u .∗l u
′ .

• If ε = (x ε̄), then ε′ = (x ε̄′) with ε̄ .∗l ε̄
′.

• If ε = ((λx.u v) ε̄), then ε .l (u[x := v] ε̄) .∗l ε
′.

• If ε = ((µa.u ε) ε̄), then

– Either ε . (µa.u[a :=∗ ε] ε̄) .∗l ε
′.

– Or ε . ((µa.u θ) s̄) .∗l ε
′ with ε � θ.

• If ε = ((〈u1, u2〉 πi) ε̄), then ε . (ui ε̄) .
∗
l ε
′,

• If ε = ((ωiu [x1.v1, x2.v2]) ε̄), then ε . (vi[xi := u] ε̄) .∗l ε
′.

• If ε = πi, then ε′ = πi.

• If ε = [x1.u1, x2.u2], then ε′ = [x1.u
′
1, x2.u

′
2] with ui .

∗
l u
′
i.

2. ε̄ .∗l ε̄
′

• If ε̄ is not nice, then ε̄ � s̄ .∗l ε̄
′.

• Else ε̄ = ε1...εn, then ε̄′ = ε′1...ε
′
n with εi .

∗
l εi for each 1 ≤ i ≤ n.

We have .∗l and .∗L are the same reduction.

6 Finiteness of developments

In the λ-calculus, the finiteness developments theorem stipulates that: for a given
term t and a subset R of redexes of t, if we reduce only redexes which belong to R
or their residus, then any sequence of reductions terminates. Based on this theorem
and the local confluence of β-reduction, R. David [5] gave a short proof of the
confluence theorem of β-reduction. The notion of residus of redex is enough clear
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in λ-calculus, roughly speaking a residu of redex is a redex which is not created,
thus if at the beginning in the term t we mark each redex which belongs to R, then
we can reduce only these marked redexes. Of course when such redex is copied or
transformed by some substitutions, we consider that the new redex is not a created
one since it keeps its mark. The same idea will be developed in the next paragraph.
First, let us take an example to illustrate this.

Example 6.1 Let t = ((µa.u [y.p, z.q]) ε) and R = {t, (µa.u [y.p, z.q])}, then
t . (µa.u [y.(p ε), z.(q ε)]) = t1 and t . (µa.u[a :=∗ [y.p, z.q]] ε) = t2. Observe that
if we want to obtain a commun redectum from t1 and t2, we have to reduce some
redexes in t1 and t2. Implicitely these redexes are the residus of redexes in R, they
must not be seen as created redexes. The same term t but where the redexes in R
are marked gives t = ((µ̄a.u by.p, z.qc) ε).

t . (µ̄a.u by.(p ε), z.(q ε)c) . µ̄a.u[a :=∗ by.(p ε), z.(q ε)c]
t . (µ̄a.u[a :=∗ by.p, z.qc] ε). µ̄a.u[a :=∗ by.p, z.qc ε].∗ µ̄a.u[a :=∗ by.(p ε), z.(q ε)c]
We mark the commutative (resp classical) redex t (resp. (µa.u [y.p, z.q])) in this

way: [, ] (resp. µ ) become b, c (resp. µ̄). The commun redecum is the term (without
marks) µa.u[a :=∗ [y.(p ε), z.(q ε)]].

Therefore for the purpose of this section, we introduce a marked version of the
λµ∧∨-calculus.

6.1 The marked terms

Definition 6.1 1. We extend the syntax of the λµ∧∨-calculus by adding new
symbols λ̄, µ̄, < . , . >, Ωi and b . , . c. These symbols are called marks. The
sets T and E of marked terms are defined by the following grammars:

T := T | (λ̄X .T T) | (< T,T > πi) | (ΩiT [X .T,X .T]) |
(ΩiT bX .T,X .Tc) | (T E) | µ̄a.T

E := E | T | bX .T,X .Tc

2. The reduction rule I of E consists in the union of the following reduction
rules. The meaning of these new reductions is to capture the definition of the
finiteness developments, where we reduce only redexes at the beginning or only
their residus (which will be exactly the marked redexes).

• (λ̄x.t u) Iβ t[x := u]

• (< t1, t2 > πi) Iπi
ti

• (Ωit [x1.u1, x2.u2]) ID ui[xi := t]

• (Ωit bx1.u1, x2.u2c) IΩ ui[xi := t]

• ((Ωit bx1.u1, x2.u2c) ε) I∆ (Ωit bx1.(u1 ε), x2.(u2 ε)c)
• ((t bx1.u1, x2.u2c) ε) Iδ (t bx1.(u1 ε), x2.(u2 ε)c)
• (µ̄a.t ε) Iµ µ̄a.t[a :=∗ ε]

We denote by I∗ the reflexive and transitive closure of I.

3. Let t ∈ T and r a redex of t, we define r̂ the marked redex obtained by making
r as follows:

• If r = (λx.u v), then r̂ = (λ̄x.u v)

• If r = (〈t1, t2〉 πi), then r̂ = (< t1, t2 > πi)
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• If r = (ωiu [x1.u1, x2.u2]), then r̂ = (Ωiu [x1.u1, x2.u2])

• If r = ((u [x1.u1, x2.u2]) ε), then r̂ = ((u bx1.u1, x2.u2c) ε)
• If r = (µa.t ε), then r̂ = (µ̄a.t ε)

We denote red(t) the set of all redexes of t. Let R be a subset of red(t), we
define t̂R the marked term obtained from t by marking each redex of t which
belongs to R. We said that t̂R is the R-corresponding marked term to t.

4. Let ε ∈ E, we define the E-term ε̌ by induction on ε:

• If ε ∈ E, then ε̌ = ε

• If ε = (λ̄x.u v), then ε̌ = (λx.ǔ v̌)

• If ε = (< t1, t2 > πi), then ε̌ = (〈ť1, ť2〉πi)
• If ε = (Ωit [x.u, y.v]) or (Ωit bx.u, y.vc), then ε̌ = (ωiť [x.ǔ, y.v̌])

• If ε = (t ε), then ε̌ = (ť ε̌)

• If ε = µ̄a.u, then ε̌ = µa.ǔ

• If ε = bx.u, y.vc, then ε̌ = [x.ǔ, y.v̌]

The operationˇquite simply consists in projecting any marked term in the set
E, i.e, to consider any marked term as any other term without marks.

Example 6.2 Let t = ((µa.u [x.p, y.q]) ε), R = {(µa.u [x.p, y.q])}, S = {t}, K ⊆
red(p), L ⊆ red(u) ∪ red(ε) and T = {(µa.u [x.p, y.q]), t}, then
t̂R = ((µ̄a.u [x.p, y.q]) ε), t̂S = ((µa.u bx.p, y.qc) ε), t̂K = ((µa.u [x.p̂K , y.q]) ε),
t̂L = ((µa.ûL [x.p, y.q]) ε̂L) and t̂T = ((µ̄a.u bx.p, y.qc) ε).

Remark 6.1 1. Let t be a term and R ⊆ red(t). It is clear that ˇ̂tR = t.

2. When there is only one given set R of redexes of a given term t, we use the
abusive notation t̂ to denote the R-corresponding marked term to t.

3. Observe that terms in the forms λ̄x.t, < t1, t2 > and Ωit are not elements of
E. Marks can only occur as marks of redexes except in terms of the form µ̄a.t
and the form (t bx.u, y.vc). It follows that a I-normal form never contains
any marks except µ̄ or b. , .c.

4. It is also clear that any term is a I-normal marked term (since I consists
only in reducing marked redexes).

The following lemma shows that the set of marked terms is closed under substi-
tutions and reductions.

Lemma 6.1 1. If t, u, ε ∈ E, then t[x := u], t[a :=∗ ε] ∈ E.

2. If t ∈ E and t I∗ t′, then t′ ∈ E.

3. If t, ε, ε ∈ E, t I t′, ε I ε′ and ε I∗ ε′, then ε[x := t] I∗ ε[x := t′] and
ε[a :=∗ ε] I∗ ε[a :=∗ ε′].

Proof Easy. �
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6.2 Finiteness developments theorem

Definition 6.2 Let t be a term and R a subset of red(t).

1. A sequence of reductions t̂ = t0 I t1 I t2 I ... is called R-development of t.
It is denoted by t̂ I∗ t′ if it finishes with the marked term t′. We denote it
also by t .∗R ť′ (t = ť0 .R ť1 .R ť2 ... .R ť′).

2. The term t is said to be R-strongly normalizable iff there are no infinite R-
developments of t, i.e, all the R-developments are finite.

Remark 6.2 If t is a term and R a set of some redexes of t, then note that .R
and I reduction are the same, any infinite sequence of I reductions starting from
t̂ corresponds to an infinite sequence of .∗R reductions starting from t. Thus one
can be able to identify them, this fact will be implicitly used in the next paragraph,
where .R and I are confused.

Lemma 6.2 Let ε, ε′, ε, ε′ be E-terms and R a set of redexes of ε and ε such that
ε .∗R ε

′. If ε .∗R ε
′, then, ε[a :=∗ ε] .∗R ε′[a :=∗ ε′].

Proof By induction on ε. �

Definition 6.3 Let ε̄ = ε1 ...εm be a finite sequence of E-terms.

1. A semi-permutative redex of ε̄ is any initial segment in the form r̄[x.p, y.q]εi,
where (2 ≤ i ≤ m) and r̄ is possibly empty.

2. A set of redexes of ε̄ is the union of sets of redexes of each εi and any possible
semi-permutative redex of ε̄.

Lemma 6.3 Let t be a term, ū = u1 ...un a finite sequence of terms and ε̄ =
ε1 ...εm a finite sequence of E-terms. Let also σ = [(xi := ui)1≤i≤n; (aj :=∗

εj)1≤j≤m] and R be a set of redexes of t, ū and ε̄. If t, ū and ε̄ are R-strongly
normalizable, then tσ is R-strongly normalizable.

Proof First, let t = (u ε̄) as in the corollary 3.1. We prove this by induction on
the ordered lexicographic pair (lg(ε̄), c) where lg(ε̄) is the number of E-terms of ε̄
and c denotes the complexity of t. For the simplicity and the clearness of the proof,
we prefer to avoid using marked terms.

1. The cases where t is not simple are direct consequences of induction hypothesis
(decreasing of c).

2. The case t = (xi ε̄): tσ = (ui ε̄σ), by induction hypothesis (ui and ε̄σ) are
R-strongly normalizable, we have to examine two cases according to ε̄:

(a) If ε̄ is a nice sequence: since we can not reduce the possible created redex
(ui ε̄σ) and for the previous reasons, tσ is R-strongly normalizable.

(b) If ε̄ is not a nice sequence: ε = ε1...εj−2[x.p, y.q]εj ...εk, let’s denote ε̄σ by
ε̄′ = ε′1...ε

′
j−2[x.p′, y.q′]ε′j ...ε

′
k. Suppose that there exists a sequence of in-

finiteR-reductions, starting from tσ as follows: (ui ε
′
1 ...ε

′
j−2)[x.p′, y.q′]ε′j ...ε

′
k

.∗R (u′i ε
′′
1 ...ε

′′
j−2)[x.p′′, y.q′′]ε′′j ...ε

′′
k .R (u′i ε

′′
1 ...ε

′′
j−2)[x.(p′′ ε′′j ), y.(q′′ ε′′j )]...ε′′k

= t′ .∗R ....

By the standardization theorem, tσ .∗st t
′, and this standard reductions

is in the form:
(ui ε

′
1 ...ε

′
j−2)[x.p′, y.q′]ε′j ...ε

′
k .R (u′i ε

′
1 ...ε

′
j−2)[x.(p′ ε′j), y.(q

′ ε′j)]...ε
′
k .

(u′i ε
′′
1 ...ε

′′
j−2)[x.(p′′ ε′′j ), y.(q′′ ε′′j )]...ε′′k = t′ .∗R ....This means that

(ui ε
′
1 ...ε′j−2)[x.(p′ ε′j), y.(q

′ ε′j)]...ε
′
k.
∗
R, since we can not reduce the

possible created redexes (p′ ε′j) and (q′ ε′j), thus we have a contradiction
with induction hypothesis (decreasing of lg(ε̄) from k to k − 1).
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3. The case t = (µa.u ε) ε̄, let’s denote uσ, εσ and ε̄ by respectively by u′, ε′ and
ε̄′, which are by induction hypothesis R-strongly normalizable. Therefore, if a
sequence of infinite R-reductions exists, it will be in one of the two following
forms:

(a) Either (µa.u′ ε′) ε̄′ .∗R (µa.u′′ ε′′) ε̄′′ .R (µa.u′′[a :=∗ ε′′] ε̄′′) = t′ .∗R ...,
by the standardization theorem, tσ .∗st t

′ in following sequence:
(µa.u′ ε′) ε̄′ .R (µa.u′[a :=∗ ε′] ε̄′) .∗R (µa.u′′[a :=∗ ε′′] ε̄′′) = t′ .∗R ...
hence (µa.u′[a :=∗ ε′] ε̄′) .∗R ... and this gives a contradiction with the
induction hypothesis (decreasing of lg(ε̄) from k to k − 1).

(b) Or εε̄ is not a nice sequence, and we conclude as in the case 2.b of head
variable x.

�

Theorem 6.1 Let t be a term and R ⊆ red(t), then t is R-strongly normalizable.

Proof The proof is similar to the one of the previous lemma. Let t = (u ε̄) as
in the corollary 3.1. We prove this by induction on the ordered lexicographic pair
(lg(ε̄), c) where c denotes the complexity of t.

1. The cases where t is not simple are direct consequences of induction hypothesis
(decreasing of c).

2. The case t = (x ε̄)

(a) If ε̄ = ε1...εm is nice, then, by induction hypothesis, each εi is R-strongly
normalizable. Therefore t too.

(b) Else t = (x ε1...εj−2)[y.p, z.q]εj ...εm. Suppose that there exists a se-
quence of infinite R-reductions starting from t, then, by induction hy-
pothesis, none of εi contains infinite R-reduction. Therefore
t = (x ε1...εj−2)[y.p, z.q]εj ...εm .∗R (x ε′1...ε

′
j−2)[y.p′, z.q′]ε′j ...ε

′
m .R

(x ε′1...ε
′
j−2)[y.(p′ ε′j), z.(q

′ ε′j)]...ε
′
m = t′j .

∗
R .... By the standardization

theorem t .∗st t
′
j , this standard reduction is in the form

t = (x ε1...εj−2)[y.p, z.q]εj ...εm .R (x ε1...εj−2)[y.(p εj), z.(q εj)]...εm
.∗R (x ε′1...ε

′
j−2)[y.(p′ ε′j), z.(q

′ ε′j)]...ε
′
m. This means that

(x ε1...εj−2)[y.(p εj), z.(q εj)]...εm .
∗
R ..., since we can not reduce the pos-

sible created redexes (p εj) or (q εj), this gives a contradiction with the
induction hypothesis (decreasing of lg(ε̄), from m to m− 1).

3. The case t = (µa.u ε)ε̄, this gives by induction hypothesis and the standard-
ization theorem two possibilities to the form of the sequence of the R-infinite
reductions:

(a) t = (µa.u ε) ε1...εm .R (µa.u[a :=∗ ε] ε1) ε2...εm .
∗
R (µa.u′[a :=∗ ε′] ε′1) ε′2...ε

′
m

.∗R.... This means that (µa.u[a :=∗ ε] ε1) ε2...εm .∗R .... By the lemma 6.3,
u[a :=∗ ε] is R-strongly normalizable, therefore this gives a condradiction
with the induction hypothesis (decreasing of lg(ε̄), from m to m− 1).

(b) t = (µa.u ε) ε1...[x.p, y.q]εj ...εm .R (µa.u ε) ε1...[x.(p εj), y.(q εj)]...εm
.∗R (µa.u′ ε′) ε′1...[x.(p

′ ε′j), y.(q
′ ε′j)]...ε

′
m .∗R .... This means that

(µa.u ε) ε1...[x.(p εj), y.(q εj)]...εm .∗R .... By a similar argument as the
previous, this gives a contradiction.

�
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Theorem 6.2 (Confluence of .R) Let t, t1, t2 be terms and R ⊆ red(t).

1. If t .R t1 and t .R t2, then there exists t3 such that t1 .
∗
R t3 and t2 .

∗
R t3.

2. If t .∗R t1 and t .∗R t2, then there exists t3 such that t1 .
∗
R t3 and t1 .

∗
R t3.

Proof

1. By induction on the complexity of t. Let us check the following cases, the
other cases are simple consequences of the induction hypothesis. In this proof
we only mark the redexes which will be reduced.

– t = (x ε1)ε2... br.u, s.vc by.p, z.qc εj ...εm,
t1 = (x ε1)ε2... br.(u by.p, z.qc), s.(v by.p, z.qc)c εj ...εm
and t2 = (x ε1)ε2... br.u, s.vc by.(p εj), z.(q εj)c ...εm.
Therefore check that
t3 = (x ε1)ε2... br.(u by.(p εj), z.(q εj)c), s.(v by.(p εj), z.(q εj)c)c ...εm
is the commun marked redectum obtained of course by R-reductions.

– t = ((µa.u [x.r, y.s]) εε̄).

- If t1 = ((µa.u′ [x.r, y.s]) εε̄) and t2 = (µa.u [a :=∗ [x.r, y.s]] εε̄),
then, by the lemma 6.2, we take t3 = (µa.u′ [a :=∗ [x.r, y.s]] εε̄).

- If t1 = ((µa.u′ [x.r, y.s]) εε̄) and t2 = ((µa.u [x.(r ε), y.(s ε)]) ε̄),
then we take t3 = ((µa.u′ [x.(r ε), y.(s ε)]) ε̄).

- If t1 = (µa.u[a :=∗ [x.r, y.s]] εε̄) and t2 = ((µa.u [x.(r ε), y.(s ε)]) ε̄),
then, both of the commutative and the classical redexes are marked
redexes in t̂ = ((µ̄a.u bx.r, y.sc) εε̄),
hence t̂1 = (µ̄a.u[a :=∗ bx.r, y.sc] εε̄)
.R (µ̄a.u[a :=∗ bx.r, y.sc ε] ε̄) .R (µ̄a.u[a :=∗ bx.(r ε), y.(s ε)c]ε̄) =
t3, and t2 = ((µ̄a.u bx.(r ε), y.(s ε)c) ε̄) .R
(µ̄a.u[a :=∗ bx.(r ε), y.(s ε)c] ε̄) = t3. It is obvious that ť3 = (µa.u[a :=∗

[x.(r ε), y.(s ε)]]ε̄) is the commun redectum.

2. This is a direct consequence of (1), theorem 6.1 and Newman lemma.
�

Lemma 6.4 If t .∗ t′, then t = t0B∗red(t0) t1B
∗
red(t1) t2B

∗
red(t2) ...B

∗
red(tn) tn+1 = t′.

Proof Easy. �

Remark 6.3 It is easy to see that if uB∗red(u) v B
∗
red(u) w, then v B∗red(v) w.

Now the main result of this paper can be easily established.

Theorem 6.3 (Confluence of .) Let t, t1, t2 be terms such that t.∗ t1 and t.∗ t2,
then there exists t3 such that t1 .

∗ t3 and t1 .
∗ t3.

Proof This is a direct consequence of lemma 6.4 and theorem 6.2.
�

One of the consequences of the standardization theorem is that the normal form
if it exists, it can be reached by the leftmost reduction.

Theorem 6.4 If t′ is the normal form of t, then t .∗l t
′.

Proof Since t .∗ t′, then there exists a standard reduction from t to t′, i.e,
t .∗st t

′. We process by induction on κ(t .∗st t
′) = (n, c). The cases where t is not a

simple term are direct consequences of induction hypothesis (decreasing of c). Let
us examine the two following cases:
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– t = (x ε̄)

- If ε̄ = ε1...εn is nice, then t′ = (x ε̄′) where ε̄′ = ε′1...ε
′
n and each εi .

∗ ε′i
normal. Therefore the induction hypothesis concludes.

- Else t = ((x r̄[y.p.z.q])εik̄) and the standard reduction is in the form
t = ((x r̄)[y.p.z.q]εik̄) . ((x r̄)[y.(p εi).z.(q εi)])k̄) .∗st t

′. Therefore by
induction hypothesis (decreasing of n), we have that
((x r̄)[y.(p εi).z.(q εi)])k̄) .∗l t

′.
Thus t = ((x r̄)[y.p.z.q]εik̄) .l ((x r̄)[y.(p εi).z.(q εi)])k̄) .∗l t

′.

- t = ((µa.u ε) ε̄), then the standard reduction from t to the normal form t′

is in the following forms: Either t = ((µa.u ε) ε̄) . ((µa.u ε) r̄) .∗st t
′ or t =

((µa.u ε) ε̄) . (µa.u[a :=∗ ε] ε̄) .∗st t
′. Therefore, by induction hypothesis,

(decreasing of n) we have that ((µa.u ε) r̄) .∗l t
′ and (µa.u[a :=∗ ε] ε̄) .∗l t

′, hence
t = ((µa.u ε) ε̄) . ((µa.u ε) r̄) .∗l t

′ and ((µa.u ε) ε̄) .l (µa.u[a :=∗ ε] ε̄) .∗l t
′.
�
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