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MODULAR PERVERSE SHEAVES ON FLAG VARIETIES I:

TILTING AND PARITY SHEAVES

PRAMOD N. ACHAR AND SIMON RICHE,
WITH A JOINT APPENDIX WITH GEORDIE WILLIAMSON

Abstract. In this paper we prove that the category of parity complexes on
the flag variety of a complex connected reductive group G is a “graded version”

of the category of tilting perverse sheaves on the flag variety of the dual group

Ǧ, for any field of coefficients whose characteristic is good for G. We derive
some consequences on Soergel’s modular category O, and on multiplicities and

decomposition numbers in the category of perverse sheaves.

1. Introduction

1.1. This paper is the first in a series devoted to investigating the structure of the
category of Bruhat-constructible perverse sheaves on the flag variety of a complex
connected reductive algebraic group, with coefficients in a field of positive charac-
teristic. In this part, adapting some constructions of Bezrukavnikov–Yun [13] in
the characteristic 0 setting, we show that in good characteristic, the category of
parity sheaves on the flag variety of a reductive group is a “graded version” of the
category of tilting perverse sheaves on the flag variety of the Langlands dual group.
We also derive a number of interesting consequences of this result, in particular on
the computation of multiplicities of simple perverse sheaves in standard perverse
sheaves, on Soergel’s “modular category O,” and on decomposition numbers.

1.2. Some notation. Let G be a complex connected reductive algebraic group,
and let T ⊂ B ⊂ G be a maximal torus and a Borel subgroup. The choice of B
determines a choice of positive roots of (G,T ), namely those appearing in Lie(B).
Consider also the Langlands dual data Ť ⊂ B̌ ⊂ Ǧ. That is, Ǧ is a complex
connected reductive group, and we are given an isomorphism X∗(T ) ∼= X∗(Ť ) which
identifies the roots of G with the coroots of Ǧ (and the positive roots determined
by B with the positive coroots determined by B̌).

We are interested in the varieties B := G/B and B̌ := Ǧ/B̌, in the derived
categories

Db
(B)(B,k), resp. Db

(B̌)
(B̌,k)

of sheaves of k-vector spaces on these varieties, constructible with respect to the
stratification by B-orbits, resp. B̌-orbits (where k is field), and in their abelian
subcategories

P(B)(B,k), resp. P(B̌)(B̌,k)
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2 PRAMOD N. ACHAR AND SIMON RICHE

of perverse sheaves (for the middle perversity). The category P(B)(B,k) is highest
weight, with simple objects {ICw, w ∈ W}, standard objects {∆w, w ∈ W}, co-
standard objects {∇w, w ∈ W}, indecomposable projective objects {Pw, w ∈ W}
and indecomposable tilting objects {Tw, w ∈ W} naturally parametrized by the
Weyl group W of (G,T ). Similar remarks apply of course to P(B̌)(B̌,k), and we

denote the corresponding objects by ǏCw, ∆̌w, ∇̌w, P̌w, Ťw. (Note that the Weyl
group of (Ǧ, Ť ) is canonically identified with W .)

1.3. The case k = C. These categories have been extensively studied in the case
k = C: see in particular [10, 9, 13]. To state some of their properties we need
some notation. We will denote by IC(B̌)(B̌,C) the additive category of semisimple

objects in Db
(B̌)

(B̌,C) (i.e. the full subcategory whose objects are direct sums of

shifts of simple perverse sheaves). If A is an abelian category, we will denote by
Proj-A the additive category of projective objects in A. And finally, if A, B are
additive categories, if T is an autoequivalence of A, and if For : A→ B is a functor
endowed with an isomorphism ε : For ◦ T ∼−→ For, we will say that For realizes A as
a graded version of B if For is essentially surjective and, for any M,N in A, the
natural morphism

(1.1)
⊕
n∈Z

Hom
(
M,Tn(N)

)
→ Hom(ForM,ForN)

induced by For and ε is an isomorphism.
With these notations, some of the main properties of our categories can be

roughly stated as follows.

(1) (“Bĕılinson–Bernstein localization”) There exists an equivalence of abelian
categories P(B)(B,C) ∼= O0(G), where O0(G) is the principal block of the
category O of the Lie algebra of G.

(2) (“Soergel theory”) There exists a functor ν : IC(B̌)(B̌,C) → Proj-O0(G)

which realizes IC(B̌)(B̌,C) (endowed with the shift autoequivalence [1]) as

a graded version of Proj-O0(G).
(3) (“Kazhdan–Lusztig conjecture”) The multiplicities [∇w : ICv] are deter-

mined by the specialization at q = 1 of a canonical basis of the Hecke
algebra HW of W .

(4) (“Koszul duality”) There exists a triangulated category Dmix endowed with
an autoequivalence and a diagram

Db
(B)(B,C)←− Dmix −→ Db

(B̌)
(B̌,C)

where both functors are such that (1.1) is an isomorphism for all M,N
(for a suitable T ), and where simple perverse sheaves on the left corre-
spond to tilting perverse sheaves on the right. As a consequence, the cat-
egory P(B)(B,C) is equivalent to the category of (ungraded) modules over
a Koszul ring.

(5) (“Koszul self-duality”) The diagram in (4) is symmetric in the sense that
tilting perverse sheaves on the left also correspond to simple perverse shea-
ves on the right.

(6) (“Ringel duality”) There exists an autoequivalence of the triangulated cat-
egory Db

(B)(B,C) sending ∇w to ∆ww0 and Tw to Pww0 . (Here, w0 is the
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longest element in W .) As a consequence, we have

(Tw : ∇v) = (Pww0
: ∆ww0

).

(7) (“formality”) If we set ICB :=
⊕

w∈W ICw and if we consider the graded

algebra E =
(⊕

n∈Z ExtnDb
(B)

(B,C)(ICB, ICB[n])
)op

as a differential graded

algebra with trivial differential, then there exists an equivalence of trian-
gulated categories

Db
(B)(B,C) ∼= E-dgDerf

where the right-hand side is the derived category of finitely generated dif-
ferential graded E-modules.

The goal of this series of papers is to give analogues of these properties in the
case where k is of characteristic ` > 0.

1.4. Known results. First, let us recall what is known about the properties
of §1.3 when C is replaced by a finite field k of characteristic ` > 0. (This case
will be referred to as the “modular case,” as opposed to the “ordinary case” when
` = 0.)

Property (6) can be immediately generalized, with the same proof (see §2.3).
Property (2) was generalized by Soergel in [27]. Here the main difference with
the ordinary case appears: in the modular case the category IC(B̌)(B̌,k) is not

well behaved, and the “nice” additive category which should replace IC(B̌)(B̌,C)

is the category Parity(B̌)(B̌,k) of parity complexes in the sense of [20]. With this

replacement, (2) still holds (when ` is bigger than the Coxeter number of G) when
O0(G) is replaced by Soergel’s “modular category O,” a certain subquotient of the
category of rational representations of the reductive algebraic group over k which
has the same root datum as G.

Property (7) was also generalized to the modular case (again, where simple
perverse sheaves are replaced by parity sheaves) in [23], under the assumption that
` is at least the number of roots of G plus 2. Using this result, a representation-
theoretic analogue of (4) (which can be obtained, in the ordinary case, by combining
properties (1) and (4)) was also obtained in [23], under the same assumptions.

In [23] a second, more technical, difference between the modular setting and the
ordinary one appears, related to eigenvalues of the Frobenius. In fact, to obtain a
“formality” statement as in (7) one needs to introduce a differential graded algebra
whose cohomology is E and which is endowed with an additional Z-grading. This
additional grading is obtained using eigenvalues of a Frobenius action, which are
all of the form pn where n ∈ Z and p is the image of a fixed prime number p 6= `
in k. If ` = 0 then pn 6= pm if n 6= m, and one obtains directly the grading. But if
` > 0 this property no longer holds. In [23] this difficulty was overcome, but at the
price of unnecessary assumptions on `.

1.5. Main result. In this paper we explain how to adapt properties (1) and (3)
of §1.3 to the modular setting (when ` is good for G). In the ordinary case, histor-
ically these questions were treated first, and Koszul duality was discovered later as
a convenient way to express many nice features of this situation. In the modular
case we will first establish a weak form of Koszul duality (which is a first step in
the direction of properties (4), (5) and (7), as explained in [2]) and then deduce (1)
and (3).
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In fact we construct a functor

ν : Parity(B̌)(B̌,k)→ Tilt(B)(B,k)

from the additive category of Bruhat-constructible parity complexes on B̌ to the
additive category of tilting objects in P(B)(B,k), which realizes the former category
as a graded version of the latter category, and which sends the indecomposable
parity sheaf parametrized by w to the tilting perverse sheaf parametrized by w.
(See Theorem 2.1 for a more precise statement.)

Our construction is adapted from the main constructions in [13]: we describe
both categories in terms of some categories of “Soergel modules” for the coinvariant
algebra, using a “functor H” for parity sheaves and a “functor V” for tilting perverse
sheaves. The case of parity sheaves is a relatively easy generalization of [13]. (A
similar equivalence was already considered in [27] in case ` is bigger than the Coxeter
number of G.) In this case, the functor of tensoring with a “basic” Soergel bimodule
associated with a simple reflection corresponds to a “push-pull” functor associated
with the projection to the associated partial flag variety.

The case of tilting perverse sheaves is more subtle, and requires some new ideas,
in particular to define what it means to “take the logarithm of the monodromy”
(see §5.3). In this case, the functor of tensoring with a “basic” Soergel bimodule
corresponds to taking an “averaging functor” with respect to a “Whittaker type”
action of a unipotent group. (It would have been possible to follow the proofs
in [13] more closely, using an “equivariant” setting for parity sheaves, and a “free
monodromic” setting for tilting perverse sheaves. However, to obtain simpler proofs
we combine some constructions from [13] with some arguments from [27].)

1.6. Applications. As an application of our construction, in §2.6 we prove that,
if ` is bigger than the Coxeter number of G, the abelian category P(B)(B,k) is
equivalent, as a highest weight category, to Soergel’s modular category O, thereby
obtaining a modular analogue of property (1).

Regarding property (3), recall that the graded dimension of the cohomology of
the stalk of a simple perverse sheaf ICw at a T -fixed point corresponding to v
is given by the Kazhdan–Lusztig polynomial attached to (v, w) up to some nor-

malization (see [21, 28]). Hence the multiplicity [∇C
w : ICCv ] is given by the value

at 1 of an inverse Kazhdan–Lusztig polynomial. But the inversion formula for
Kazhdan–Lusztig polynomials (which can be seen as a combinatorial manifesta-
tion of Koszul duality) implies that inverse Kazhdan–Lusztig polynomials are also
Kazhdan–Lusztig polynomials (for the dual group); in other words, with standard
notation (see §§2.1–2.2 for details) we have

[∇C
w : ICCv ] = dimH•(B̌w0w−1 , ı̌∗w0w−1 ǏCCw0v−1).

In §2.5 we show that this formula still holds in the modular setting (in good char-
acteristic), if ǏCw0v−1 is replaced by the corresponding parity sheaf Ěw0v−1 . By
definition (see [34]) the basis of HW determined by the graded dimensions of stalks
of parity sheaves is the `-canonical basis. Our result shows that this basis also
describes composition multiplicities for the dual group. Note that this `-canonical
basis can be computed algorithmically,1 so the same holds for the multiplicities
[∇w : ICv].

1This algorithm is due to G. Williamson (unpublished). It is based on the interpretation of the

local intersections forms appearing in the computation of convolutions of parity sheaves (see [20,



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES I 5

This result can be deduced from the modular analogue of (4) that will be proved
in [2]. But we need not wait for that: a direct proof, using only properties of
the functor ν, is also possible. Indeed, by the usual reciprocity formula in the
highest weight category P(B)(B,k), we have [∇w : ICv] = (Pv : ∆w). Now by
Ringel duality (see property (6) in §1.3) this multiplicity can be computed in terms
of multiplicities for tilting perverse sheaves. Finally, our functor ν allows us to
express this multiplicity in terms of the cohomology of stalks of parity sheaves.

As a last application of our constructions, in §2.7 we prove that the decom-
position matrices for parity sheaves, tilting perverse sheaves, projective perverse
sheaves and intersection cohomology complexes are related in a very simple way.

1.7. Perspectives. In [2, 3] we use the functor ν of §1.5 to provide modular
analogues of properties (4), (5) and (7) of §1.3. Note that these constructions do
not involve any consideration about Frobenius weights as mentioned in §1.4. In
fact the “grading” that shows up in (4) and (5) (and in a hidden way in (7)) will
come purely from the grading that shows up in (2). We are even able to define
a “modular version” of the category of mixed perverse sheaves considered in [10,
§4.4] without using any theory of étale sheaves over finite fields.

Regarding the last sentence in property (4), it was expected for some time that
if ` is not too small (say, bigger than the Coxeter number of G) then (Bruhat-
constructible) parity sheaves on B or B̌ are just intersection cohomology complexes.
(In fact, thanks to [27], this assertion is equivalent to the validity of Lusztig’s
conjecture on characters of modular simple representations of reductive algebraic
groups “around the Steinberg weight.”) However, recent results of Williamson
[33] have shown that this was too optimistic, even in the case G = GLn(C). As a
consequence, one cannot hope that the category P(B)(B,k) is governed by a Koszul
ring unless ` is very large. (In this case, Koszulity was shown in [23, §5.7]; see also
[31].) We will consider this question in [2, 3].

1.8. Further notation and conventions. The notations related to G and Ǧ
introduced in §1.2 will be retained throughout the paper. In addition, we will
denote by w0 the longest element in W , and by U (resp. U−) the unipotent radical
of B (resp. the opposite Borel subgroup).

Let us fix, once and for all, a prime number ` that is good for G (or equivalently
for Ǧ). Recall that this condition excludes ` = 2 if the root system R of our group
has a component not of type A, ` = 3 if R has a component of type E, F or G,
and ` = 5 if R has a component of type E8. Fix a finite extension O of Z`. Denote
by K its field of fractions and by F its residue field. (Thus, ` is the characteristic
of F.) Typically, we will use the letter E to denote any of K, O, or F. On various
occasions we will have to use separate arguments for the cases of K, O, F. In this
case we will add superscripts or subscripts to the notations to emphasize the ring
of coefficients. In Sections 5–6, we will assume in addition that #F > 2.

These three rings will serve as coefficients for derived categories of sheaves. Only
field coefficients appeared in §1.2, but the same notions make sense for E = O as
well. (In this case, the perversity we use is the middle perversity p, and not the
perversity p+ from [8, §3.3.4].) Additional background and references concerning

§3.3] in terms of the “Soergel calculus” of [17], and allows us to compute the `-canonical basis
elements by induction on the Bruhat order.
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the various classes of perverse sheaves, especially for the case E = O, will be given
in Section 2.

We define the shift 〈1〉 in the category of Z-graded E-modules as follows: if
M = ⊕n∈ZMn is a graded E-module, then M〈1〉 is the graded E-module with
(M〈1〉)n = Mn+1. Note that this convention is opposite to the convention chosen
in [23]. If A is a noetherian algebra we will denote by A-mod the category of finitely
generated left A-modules. If A is a Z-graded noetherian algebra we will denote by
A-gmod the category of finitely generated Z-graded left A-modules.

Throughout the paper, we use the convention that For generically represents an
obvious forgetful functor (of the Z-grading).

1.9. Contents. In Section 2 we state our main result, and deduce the applications
mentioned in §1.6. The proof of the main result occupies Sections 3–6. Section 3
introduces “Soergel modules,” which will provide the bridge between tilting perverse
sheaves on B and parity sheaves on B̌. In Section 4 we relate parity sheaves to
Soergel modules via the functor H. In Section 5 we relate tilting perverse sheaves
to Soergel modules via the functor V. We finish the proof of our main theorem in
Section 6.

The paper ends with two appendices. Appendix A collects some well-known
results on equivariant derived categories that we were not able to find in the liter-
ature, and Appendix B (joint with Geordie Williamson) explains how to generalize
standard results on tilting perverse sheaves to the case of integral coefficients.

1.10. Acknowledgements. This project was initially started as joint work with
Geordie Williamson, and some of these results were even conjectured by him. Al-
though he was not able to participate to the final stages of this work, his ideas,
comments and enthusiasm were crucial for the development of our ideas. We also
thank Patrick Polo for his interest and for checking some of our conjectures in inter-
esting special cases. Finally we thank several anonymous referees for their helpful
suggestions.

2. Main result and applications

2.1. Background on tilting sheaves. For any w ∈W one can consider the orbit

Bw := BwB/B

and the inclusion iw : Bw ↪→ B. Then the standard and costandard perverse
sheaves on B are defined as

∆w := iw!EBw
[dim Bw], ∇w := iw∗EBw

[dim Bw],

where EBw
denotes the constant sheaf on Bw with value E. (The fact that ∆w and

∇w are perverse sheaves follows from [8, Corollaire 4.1.3] in the case E = K or F; in
the case E = O this property can be deduced from the case E = F, see [23, Lemma
2.1.2].2)

2Here is an alternative argument, suggested by a referee. Recall that an object F is in
pDb

(B)
(B,O)≤0 iff F(F) is in pDb

(B)
(B,F)≤0. Using this observation and the results of [8] we

deduce that ∆O
w and ∇O

w are in pDb
(B)

(B,O)≤0 Using Verdier duality it follows that both of these

objects are also in p+
Db

(B)
(B,O)≥0. Hence (see [8, §3.3.4, Equation (ii)]) they are torsion-free

perverse sheaves.
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Recall that an object T in P(B)(B,E) is called tilting if it admits both a standard
filtration (i.e. a filtration with subquotients isomorphic to ∆v for v ∈ W ) and
a costandard filtration (i.e. a filtration with subquotients isomorphic to ∇v for
v ∈ W ). We denote by Tilt(B)(B,E) the full additive subcategory of P(B)(B,E)
consisting of tilting objects. It is well known in case E = K or F (see [24, 9]),
and proved in Appendix B in case E = O, that this category is Krull–Schmidt,
and that its indecomposable objects are parametrized by W ; we denote by Tw the
indecomposable object associated with w ∈W . We also denote by

(T : ∇v)

the number of times ∇v appears in a costandard filtration of the tilting object T .
(This number does not depend on the choice of the filtration; it is equal to the rank
of the free E-module Hom(∆v, T ).) The extension of scalars functors

F(−) := F
L
⊗O (−) : Db

(B)(B,O)→ Db
(B)(B,F),

K(−) := K⊗O (−) : Db
(B)(B,O)→ Db

(B)(B,K)

restrict to functors between the categories of tilting perverse sheaves, which we
denote similarly.

2.2. Background on parity sheaves. On the dual side, for any w ∈W one can
consider the orbit

B̌w := B̌wB̌/B̌,

and the inclusion ı̌w : B̌w ↪→ B̌. Recall (following [20]) that an object F̌ of
Db

(B̌)
(B̌,E) is called ∗-even if for any w ∈ W and n ∈ Z the sheaf Hn(̌ı∗wF̌) is

zero if n is odd, and a free E-local system otherwise. Similarly, F̌ is called !-even if
for any w ∈W and n ∈ Z the sheaf Hn(̌ı!wF̌) is zero if n is odd, and a free E-local
system otherwise. The object F̌ is called even if it is both ∗-even and !-even, and
odd if F [1] is even. Finally, an object is called a parity complex if it is a direct
sum of an even object and an odd object. We denote by Parity(B̌)(B̌,E) the full

additive subcategory of Db
(B̌)

(B̌,E) consisting of parity complexes. This subcat-

egory is stable under the shift [1]. It follows from [20, §4.1] that this category is
Krull–Schmidt, and that its indecomposable objects are parametrized by W × Z.
More precisely, for any w ∈ W there exists a unique indecomposable object Ěw
in Parity(B̌)(B̌,E) which is supported on the closure of B̌w, and whose restriction

to B̌w is EB̌w
[dim B̌w]. Such an object is called a parity sheaf. Then any inde-

composable object in Parity(B̌)(B̌,E) is a shift of a parity sheaf. Note finally that

the functors F(−) and K(−) also restrict to functors between categories of parity
complexes.

2.3. Background on projective sheaves and Radon transform. (This sub-
section is not needed for the statement of the main result, but it will be needed for
the subsequent applications.) It follows from [10] in case E = K or F and from [23,
§2.4] in case E = O that the category P(B)(B,E) has enough projective objects, that
the full subcategory Proj(B)(B,E) of P(B)(B,E) consisting of projective objects is
Krull–Schmidt, and that its indecomposable objects are naturally parametrized by
W . We denote by Pw the projective object associated with w ∈ W . (If E = K or

F then by definition PE
w is the projective cover of the simple object ICEw. If E = O
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these objects are defined in [23, §2.4]; one can show in this case as well that PO
w is

the projective cover of ICOw.) It is known that each Pw admits a standard filtration,
i.e. a filtration with subquotients isomorphic to ∆v for v ∈W . We denote by

(Pw : ∆v)

the number of times ∆v appears in such a filtration. (This number does not depend
on the filtration; it is equal to the rank of the free E-module Hom(Pw,∇v).)

Let U denote the open G-orbit in B ×B, and consider the diagram

Up

ww
q

''
B B,

where p and q denote the projection on the first and second factors, respectively.
Following [7, 9, 35] we consider the “Radon transform” (or “geometric Ringel du-
ality”)

R := q!p
∗[dim B] : Db

(B)(B,E)→ Db
(B)(B,E).

It is well known that this functor is an equivalence of triangulated categories, with
inverse isomorphic to p∗q

![− dim B]; moreover, this equivalence satisfies

R(∇w) ∼= ∆ww0 , R(Tw) ∼= Pww0

for all w ∈ W . (More precisely, these properties are proved in [9, 35] in the case
E = K. The same arguments apply to the case E = F. The case E = O is not much
more difficult; details are treated in §B.5.) In particular, this equivalence restricts
to an equivalence of categories

R : Tilt(B)(B,E)
∼−→ Proj(B)(B,E).

We also deduce that for any v, w ∈W we have

(2.1) (Tw : ∇v) = (Pww0
: ∆vw0

).

2.4. Statement. The following theorem is the main result of the paper.

Theorem 2.1. Assume that ` is good for G, and that #F > 2.
For E = K, O or F there exists a functor

νE : Parity(B̌)(B̌,E)→ Tilt(B)(B,E)

and an isomorphism of functors ε : νE ◦ [1]
∼−→ νE such that the following hold.

(1) For any Ě , F̌ in Parity(B̌)(B̌,E), the functor νE and the isomorphism ε
induce an isomorphism⊕

n∈Z
Hom

(
Ě , F̌ [n]

) ∼−→ Hom
(
νE(Ě), νE(F̌)

)
.

(2) For any w ∈W we have νE(Ěw) ∼= Tw−1 .
(3) For any Ě in Parity(B̌)(B̌,E) and v ∈W we have

(νE(Ě) : ∇v) = rkE
(
H•(B̌v−1 , ı̌∗v−1 Ě)

)
.
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(4) The functors νE are compatible with extension of scalars in the sense that
the following diagram commutes up to isomorphisms of functors:

Parity(B̌)(B̌,K)

νK o
��

Parity(B̌)(B̌,O)
F(−) //K(−)oo

νO o
��

Parity(B̌)(B̌,F)

νFo
��

Tilt(B)(B,K) Tilt(B)(B,O)
F(−) //K(−)oo Tilt(B)(B,F).

(The requirement that #F > 2 arises because technical aspects of our study
of Tilt(B)(B,E) require F to contain nontrivial roots of unity. The proof of this
theorem will be given in Sections 3–6.)

Properties (1) and (2) say that ν realizes Parity(B̌)(B̌,E) as a graded version of

Tilt(B)(B,E), in the sense of §1.3. Then property (3) says that the cohomologies of
stalks of parity sheaves provide graded versions of the multiplicities of costandard
objects in tilting objects. This point of view is used and developed further in the
companion papers [2, 3].

In the case E = K the category Parity(B̌)(B̌,E) coincides with the category

IC(B̌)(B̌,K) of §1.3. In this case Theorem 2.1 can be deduced from [13]. (It can

also be deduced from the more standard Koszul duality of [10] together with the
Radon transform of [9]; see Property (6) in §1.3.) Our strategy in the general case
will be similar to the one used in [13], relating our categories to certain categories
of Soergel modules.

The remainder of Section 2 is devoted to various applications of Theorem 2.1.

2.5. Application to multiplicities. In this subsection we consider the case E =
F. The first consequence of Theorem 2.1 is the following description of composi-
tion multiplicities of costandard objects (or equivalently—using Verdier duality—of
standard objects) in the category P(B)(B,F).

Theorem 2.2. Assume that ` is good for G. For any v, w ∈W we have

[∇w : ICv] = (Pv : ∆w) = (Tvw0 : ∇ww0) = dimH•(B̌w0w−1 , ı̌∗w0w−1 Ěw0v−1).

Proof. By standard arguments one can assume that #F > 2. Then the first equal-
ity is the usual reciprocity formula in the highest weight category P(B)(B,F); for
instance, see [10]. The second equality is given by (2.1). Finally, the third equality
follows from (2) and (3) in Theorem 2.1. �

Remark 2.3. (1) The matrix
(
[∇w : ICv]

)
v,w∈W =

(
[∆w : ICv]

)
v,w∈W is in-

vertible, and its inverse is the matrix
(
(−1)dim Bvχv(ICw)

)
v,w∈W , where

χv(F) is the Euler characteristic of the cohomology of the stalk of F at
vB/B. Hence Theorem 2.2 also enables to compute the values of χv(ICw)
for v, w ∈W .

(2) Recall from §1.6 that the rightmost term in Theorem 2.2 can be computed
algorithmically. Thanks to this result, the same holds for the other quan-
tities as well.

(3) Computations in low rank (by G. Williamson and P. Polo) indicate that
Theorem 2.2 might also hold in bad characteristic. Hence Theorem 2.1 may
hold without any assumption on `.
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(4) One can show that dimH•(B̌x, ı̌
∗
xĚy) = dimH•(B̌x−1 , ı̌∗x−1 Ěy−1) for any

x, y ∈ W . Hence in Theorem 2.2 one can replace the last quantity by
dimH•(B̌ww0 , ı̌

∗
ww0
Ěvw0).

2.6. Application to Soergel’s modular category O. In this subsection we
assume that ` is bigger than the Coxeter number of G. We denote by GF a split
simply-connected semisimple algebraic F-group whose root system is isomorphic to
that of G. We choose a maximal torus TF in GF, and denote by B−F the Borel
subgroup of GF containing TF whose roots are the negative roots.

In [27], Soergel defines the “modular category O” associated with GF as a certain
subquotient of the category of finite dimensional (rational) GF-modules “around the
Steinberg weight.” To emphasize the difference with the ordinary category O, we
denote this category by OF. It is a highest weight category with weight poset
W (endowed with the inverse of the Bruhat order). In particular we have simple
objects {Lw, w ∈ W} (where, as in [27], Lw is the image in the quotient category
of the simple Gk-module L((`− 1)ρ+ wρ) of highest weight (`− 1)ρ+ wρ, with ρ
the half sum of positive roots), standard objects {Mw, w ∈ W} (where Mw is the
image of the Weyl module V ((`− 1)ρ+wρ)) and costandard objects {Nw, w ∈W}
(where Nw is the image of the induced modules IndGF

B−F
((` − 1)ρ + wρ)). We also

denote by Pw the projective cover of Lw.
The following result is an analogue of a well-known result for the ordinary cate-

gory O; see e.g. [10, Proposition 3.5.2].

Theorem 2.4. Assume that ` is bigger than the Coxeter number of G. There exists
an equivalence of abelian categories

Ψ: OF
∼−→ P(B)(B,F)

such that

Ψ(Lw) ∼= ICw−1w0
, Ψ(Mw) ∼= ∆w−1w0

, Ψ(Nw) ∼= ∇w−1w0
, Ψ(Pw) ∼= Pw−1w0

.

Remark 2.5. (1) By construction, one can see the “multiplicities around the
Steinberg weight” for GF-modules in the category OF. More precisely, for
v, w ∈ W the multiplicity [IndGF

B−F
((`− 1)ρ+ wρ) : L((`− 1)ρ+ vρ)] of the

simple GF-module L((`− 1)ρ+ vρ) in the induced GF-module IndGF
B−F

((`−
1)ρ + wρ) equals the multiplicity [Nw : Lv]. It follows from Theorem 2.4
that this multiplicity is also the multiplicity of ICv−1w0

in ∇w−1w0
. Hence

our theorem provides multiplicity formulas which are different from those
of [27, Theorem 1.2]. The relation between these multiplicity formulas is
explained by Theorem 2.2.

(2) One can give a more direct proof of Theorem 2.4 using directly Theorem 5.1
below; however to state the latter result requires introducing more notation.

Proof. Recall (see §1.3) that Proj-OF denotes the additive full subcategory of OF
consisting of projective objects. This category is Krull–Schmidt, and its indecom-
posable objects are the Pw’s (w ∈ W ). By the main results of [27], there exists a
functor

η : Parity(B̌)(B̌,F)→ Proj-OF

and an isomorphism of functors ε′ : η ◦ [1]
∼−→ η such that:
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(1) for any Ě , F̌ in Parity(B̌)(B̌,E), the functor η and the isomorphism ε′ induce
an isomorphism⊕

n∈Z
Hom

(
Ě , F̌ [n]

) ∼−→ Hom
(
η(Ě), η(F̌)

)
;

(2) for any w ∈W we have ηE(Ěw) ∼= Pw.

From this and Theorem 2.1 (in case E = F) one can easily check that there exists
a unique (up to isomorphism) equivalence of categories

Φ: Proj-OF
∼−→ Tilt(B)(B,F)

which satisfies Φ(Pw) ∼= Tw−1 and which is compatible with η and ν in the natural
sense. Composing this equivalence with R (see §2.3) we obtain an equivalence

Φ′ : Proj-OF
∼−→ Proj(B)(B,F)

which satisfies Φ′(Pw) ∼= Pw−1w0
.

Consider now the following equivalence:

DbOF
∼←− Kb

(
Proj-OF

) Φ′−→
∼

Kb
(
Proj(B)(B,F)

) ∼−→ DbP(B)(B,F).

(Here, the left, resp. right, equivalence is the natural functor, which is an equiv-
alence since OF, resp. P(B)(B,F), has finite global dimension; these properties
follow from [10, Corollary 3.2.2].) Since the standard t-structure on the left-hand
side, resp. right-hand side, can be described in terms of morphisms from projective
objects, this equivalence is t-exact, and hence restricts to an exact equivalence

Ψ: OF
∼−→ P(B)(B,F).

By construction this equivalence sends Pw to Pw−1w0
, so it also sends Lw (which is

the unique simple quotient of Pw) to ICw−1w0
(which is the unique simple quotient

of Pww0). To prove that Ψ sends Mw to ∆w−1w0
we use the fact that Mw is the

projective cover of Lw in the Serre subcategory of OF generated by objects Lv with
v ≥ w, and that ∆w−1w0

is the projective cover of ICw−1w0
in the Serre subcategory

of P(B)(B,F) generated by objects ICv−1w0
with v > w. A similar argument applies

to costandard objects. �

2.7. Application to decomposition numbers. We come back to our general
assumption that ` is good for G.

First we consider projective objects in P(B)(B,E), for E = K, O, or F. By

construction (see [23, Corollary 2.4.2]), for any w ∈ W we have F(PO
w) ∼= PF

w. On
the other hand the perverse sheaf K(PO

w) is projective in P(B)(B,K), so there exist
coefficients pv,w ∈ Z≥0 (for v, w ∈W ) such that

K(PO
w) ∼=

⊕
v∈W

(
PK
v

)⊕pv,w
.

We denote by P the matrix (pv,w)v,w∈W , and by P′ the matrix (pvw0,ww0
)v,w∈W .

Similarly, for any w ∈ W we have F(T O
w ) ∼= T F

w (see Proposition B.3) and there
exist coefficients tv,w ∈ Z≥0 such that

K(T O
w ) ∼=

⊕
v∈W

(
T K
v

)⊕tv,w
We denote by T the matrix with coefficients tv,w.
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Likewise, by [20, Proposition 2.40], for w ∈W we have

(2.2) F(ĚOw) ∼= ĚFw
and there exist coefficients ěiv,w ∈ Z≥0 such that

K(ĚOw) ∼=
⊕

v∈W,i∈Z

(
ĚKv [i]

)⊕ěiv,w .
We denote by Ě the matrix whose (v, w)-coefficient is

∑
i ě
i
v−1,w−1 .

Finally we consider simple objects in the category P(B)(B,E). It follows from the

definitions that we have K(ICOw) ∼= ICKw, and moreover F(ICOw) is a perverse sheaf.

(This follows from the fact that ICOw is torsion-free, since the functor iw!∗ preserves

injections, see [19, Proposition 2.27].) We denote by I the matrix
(
[F(ICOw) :

ICFv]
)
v,w∈W , and by tI its transpose.

Theorem 2.6. Assume that ` is good for G. We have equalities

P′ = T = Ě, tI = P.

Proof. By standard arguments one can assume that #F > 2. Then the equality
P′ = T follows from the existence the Radon transform over O and K, and their
compatibility with extension of scalars (see §2.3). The equality T = Ě follows from
the existence of the functors ν over O and K, and their compatibility with extension
of scalars (see Theorem 2.1).

The last equality is an instance of Brauer reciprocity. More precisely, consider
the O-module

Hom(PO
w , IC

O
v ).

By Lemma 5.2 below, this O-module is free, and we have

F⊗O Hom(PO
w , IC

O
v ) ∼= Hom

(
F(PO

w),F(ICOv )
)

= Hom
(
PF
w,F(ICOv )

)
.

We deduce that the rank of our O-module is [F(ICOv ) : ICFw]. On the other hand
we have

K⊗O Hom(PO
w , IC

O
v ) ∼= Hom

(
K(PO

w),K(ICOv )
) ∼= Hom

(
K(PO

w), ICKv
)
.

Hence the rank of our O-module is also equal to pv,w. We thereby obtain

pv,w = [F(ICOv ) : ICFw],

and our last equality follows. �

3. Soergel modules

In this section, we begin laying the foundations for the proof of Theorem 2.1.
In particular we define the “Soergel modules” which will play a key role in our
arguments. (It will turn out that these modules over the coinvariant algebra are
nothing but the global cohomology of parity sheaves on B̌, see Corollary 4.4, just as
characteristic-0 Soergel modules are the global cohomology of semisimple complexes
on B̌.)

Note that the categories appearing in that result depend only on the root systems
of G and Ǧ, so we may restrict our attention to some family of reductive groups
that covers all possible root systems.
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3.1. Additional notation and conventions. For the remainder of the paper,
we assume that G is a product of groups isomorphic either to GLn(C) or else to
a simple group (of adjoint type) not of type A. This assumption implies that the
Langlands dual group Ǧ is a product of groups isomorphic either to GLn(C) or else
to a simply-connected quasi-simple group not of type A. We also assume that ` is
good for G.

Let Y := X∗(T ) = X∗(Ť ). We set h := E ⊗Z Y and S := SE(h) (i.e. the
symmetric algebra of the free E-module h), considered as a graded E-algebra where
h is in degree 2. We endow S with the natural action of W . We denote by SW+ ⊂ S
the ideal generated by homogeneous elements in SW (the W -invariants in S) of
positive degree. The graded E-algebra C := S/SW+ (usually called the coinvariant
algebra) will play a major role in the paper.

If s is a simple reflection, we denote by Cs ⊂ C the image of the s-invariants
Ss ⊂ S in C. Note that unless E is a field of characteristic 2 (in which case G is
necessarily a product of general linear groups), Cs coincides with the s-invariants
in C (see e.g. the proof of Lemma 3.1 below).

3.2. Coinvariants and extension of scalars. The following lemma collects
some technical results (contained in or easily deduced from [15]) that will be needed
later.

Lemma 3.1. (1) The natural morphisms

F⊗O (SO)W → (SF)W and K⊗O (SO)W → (SK)W

are isomorphisms.
(2) The natural morphisms

F⊗O CO → CF and K⊗O CO → CK

are isomorphisms.
(3) The (SE)W -module SE is free of rank #W , and CE is E-free of rank #W .
(4) For any simple reflection s, the natural morphisms

F⊗O (SO)s → (SF)s and K⊗O (SO)s → (SK)s

are isomorphisms.
(5) The CE

s -module CE is free of rank 2.

Proof. Let us begin with (1). Set SZ = SZ(Y). Then under our assumptions, by
[15, Corollaire on p. 296], the natural morphism

E⊗Z (SZ)W → (SE)W

is an isomorphism for E = K,O or F, which proves the claim.
(2) is a direct consequence of (1): in fact one can define CZ in the natural way,

and the morphism E⊗Z CZ → CE is an isomorphism for E = K,O or F.
(3) follows from [15, Théorème 2(c)] and the proof of (1).
Let us finally consider (4) and (5). These claims are clear in case G = GLn(C). If

G is a simple group not of type A then since ` 6= 2 we have h = ker(s−1)⊕ker(s+1),
and ker(s + 1) is free of rank 1; hence the claims are clear also. The general
case follows, since by assumption G is a product of groups either isomorphic to
G = GLn(C) or to a simple group not of type A. �
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3.3. Bott–Samelson modules. For any sequence s = (s1, . . . , si) of simple re-
flections of W we will consider the graded C-module

BSgr(s) := S ⊗Ssi S ⊗Ssi−1 ⊗ · · · ⊗Ss1 E〈i〉.
Here, E is considered as a graded S-module via the canonical identification S/hS ∼=
E (and the Ss1-module structure is obtained by restriction). Note that the S-
module structure on E factors through an action of C, and that we have

BSgr(s) := C ⊗Csi C ⊗Csi−1
⊗ · · · ⊗Cs1 E〈i〉.

Note also the inversion of the order of the simple reflections.
We denote by Sgr the smallest strictly full subcategory of the category of graded

C-modules which contains the graded module BSgr(s) for any sequence s of simple
reflections and which is stable under shifts 〈1〉, direct sums and direct summands.
We will call objects of Sgr Soergel modules. This is justified by the fact that these
objects can be obtained from what are usually called Soergel bimodules by killing
one of the two actions of S.3

Note also that by Lemma 3.1(4) we have

F⊗O BSgr
O (s) ∼= BSgr

F (s).

We deduce that the functor F⊗O (−) induces a functor F(−) : Sgr
O → S

gr
F . Similar

remarks show that the functor K⊗O (−) induces a functor K(−) : Sgr
O → S

gr
K .

We will also denote by S the smallest strictly full subcategory of the category
of (ungraded) C-modules which contains the module BS(s) := For

(
BSgr(s)

)
for

any sequence s = (s1, . . . , si) of simple reflections and which is stable under direct
sums and direct summands. As above, the functor F ⊗O (−) induces a functor
F(−) : SO → SF, and the functor K⊗O (−) induces a functor K(−) : SO → SK.

Note that the categories Sgr and S are Krull–Schmidt. This is clear if E = K or
F; for the case E = O, see the arguments in the proof of [23, Lemma 2.1.6].

We also have the functor For : Sgr → S which forgets the grading. We will
generalize the following result to the case E = O later (see §4.4).

Lemma 3.2. If E = K or F and if D is an indecomposable object of Sgr, then
For(D) is indecomposable in S.

Proof. This follows from general results on graded modules over finite-dimensional
E-algebras; see [18, Theorem 3.2]. �

4. Parity sheaves and the functor H

In this section, we relate parity sheaves on B̌ to Soergel modules. The results of
this subsection are well known (and due to Soergel) in case E = K, see [25]. In case
E = F and ` is bigger than the Coxeter number of Ǧ, they are also proved (using
different arguments) in [27]. (Our notation follows Soergel’s notation in [27].)

The conventions of §3.1 remain in effect.

3Following a referee’s suggestion, let us be more specific about this claim. In fact, Theorem 4.5

below can be generalized to the case of B̌-equivariant parity sheaves, if one replaces Sgr
E by the

appropriate category of Soergel bimodules. In particular, it follows that (graded) indecomposable
Soergel bimodules are classified by W × Z in the natural way. Then, using the fact that if F is

a B̌-equivariant parity sheaf on B̌, the natural morphism E ⊗H•
B̌

(pt;E) H•
B̌

(B̌,F) → H•(B̌,F) is

an isomorphism (as follows from [20, Proposition 2.6]), one can check that the functor E ⊗S (−)

sends the indecomposable bimodule associated with (w, 0) to the indecomposable Soergel module

Dgr
w of §4.4.
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4.1. Cohomology of B̌. The following result is well known, but we couldn’t find
a reference treating this question under our assumptions. For completeness, we
explain how it can be deduced from the existing literature.

Proposition 4.1. There exists a natural isomorphism of graded algebras

CE
∼−→ H•(B̌;E).

Proof. Recall the algebras SZ and CZ considered in the proof of Lemma 3.1. The
Chern character provides a natural algebra morphism SZ → A(B̌) (where A(B̌) is
the Chow ring of B̌), which factors through a morphism CZ → A(B̌); see e.g. [15,
Corollaire 2 and §8]. By [15, Théorème 2(a) and §8], under our assumptions this
morphism induces a surjection

E⊗Z CZ � E⊗Z A(B̌).

By the proof of Lemma 3.1(2), we have E⊗Z CZ ∼= CE. On the other hand, by [1,

Lemma 4.1] there exists a canonical isomorphism E⊗Z A(B̌)
∼−→ H•(B̌;E). Hence

we obtain a surjection
CE � H•(B̌;E).

Since both E-modules are free of rank #W by Lemma 3.1(3) and the Bruhat de-
composition, this surjection must be an isomorphism. �

If s is a simple reflection, we denote by P̌ s ⊂ Ǧ the minimal standard parabolic
subgroup associated with s, and set P̌s := Ǧ/P̌ s. We will denote by π̌s : B̌ → P̌s

the natural projection.

Corollary 4.2. The morphism induced by (π̌s)∗ provides an isomorphism

H•(P̌s;E) ∼= Cs.

Proof. Assume first that E is not a field of characteristic 2. In this case it is
well known (see e.g. [25, §3.2 and references therein]) that the isomorphism of
Proposition 4.1 commutes with the natural actions of W , and that the morphism

(π̌s)∗ : H•(P̌s;E)→ H•(B̌;E)

is injective and identifies the left-hand side with the s-invariants in the right-hand
side, which proves the claim.

If E is a field of characteristic 2, then Ǧ is a product of general linear groups,
and the result can be deduced from the case E = O. �

4.2. The functor H and Bott–Samelson parity sheaves. Using the isomor-
phism of Proposition 4.1 one can consider the functor

H•(B̌,−) : Parity(B̌)(B̌,E)→ C-gmod.

(Note that it would be more natural to consider this functor as taking values in the
category of graded right C-modules. However, since C is commutative, right and
left C-modules are the same.)

For any simple reflection s, we define the functor

ϑs := (π̌s)∗(π̌s)∗ : Db
(B̌)

(B̌,E)→ Db
(B̌)

(B̌,E).

Lemma 4.3. For any F̌ in Db
(B̌)

(B̌,E) and any simple reflection s, there exists a

functorial isomorphism of graded C-modules

H•(B̌, ϑsF̌) ∼= C ⊗Cs H•(B̌, F̌).
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Proof. This claim follows from [27, Proposition 4.1.1], Proposition 4.1 and Corollary
4.2. (In the proof of [27, Proposition 4.1.1] the author assumes that the coefficients
are a field of characteristic 6= 2, but this assumption is not needed: all that one
needs is the existence of an isomorphism (π̌s)∗EB̌

∼= EP̌s ⊕EP̌s [−2], which follows
from the facts that

Hn
(
(π̌s)∗EB̌

)
=

{
EP̌s if n ∈ {0, 2};
0 otherwise

and that H3(P̌s;E) = 0.) �

It is well known (see [20, §4.1]) that the functors (π̌s)∗ and (π̌s)∗ send parity
complexes to parity complexes. We deduce that the functor ϑs restricts to a functor

ϑs : Parity(B̌)(B̌,E)→ Parity(B̌)(B̌,E).

For each sequence s = (s1, . . . , si) of simple reflections we will consider the “Bott–
Samelson” parity complex

Ě(s) := ϑsi · · ·ϑs1EB̌e
[i].

(Here, EB̌e
is the skyscraper sheaf at the origin B̌e = {B̌/B̌}.)

The following result is an immediate consequence of Lemma 4.3.

Corollary 4.4. For any sequence s of simple reflections, there exists a canonical
isomorphism of graded C-modules

H•
(
B̌, Ě(s)

) ∼= BSgr(s).

4.3. Equivalence. The main result of this section is the following. It follows
rather easily from known results, and is a direct analogue of Soergel’s results in [25]
which motivated the general study of Soergel bimodules.

Theorem 4.5. The functor H•(B̌,−) : Parity(B̌)(B̌,E)→ C-gmod is fully faithful,
and induces an equivalence of categories

H : Parity(B̌)(B̌,E)
∼−→ Sgr

E

which satisfies H ◦ [1] = 〈1〉 ◦H. Moreover, the following diagram commutes (up to
natural equivalence):

Parity(B̌)(B̌,K)

HK o
��

Parity(B̌)(B̌,O)
F(−) //K(−)oo

HOo
��

Parity(B̌)(B̌,F)

HFo
��

Sgr
K Sgr

O
F(−) //K(−)oo Sgr

F .

Proof. The fact that H•(B̌,−) is fully faithful is proved in [4, Theorem 4.1]. (In
loc. cit. the authors assume that the ring of coefficients is a field, but the same proof
applies also to the case E = O.) To identify the essential image of this functor we
note that the category Parity(B̌)(B̌,E) is generated (under taking direct summands,

direct sums and shifts) by the objects Ě(s); see [20, §4.1]. Then the result follows
from Corollary 4.4 and the definition of Sgr

E .
The compatibility of H with the functors K(−) is obvious; the compatibility with

F(−) follows from [20, Eq. (2.13)]. (Note that the constant sheaf EB̌ is a parity
complex.) �
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4.4. Consequences for the structure of S and Sgr. Recall from §2.2 that the
indecomposable objects in the Krull–Schmidt category Parity(B̌)(B̌,E) are parame-
trized by W ×Z. It follows from Theorem 4.5 that the same is true for the category
Sgr. More precisely, for any w ∈W we define the indecomposable object

Dgr
w := H(Ěw).

If w = s1 · · · s`(w) is any reduced expression for w, then Dgr
w is characterized by

the fact that it appears as a direct summand of BSgr(s1, . . . , s`(w)), and does not
appear as a direct summand of BSgr(s)〈n〉 for any n ∈ Z and any sequence s of
simple reflections of length strictly less than `(w). Moreover, any indecomposable
object of Sgr

E is isomorphic to Dgr
w 〈n〉 for some unique w ∈W and n ∈ Z.

Note also that by (2.2) and the commutativity of the right-hand side of the
diagram in Theorem 4.5 we have

(4.1) F(Dgr
w,O) ∼= Dgr

w,F.

(The analogous result for K does not hold in general: the decomposition of K(Dgr
w,O)

is governed by the integers ěiv,w of §2.7.)
The following technical result, which we obtain as a corollary of Theorem 4.5,

will be needed later on. (Note that this result is not obvious from definitions, and
that our proof uses geometry, hence cannot be adapted to a general Coxeter group.)

Corollary 4.6. For any D and D′ in SO, the natural morphism

F⊗O HomCO

(
D,D′

)
→ HomCF

(
F(D),F(D′)

)
is an isomorphism.

Proof. It is enough to prove the claim when D = BSO(s) and D′ = BSO(t) for some
sequences of simple reflections s and t. In this case, using equivalences HO and HF
(and their compatibility with functors F(−)) this claim reduces to the claim that
the natural morphism

F⊗O Hom(ĚO(s), ĚO(t)[i])→ Hom(ĚF(s), ĚF(t)[i])

is an isomorphism for any i ∈ Z, and this follows from [20, Eq. (2.13)]. �

For any w ∈W , we define the object

Dw := For(Dgr
w )

of S. From (4.1) we deduce that

(4.2) F(Dw,O) ∼= Dw,F.

Corollary 4.7. (1) For any w ∈W , the object Dw is indecomposable.
(2) The objects {Dw, w ∈ W} form a complete set of pairwise nonisomorphic

indecomposable objects in the Krull–Schmidt category S.

Proof. (1) If E = F or K, Dw is indecomposable by Lemma 3.2. If E = O, by (4.2)
we have F(Dw,O) = Dw,F; in particular, this object is indecomposable. It follows
that Dw,O is itself indecomposable.

(2) It is enough to prove that if v 6= w then Dv is not isomorphic to Dw.
Using (4.2), it is enough to prove this property when E = K or F. In this case, the
claim follows from (1) and [10, Lemma 2.5.3]. �
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In complement to Corollary 4.7, let us note that if w = s1 · · · s`(w) is any reduced
expression for w, then Dw is characterized by the fact that it appears as a direct
summand of BS(s1, . . . , s`(w)), and does not appear as a direct summand of BS(s)
for any sequence s of simple reflections of length strictly less than `(w).

Remark 4.8. When w = w0, the variety B̌w0
= B̌ is smooth, so that we have

Ěw0
= EB̌[dim B̌]. It follows that Dw0

= H•(B̌;E) = C.

5. Tilting perverse sheaves and the functor V

In this section, we relate tilting sheaves on B to Soergel modules through a
“functor V.” As in characteristic 0 this functor is given by Hom(Pe,−) for an
appropriate object Pe in P(B)(B,E), where the morphism C → End(Pe) is ob-
tained by “taking the logarithm of the monodromy.” In §5.3 we make sense of this
“logarithm.” The rest of the argument proceeds by reduction to the (known) case
of coefficients K, by carefully developing the constructions in the three settings of
coefficients O, F and K, and exploiting, at each step, the most favorable case to
deduce the other ones via the functors F(−) and K(−).

The conventions of §3.1 remain in effect. We also assume from now on that
#F > 2.

5.1. Statement. The main result of this section is the following.

Theorem 5.1. There exist equivalences of additive categories

VE : Tilt(B)(B,E)
∼−→ SE,

such the following diagram commutes (up to isomorphisms of functors):

Tilt(B)(B,K)

VK o
��

Tilt(B)(B,O)
F(−) //K(−)oo

VOo
��

Tilt(B)(B,F)

VFo
��

SK SO
F(−) //K(−)oo SF.

The proof of Theorem 5.1 requires a change in setting. Choose a prime number
p 6= ` such that there exists a primitive p-th root of unity in F (which is possible
under our assumption that #F > 2). In this section only, we replace the complex
algebraic group G by the reductive algebraic group over Fp with the same root

datum. Likewise, T ⊂ B and B are taken to be defined over Fp, and Db
(B)(B,E)

and Tilt(B)(B,E) are subcategories of the étale derived category of B. So far, there

is no harm in making this change: it is well known that this “new” Db
(B)(B,E) (in

the étale setting over Fp) is equivalent to the “old” one (in the classical topology
over C). See [23, Remark 7.1.4(ii)] for details.

The full constructible derived category Db
c (B,E), however, is rather different in

the étale and classical settings. In the étale setting, it contains “Whittaker-type”
objects [14], which will be a crucial tool in the proof.

5.2. Preliminary results. In this subsection we collect a few preliminary lemmas
that will be needed in the section.

Lemma 5.2. Let P,F ∈ P(B)(B,O), and assume that P is projective. (In partic-
ular, this implies that F(P) is perverse; see [23, Proposition 2.4.1].)
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(1) If F(F) is perverse, then the O-module Hom(P,F) is free, and the natural
morphism

F⊗O Hom(P,F)→ Hom
(
F(P),F(F)

)
is an isomorphism.

(2) If F(P) ∼= F(F), then P ∼= F .

Proof. (1) follows from the argument of the proof of [23, Proposition 2.4.1(ii)]: in
fact we have

F
L
⊗O RHom(P,F) ∼= RHom(F(P),F(F)).

Now the left-hand side is concentrated in nonpositive degrees, and the right-hand
side in nonnegative degrees (since F(P) and F(F) are perverse). Hence both of
them are concentrated in degree 0, which implies our claim.

To prove (2), we observe that F ⊗O Hom(P,F) ∼= Hom(F(P),F(F)) by (1).

Choose some isomorphism g : F(P)
∼−→ F(F), and let f : P → F be a morphism

such that F(f) = g. Then the cone of f is annihilated by the functor F(−) (since
F(f) is an isomorphism), so it is zero (see [23, Lemma 2.2.1]). In other words, f is
an isomorphism. �

A standard construction (see e.g. [13, §3.2]) defines a “convolution product”

(−) ?B (−) : Db
(B)(B,E)×Db

B(B,E)→ Db
(B)(B,E).

(Here, Db
B(B,E) is the B-equivariant constructible derived category in the sense

of Bernstein–Lunts [12].4) The objects ∆w, w ∈ W have obvious analogues in
Db
B(B,E), which we denote the same way. The following lemma is well known;

see [9, §2.2] or [13, Lemma 3.2.2].

Lemma 5.3. If v, w ∈W and `(vw) = `(v) + `(w) then we have

∆v ?
B ∆w

∼= ∆vw, ∇v ?B ∇w ∼= ∇vw.
We finish with another easy lemma, which is probably well known too.

Lemma 5.4. Let V be a finite-rank free O-module, endowed with a perfect pairing5

κ, and let M ⊂ V be a submodule such that the restriction of κ to M is also
nondegenerate. If M⊥ := {v ∈ V | ∀m ∈M, κ(v,m) = 0} is the orthogonal to M ,
then the natural morphism M ⊕M⊥ → V is an isomorphism.

Proof. Since our O-modules are free, it suffices to prove that the image of our
morphism under the functor F⊗O (−) is an isomorphism. Now we observe that the
natural map F ⊗O M → F ⊗O V is injective (otherwise the restriction of κ to M
could not be nondegenerate), that the restriction of the bilinear form κF on F⊗O V
induced by κ to the image of this morphism is nondegenerate, and finally that the
natural morphism F ⊗O M

⊥ → F ⊗O V is injective and identifies F ⊗O M
⊥ with

the orthogonal complement of F ⊗O M with respect to κF. (Indeed, injectivity is
easy to check. It is also clear that this morphism factors through (F ⊗O M)⊥; we
conclude by a dimension argument.) Hence our claim follows from the analogous
claim in the case of F-vector spaces, which is standard. �

4In [12], Bernstein and Lunts work in a topological setting. However their constructions can

be adapted to the algebraic setting (in particular to the setting of étale derived categories), see

e.g. [32, §3.1] for a detailed treatment.
5Here we mean a symmetric bilinear form κ : V × V → O which induces an isomorphism

V
∼−→ HomO(V,O).
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5.3. Logarithm of the monodromy. Theorem 5.1 is proved in case E = K in
[13]. The main tool of this proof is the “logarithm of monodromy” construction.
In our modular (or integral) setting this construction cannot be performed directly.
In this subsection we introduce a replacement which is available in our context.

We denote by EY the group algebra of Y = X∗(T ) (over E). We will also
consider the completion

ÊY, resp. Ŝ,

of EY, resp. S, for the topology associated with the ideal m generated by elements
of the form y − 1 for y ∈ Y, resp. the ideal generated by h. Each of these algebras
is endowed with a natural action of W .

The following result will be crucial in this section. (But the details of the proof
will not be needed.)

Proposition 5.5. There is a continuous, W -equivariant algebra isomorphism

Ŝ
∼−→ ÊY

which identifies h · Ŝ with m · ÊY.

Remark 5.6. If E = K there is a natural choice for the isomorphism of Proposition
5.5, namely the logarithm. This is the choice made (from a different point of view)
in [13]. However, for us it will be more convenient to choose such isomorphisms
over O, K, and F which are compatible (in the obvious sense).

To prove Proposition 5.5 we adapt an argument from [5], which itself relies on a
technical result from [29]. To explain this we need some preparation. Observe first
that it is enough to prove the proposition in the case where the root system of G is
irreducible (in addition to satisfying the assumptions of §3.1). Therefore, from now
until the end of the proof of Proposition 5.5, we assume that G is either GLn(Fp)
or else a simple group (of adjoint type) not of type A.

If G = GLn(Fp), we set G̃ := GLn(E), and we let T̃ ⊂ G̃ denote the maximal
torus of diagonal matrices. Otherwise, we choose a split simply connected semisim-

ple E-group G̃, a maximal torus T̃ ⊂ G̃, and an isomorphism Y ∼= X∗(T̃ ) which

identifies the coroot system of (G,T ) with the root system of (G̃, T̃ ). We denote

by g̃, resp. t̃, the Lie algebra of G̃, resp. T̃ . Note that in all cases the Weyl group

of (G̃, T̃ ) can be identified with W and there exists a W -equivariant isomorphism

h ∼= HomE(̃t,E).

Lemma 5.7. There exists a free E-module V , a representation σ : G̃ → GL(V )
whose differential dσ is injective, and a subspace i ⊂ gl(V ) such that

(1) gl(V ) = dσ(g̃)⊕ i;

(2) i is stable under the (adjoint) action of G̃.

Proof. If G = GLn(Fp) then G̃ ∼= GLn(E) and we can take V = En, i = {0}.
So we assume that G̃ is simply connected and quasi-simple, not of type A. If
E = K or F the result is proved in [29, Lemma I.5.3]. If E = O, one can repeat the
arguments in the proof in loc. cit. to choose a free O-module V and a representation

σ : G̃→ GL(V ) whose differential is injective, and such that the symmetric bilinear
form κ : (X,Y ) 7→ tr(XY ) on gl(V ) restricts to a nondegenerate form on dσ(g̃). (In
fact it is enough to check the latter condition after specializing O to F; in this case
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it is proved in loc. cit.) Then the orthogonal complement of g̃ with respect to κ
provides the desired choice for i, by Lemma 5.4. �

Proof of Proposition 5.5. We fix V , σ, i as in Lemma 5.7. We observe that the
composition

G̃
σ−→ GL(V )→ gl(V )→ dσ(g̃)

∼−→ g̃

(where the second morphism sends x to x−1 and the third one is the projection with

respect to the decomposition gl(V ) = dσ(g̃)⊕ i) defines a G̃-equivariant morphism

sending 1 to 0 and whose differential at 1 is the identity. Restricting to T̃ -fixed

points, we obtain a W -equivariant morphism T̃ → t̃ with the same properties. The
latter morphism is defined at the level of algebras of functions by a W -equivariant
morphism S → EY which sends hS inside m. (Recall that we have h ∼= HomE(̃t,E)

and Y ∼= X∗(T̃ ).) Completing this map we obtain the desired isomorphism Ŝ
∼−→

ÊY. �

From now on we fix an isomorphism as in Proposition 5.5. More precisely we fix
such an isomorphism for E = O, and deduce similar isomorphisms for K and F by
extension of scalars.

As explained in [13, §A.1], the construction of [30, §5] provides, for any F in
Db

(B)(B,E), a group homomorphism (called monodromy)

(5.1) T`(T )→ Aut(F),

where T`(T ) = lim←−{z ∈ T (Fp) | z`
n

= 1} is the `-adic Tate module of T and

Aut(F) is the group of automorphisms of F . More precisely, to define this mor-
phism we consider the U -equivariant derived category Db

U (B,E) where U is the
unipotent radical of B (see Appendix A), and we observe that the forgetful func-
tor Db

U (B,E) → Db
c (B,E) is fully faithful (see Proposition A.5), with essential

image Db
(B)(B,E); hence we can identify these categories. Then we observe that

Db
U (B,E) is naturally equivalent to the category Db

Bop(U\G,E), where the Bop-
action on U\G is induced by right multiplication on G. Now we have the T -torsor
U\G→ B\G, so that we are in the setting of [13, §A.1].

Let us fix once and for all a topological generator of the `-adic Tate module

T`(Gm) = lim←−
{
ζ ∈ F×p | ζ`

n

= 1
}
.

This choice determines a group homomorphism Y → T`(T ), and hence, via (5.1),
an action Y → Aut(F) for any F ∈ Db

(B)(B,E). We extend this to an algebra map

µ′F : EY → End(F).

It is shown in [30] that monodromy commutes with all morphisms in Db
(B)(B,E),

in the sense that if x ∈ EY, F ,G ∈ Db
(B)(B,E) and f : F → G is a morphism then

we have f ◦µ′F (x) = µ′G(x) ◦ f . (In other words, µ′(−) defines a morphism from EY

to the algebra of endomorphisms of the identity functor of Db
(B)(B,E).)

It is easily checked that for all y ∈ Y and F ∈ Db
(B)(B,E) the morphism µ′F (y) is

unipotent. Hence µ′F can be extended to a morphism ÊY → End(F). Composing
with the isomorphism of Proposition 5.5 we obtain an algebra morphism

µF : Ŝ → End(F),
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which will play the role of the logarithm of µ′ as considered in [13]. This construc-
tion is compatible with extension of scalars in the natural sense.

Remark 5.8. If F ∈ P(B)(B,E), then it follows from definitions that F is B-
equivariant iff µ′F (m) = {0}, i.e. iff µF (h) = {0}.

5.4. The functors V and V′. In this subsection we define the functor V which
will provide the equivalence of Theorem 5.1, and a variant denoted V′.

We begin with a lemma, whose proof can be copied from [13, Lemma 4.4.7] or [9,
§2.1].

Lemma 5.9. Assume that E = K or F. For any w ∈W ,

(1) the socle of ∆w is isomorphic to ICe, and [∆w : ICe] = 1;
(2) the head of ∇w is isomorphic to ICe, and [∇w : ICe] = 1.

In the following corollary we come back to the general setting where E is either
K, O, or F. Recall the object Pe defined in §2.3.

Corollary 5.10. (1) For any w ∈W we have (Pe : ∆w) = 1.
(2) There exist isomorphisms F(PO

e ) ∼= PF
e , K(PO

e ) ∼= PK
e .

Proof. The first isomorphism in (2) follows from the definition of PO
e ; see §2.7.

Hence it is enough to prove (1) when E = K or F. In this case, the claim follows
from Lemma 5.9(2) and the reciprocity formula in the highest weight category
P(B)(B,E). To prove the second isomorphism in (2) we note that PK

e is a direct

summand in K(PO
e ) (see again §2.7). And by (1) these objects have the same length,

so they must be isomorphic. �

Remark 5.11. As suggested to us by G. Williamson, one can also prove the second
isomorphism in Corollary 5.10(2) as follows. By the last equality in the proof of

Theorem 2.6, the isomorphism is equivalent to the claim that ICFe does not appear

as a composition factor of any F(ICOw) with w 6= e. However if w 6= e then ICOw
is a shifted pullback of a perverse sheaf on a minimal partial flag variety Ps for
some simple reflection s. Hence the same holds for F(ICOw); in particular, all the

composition factors of this perverse sheaf are of the form ICFv with vs < v in the
Bruhat order.

Let us set A := End(Pe). Observe that, by Lemma 5.2(1), AO is free as an
O-module. Moreover, if we fix isomorphisms as in Corollary 5.10(2), we obtain
isomorphisms of algebras

(5.2) F(AO) ∼= AF, K(AO) ∼= AK.

The construction of §5.3 allows us to define a morphism

(5.3) S ↪→ Ŝ
µPe−−→ End(Pe) = A.

This collection of morphisms is compatible with extension of scalars in the obvious
sense.

Lemma 5.12. The morphism (5.3) factors through a morphism φ : C → A. If
E = K, this morphism is an isomorphism. If E = O, it is injective and the cokernel
is a torsion O-module.
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Proof. These claims are well known in case E = K; see §5.8 below. (See also [25]
or [11] for earlier proofs based on representation theory.) Now, consider the case
E = O. By the remarks above we have a commutative diagram

SO

��

(5.3)O // AO� _

��
SK

(5.3)K // AK.

Since the morphism on the second line is trivial on (SK)W+ , we deduce that the

morphism on the first line must be trivial on (SO)W+ . The resulting morphism φO is
such that K(φO) = φK is an isomorphism (under the second isomorphism in Lemma
3.1(2)). Since both O-modules are free (see the remarks above and Lemma 3.1(3)),
we deduce that φO is injective, and that its cokernel is torsion.

Using a similar argument, the case E = F follows from the case E = O using
Lemma 3.1(1). �

Lemma 5.12 and (5.2) imply in particular that the algebra A is commutative
(since C is). We will denote by A-mod, resp. C-mod, the additive category of
finitely generated A-modules, resp. C-modules, which are free over E. Consider the
functors

V′ := Hom(Pe,−) : Tilt(B)(B,E)→ A-mod, ι : A-mod→ C-mod

(here ι is restriction of scalars with respect to φ) and

V := ι ◦ V′.
(In case E = O, the fact that V′ takes values in A-mod follows from Lemma 5.2(1).)
By Lemma 5.2(1) again, the functor V′ commutes with F(−) and K(−) via isomor-
phisms (5.2). The same is clearly true for ι, and hence also for V.

Lemma 5.13. (1) If E = K or O, the functor ι is fully faithful.
(2) If E = K or F, the functor V′ is fully faithful.

Proof. (1) follows from Lemma 5.12 (and the definition of A-mod in case E = O).
(2) follows from Lemma 5.9; see the arguments in [9, §2.1]. �

Remark 5.14. If w = w0, by Remark 4.8 we have Dw0 = C. Moreover, once
Theorem 5.1 is established, one can check that V(Tw0

) = Dw0
(see §6.1 below), and

that Tw0
∼= Pe (see Proposition 5.26 below). It follows that we have A ∼= C in all

cases, and that ι is an equivalence. However we were not able to prove these facts
directly, so that we have to distinguish these two algebras for the moment.

5.5. Artin–Schreier sheaf and averaging functors. Recall that we have cho-
sen p such that there exists a primitive p-th root of unity in F, and hence also in O.
Let us fix such a p-th root of unity, and denote by ψO : Z/pZ ↪→ O× the associated
group homomorphism. We define ψF and ψK in the obvious way. These morphisms
allow us to define the Artin–Schreier sheaf ASE

ψ over Ga (where Ga is the additive

group over Fp) for E = O, K, or F. (Recall that ASE
ψ is defined as the ψ-invariants

in the direct image of the constant sheaf under the morphism Ga → Ga sending x
to xp−x, a Galois cover with Galois group Z/pZ.) By definition, this sheaf satisfies

(5.4) H•(Ga,ASψ) = H•c(Ga,ASψ) = 0,

and it is multiplicative in the sense of Appendix A.
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We denote by g the Lie algebra of G and, for α a root, by gα ⊂ g the corre-
sponding root subspace. If s is a simple reflection, associated with the simple root
α, we denote by Us ⊂ U the subgroup whose Lie algebra is gα, by U−s ⊂ U− the
subgroup whose Lie algebra is g−α, and by Us ⊂ U the normal subgroup which is
the unipotent radical of the minimal standard parabolic subgroup of G associated
with s.

Let us fix, for each s, a group isomorphism U−s
∼= Ga, and denote by χ : U− → Ga

the morphism obtained as the composition

U− � U−/[U−, U−] ∼=
∏
s

U−s
∼=
∏
s

Ga
+−→ Ga.

(Here s runs over simple reflections, ordered in an arbitrary way.) We set Lψ :=
χ∗ASψ. Then Lψ is a multiplicative local system in the sense of Appendix A, so
that we can consider the equivariant derived category Db

U−,Lψ (B,E). One can also

consider the equivariant derived category Db
U (B,E), which is canonically equivalent

to Db
(B)(B,E), as explained in §5.3.

As in [13], for ? = ! or ∗ we consider the functor

Avψ,? : Db
U (B,E)

For−−→ Db
c (B,E)

av?−−→ Db
U−,Lψ (B,E).

(See Appendix A for the notation.) Using (5.4) and copying the arguments in [14]
(see also [13, Lemma 4.4.3]), one can check that the natural morphism of functors
Avψ,! → Avψ,∗ is an isomorphism. For simplicity, we will denote both of these
functors by Avψ. Similarly, for ? = ! or ∗ we have a functor

Av? : Db
U−,Lψ (B,E)

For−−→ Db
c (B,E)

av?−−→ Db
U (B,E).

The following lemma follows from Lemma A.3; the proof is identical to that of
[13, Lemma 4.4.5].

Lemma 5.15. The functor Avψ is right adjoint to Av! and left adjoint to Av∗.

5.6. Partial analogues. For s a simple reflection, we set Vs := U−s U
s, and we

denote by Lsψ the pullback of ASψ along the morphism

Vs = U−s U
s � U−s

∼−→ Ga.

(Here, the first morphism is projection to U−s .) The local system Lsψ is multiplica-

tive, so as above we can consider the triangulated category Db
Vs,Lsψ

(B,E).

As observed in §A.2 we have a (partial) forgetful functor For′ : Db
U (B,E) →

Db
Us(B,E). On the other hand, for ? =! or ∗, since U−s commutes with Us, the

functor av
U−s ,L

s
ψ

? induces a functor Db
Us(B,E) → Db

Vs,Lsψ
(B,E). (Here, by abuse

we denote by Lsψ the Artin–Schreier sheaf on U−s
∼= Ga.) We denote by

Avsψ,? : Db
U (B,E)→ Db

Vs,Lsψ
(B,E)

the composition of these functors. As above one can show that the natural mor-
phism Avsψ,! → Avsψ,∗ is an isomorphism, so that one can identify these functors
and denote them by Avsψ.

Similarly, we have functors

Avs! , Avs∗ : Db
Vs,Lsψ

(B,E)→ Db
U (B,E)
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defined as the composition of the partial forgetful functor For′′ : Db
Vs,Lsψ

(B,E) →
Db
Us(B,E) with the averaging functors Db

Us(B,E)→ Db
U (B,E) with respect to Us.

(To show that the functor avUs? induces such a functor, we observe that any object

in the essential image of Db
Us(B,E) in Db

c (B,E) is of the form ForU
s

◦avU
s

? (G); then

the claim follows from the observation that ForUs ◦avUs? ◦For
Us ◦avU

s

?
∼= ForU ◦avU? .)

The proof of the following lemma is analogous to that of Lemma 5.15.

Lemma 5.16. The functor Avsψ is right adjoint to Avs! and left adjoint to Avs∗.

The same procedure also allows us to define a functor

Ãvs! : Db
U−,Lψ (B,E)

For−−→ Db
U−s ,Lsψ

(B,E)
avU

s

!−−−→ Db
Vs,Lsψ

(B,E).

Lemma 5.17. There exists an isomorphism of functors Avs! ◦ Ãvs!
∼= Av!.

Proof. The claim follows from the observation that the composition

Db
U−s ,Lsψ

(B,E)
avU

s

!−−−→ Db
Vs,Lsψ

(B,E)
For−−→ Db

Us(B,E)

is isomorphic to the composition

Db
U−s ,Lsψ

(B,E)
For−−→ Db

c (B,E)
avU

s

!−−−→ Db
Us(B,E)

and easy facts on compositions of forgetful (resp. averaging) functors. �

5.7. Application to projective covers. From now on we will identify the cat-
egories Db

U (B,E) and Db
(B)(B,E) in the natural way, as explained in §5.3. With

this identification, the various functors introduced in §5.5 allow us (following [13])
to give an explicit construction of Pe.

Lemma 5.18. There exists an isomorphism Av!Avψ(ICe) ∼= Pe.

Proof. By Lemma 5.2(2) it is enough to prove the result in case E = K or F. The
case E = K is treated (in a slightly different setting) in [13, Lemma 4.4.11], and the
case E = F is similar: it is enough to prove that

Homi(Av!Avψ(ICe), ICw) =

{
E if w = e and i = 0;

0 otherwise.

Using Lemma 5.15, this easily follows from the fact that Avψ(ICw) = 0 for w 6= e;
see the argument in [13, Lemma 4.4.6]. �

Remark 5.19. Under the isomorphism of Lemma 5.18, the projection Pe � ICe
can be realized as the adjunction morphism Av!Avψ(ICe)→ ICe.

To introduce further notation, we fix a simple reflection s. Below we will make
use of the functor

ξs := Avs! ◦Avsψ : Db
(B)(B,E)→ Db

(B)(B,E).

These functors over O, K and F commute with K(−) and F(−). The same argu-
ments as for Lemma 5.18 allow to prove that we have

(5.5) ξs(ICe) ∼= Ts.
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(Here we use the fact that Ts is the projective cover of ICe in the abelian category

P(B)(Bs,E). This fact is well known; it can also be deduced from the case G =

GL2(Fp) of Proposition 5.26 below.) As above, if E = K or F the adjunction
morphism Ts ∼= ξs(ICe)→ ICe realizes ICe as the head of Ts.

Finally, it is easy to check that ξs commutes with convolution in the sense that,
with the notation introduced in §5.2, for any F in Db

(B)(B,E) and G in Db
B(B,E),

there is a functorial isomorphism

(5.6) ξs(F ?B G) ∼= ξs(F) ?B G.
We set

Pse := Ãvs! Avψ(ICe) ∈ Db
Vs,Lsψ

(B,E).

Using arguments similar to the ones above one can check that, if E = K or F, Pse is
the projective cover in the category PVs,Lsψ (B,E) of (Vs,Lsψ)-equivariant perverse

sheaves of the simple object supported on Bs, and also the indecomposable tilting
object in this highest weight category whose support is maximal. (We will use these
claims only in case E = K, in which case they follow from [13, Corollary 5.5.2].)

By construction and Lemma 5.17 we have

(5.7) Avs! (Pse ) ∼= Pe.
In particular, there exists a natural morphism

(5.8) Pe ∼= Avs! (Pse )→ Avs! AvsψAvs! (Pse ) = ξs(Pe)
where the middle arrow is induced by adjunction; see Lemma 5.16.

5.8. The case E = K. In this subsection we assume that E = K, and we state
some results which are known in this case, mainly thanks to [13].

Lemma 5.20. Assume E = K. The morphism End(Pse )→ End(Pe) induced by the
functor Avs! (see (5.7)) is injective. Moreover, via the isomorphism of Lemma 5.12,
its image is identified with Cs. In other words, there exists a unique isomorphism
Cs

∼−→ End(Pse ) which makes the following diagram commutative:

Cs

o
��

� � // C

o Lem. 5.12
��

End(Pse )
Avs! // End(Pe),

Proof. Thanks to the “self-duality” of [13, §5.3] and the “paradromic-Whittavariant
duality” of [13, §5.5] (with Θ = {s}) we have a commutative diagram

H•(P̌s;K)

o
��

� � (π̌s)∗ // H•(B̌;K)

o
��

End(Pse )
Avs! // End(Pe).

Here we have used the following facts:

(1) under the equivalence of [13, Theorem 5.3.1], (the mixed analogue of) Pe =
Tw0

corresponds to (the mixed analogue of) ǏCw0
;

(2) under the equivalence of [13, Theorem 5.5.1], (the mixed analogue of) Pse—
which coincides with the object denoted Tsw0,χ in [13]—corresponds to (the

mixed analogue of) the constant perverse sheaf on P̌s;
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(3) these equivalences intertwine (the mixed analogue of) the functors Avs! and
(π̌s)∗[1], cf. [13, Theorem 5.5.1(2)];

(4) these equivalences also induce isomorphisms between Hom-spaces in the
“non-mixed” categories, cf. [13, Theorem 5.3.1(4) & Theorem 5.5.1(5)].

On the right-hand side one can identify H•(B̌;K) with C; see Proposition 4.1. The

resulting isomorphism C
∼−→ End(Pe) might not be the isomorphism of Lemma 5.12

(see Remark 5.6), but the two isomorphisms differ by a W -equivariant automor-
phism of C. Then one concludes using Corollary 4.2. �

Using Lemma 5.20 we can consider the functors

Ṽ := Hom(Pe,−) : PU (B,K)→ C-mod,

Ṽs := Hom(Pse ,−) : PVs,Lsψ (B,K)→ Cs-mod.

(Here, PU (B,K) and PVs,Lsψ (B,K) are the categories of perverse sheaves in the

categories Db
U (B,K) and Db

Vs,Lsψ
(B,K), respectively; the t-structure is induced by

the one on Db
c (B,K).) Since Pe, resp. Pse , is the projective cover of a simple object

in PU (B,K), resp. PVs,Lsψ (B,K), these functors are quotient functors, as explained

in [27, §2.2].

By (5.7) and Lemma 5.16, we have Ṽs◦Avsψ
∼= ResCCs ◦Ṽ, where ResCCs : C-mod→

Cs-mod is the restriction functor. By a standard argument (see e.g. [27, Re-

mark 2.2.4]) one deduces a canonical isomorphism of functors Ṽ ◦Avs! (−) ∼= C ⊗Cs
Ṽs(−), and hence a canonical isomorphism of functors

(5.9) C ⊗Cs Ṽ(−)
∼−→ Ṽ ◦ ξs(−).

By construction, this isomorphism sends x ⊗ f (where x ∈ C and f ∈ Ṽ(F) =
Hom(Pe,F)) to the composition

Pe
φ(x)−−−→ Pe

(5.8)−−−→ ξs(Pe)
ξs(f)−−−→ ξs(F).

5.9. The functors ξs and tilting perverse sheaves. In this subsection we fix
a simple reflection s.

Lemma 5.21. (1) For all w ∈W , ξs(∆w) is perverse, and admits a standard
filtration with associated graded ∆w ⊕∆sw.

(2) For all w ∈W , ξs(∇w) is perverse, and admits a costandard filtration with
associated graded ∇w ⊕∇sw.

(3) ξs restricts to an endofunctor of Tilt(B)(B,E).

Proof. Let us prove (1). First we assume that sw > w. Then by (5.5) and (5.6) we
have

ξs(∆w) = ξs(ICe ?B ∆w) ∼= ξs(ICe) ?B ∆w
∼= Ts ?B ∆w.

Now Ts fits in an exact sequence ∆s ↪→ Ts � ∆e, and we conclude using Lemma 5.3.
If sw < w then similarly we have

ξs(∆w) = ξs(∆s ?
B ∆sw) ∼= ξs(∆s) ?

B ∆sw.

Now we have an exact sequence ICe ↪→ ∆s � ICs, and as in the proof of
Lemma 5.18 we have ξs(ICs) = 0. Hence ξs(∆s) ∼= ξs(ICe). Then one can conclude
as in the first case.

The proof of (2) is similar to that of (1). Finally, (3) is an obvious consequence
of (1) and (2). �
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If T is in Tilt(B)(B,E), we consider the map

(5.10) C ⊗E V(T )→ V
(
ξs(T )

)
sending x ∈ C and f ∈ V(T ) = Hom(Pe, T ) to the composition

Pe
φ(x)−−−→ Pe

(5.8)−−−→ ξs(Pe)
ξs(f)−−−→ ξs(T ).

Proposition 5.22. The morphism (5.10) factors through an isomorphism of func-
tors

C ⊗Cs V(−)
∼−→ V ◦ ξs(−).

Proof. In case E = K, this result was proved in §5.8; see in particular (5.9). As in
the proof of Lemma 5.12, one can deduce (using Lemma 3.1(4)) that (5.10) factors
through a morphism of functors

C ⊗Cs V(−)→ V ◦ ξs(−),

first for E = O and then for E = F.
Using again an extension-of-scalars argument, to prove that the induced mor-

phism is an isomorphism for E = O or F it is enough to treat the case E = F. So
we assume E = F from now on. In this case it follows from Lemma 5.21 that ξs
restricts to an exact endofunctor of P(B)(B,F) = PU (B,F). One can also extend

V to a functor Ṽ : P(B)(B,F) → C-mod, and morphism (5.10) to a morphism of
functors

C ⊗Cs Ṽ(−)→ Ṽ ◦ ξs(−).

(Indeed, since Ṽ is exact it is enough to prove that the morphism analogous
to (5.10), where now F is projective in P(B)(B,F), factors as claimed. This fol-
lows from the analogous statement when E = O, which itself follows from the case
E = K.) We will prove that the latter morphism is an isomorphism. To prove this,
by the five lemma it is enough to prove that our morphism is an isomorphism when
applied to ICw for any w ∈W .

First consider the case w 6= e. Then Ṽ(ICw) = 0, and Ṽ(ξs(ICw)) = 0. (Indeed,
ICw is the shifted pullback of a perverse sheaf on a minimal partial flag variety Pt

for some simple reflection t. It follows that ξs(ICw) has the same property, and
hence cannot have ICe as a composition factor.) Our morphism is thus trivially an
isomorphism in this case.

Now, consider the case w = e. Then we have Ṽ(ICe) = F, and Ṽ(ξs(ICe)) =

Ṽ(Ts) by (5.5). The vector spaces C ⊗Cs Ṽ(ICe) and Ṽ(Ts) both have dimension
2, so to prove that our morphism is an isomorphism it is enough to prove that it
is surjective. The object Ts is indecomposable and has ICe as its head, so there
exists a surjection g : Pe � Ts. Composition with g induces an isomorphism

End(Ts)
∼−→ Hom(Pe, Ts).

(Indeed, both vector spaces have dimension 2, and this map is injective because g is
surjective.) Using this and the fact that monodromy commutes with all morphisms
(see §5.3), we deduce that it is enough to prove that any endomorphism of Ts can
be written as a composition

Ts
µTs (x)−−−−→ Ts → ξs(Ts) � ξs(ICe) ∼= Ts
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for some x ∈ Ŝ. (Here the second morphism is defined using adjunction in a way
similar to (5.8), and the third one is induced by the projection Ts � ICe.) This
claim would follow if we prove the following properties:

(1) the composition Ts → ξs(Ts)→ ξs(ICe) ∼= Ts is an isomorphism.

(2) the morphism µTs : Ŝ → End(Ts) is surjective.

Property (1) follows from general results on adjunction. To prove (2) we observe
that the perverse sheaf Ts is not B-equivariant. (Indeed one can easily check that

Ext1
PB(B,F)(∆e,∆s) = HomDb

B(B,F)(∆e,∆s[1]) = 0,

which implies our claim.) Hence there exists y ∈ Y such that µ′Ts(y) is unipotent
but not equal to id, see Remark 5.8. Then the image of µTs contains both id and
µ′Ts(y)− 1, so it is the whole of End(Ts). �

5.10. Proof of Theorem 5.1. Recall the C-modules BS(s) and the category SE
introduced in §3.3.

If s = (s1, · · · , si) is a sequence of simple reflections we set

T (s) := ξsi · · · ξs1(ICe).
By Lemma 5.21, this object is a tilting perverse sheaf, i.e. an object of Tilt(B)(B,E).
Moreover, by Lemma 5.22 we have

(5.11) V(T (s)) ∼= BS(s).

Since any indecomposable object in Tilt(B)(B,E) appears as a direct summand of
T (s) for some s (as follows from Lemma 5.21), we deduce the following proposition.

Proposition 5.23. The functor V factors through a functor Tilt(B)(B,E) → SE
(which will be denoted similarly).

Finally we are in a position to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. The compatibility of V with F(−) and K(−) was noted
in §5.4.

Given (5.11), as in the proof of Theorem 4.5, to prove the equivalence it is enough
to prove that V is fully faithful. If E = K, this claim is known (see Lemma 5.13),
so we only consider the case E = O or F. Let T1, T2 ∈ Tilt(B)(B,O), and set

T F
i := F(Ti). Consider the following commutative diagram:

FHom
(
T1, T2

)
o
��

a // FHomAO

(
V′(T1),V′(T2)

)
b

��

∼ // FHomCO

(
V(T1),V(T2)

)
o
��

Hom
(
T F

1 , T F
2

) ∼ // HomAF

(
V′(T F

1 ),V′(T F
2 )
) c // HomCF

(
V(T F

1 ),V(T F
2 )
)
.

Here we have simplified F ⊗O Hom(−,−) to FHom(−,−). On each line, the first
morphism is induced by V′, and the second one by ι (so that the morphism from
left to right is induced by V). The invertibility of the second morphism on the
first line (resp. of the first morphism on the second line) follows from Lemma 5.13.
The invertibility of the rightmost vertical morphism follows from Corollary 4.6, in
view of Proposition 5.23. Finally, the invertibility of the leftmost vertical morphism
follows from Proposition B.3(2).

Using the left part of the diagram we obtain that b is surjective, and using the
right part we obtain that b is injective. Hence it is an isomorphism, and then a
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and c are also isomorphisms. This already proves fullness and faithfulness in case
E = F. To prove it in case E = O, we simply remark that the morphism

Hom
(
T1, T2

)
→ HomCO

(
V(T1),V(T2)

)
induced by V is a morphism between free O-modules of finite rank (see Proposition
B.3(2) for the left-hand side) which becomes invertible after applying F ⊗O (−);
hence it must be an isomorphism. �

5.11. Complement: comparison of Pe and Tw0
. For completeness, we con-

clude this section with a (geometric) proof of the fact that Pe ∼= Tw0 . This fact is
not used in the paper (except in the case G = GL2(Fp) in §5.7), and is well known
when E = K.

Lemma 5.24. Assume that E = K or F. For any w ∈W , we have:

(1) dim Hom(∆w,∆w0) = 1, and every nonzero map ∆w → ∆w0 is injective;
(2) dim Hom(∇w0

,∇w) = 1, and every nonzero map ∇w0
→ ∇w is surjective.

Proof. We only prove (1); the proof of (2) is similar. It is well known (see e.g. [9,
§2.2]) that the functor

(−) ?B ∆w : Db
(B)(B,E)→ Db

(B)(B,E)

is an equivalence of categories, with inverse (−) ?B ∇w−1 . Hence we have

Hom(∆e,∆w0w−1) ∼= Hom(∆e ?
B ∆w,∆w0w−1 ?B ∆w) ∼= Hom(∆w,∆w0)

(see Lemma 5.3). We deduce the first claim using Lemma 5.9. �

Lemma 5.25. Assume that E = K or F. For any w ∈W , we have:

(Tw0
: ∆w) = (Tw0

: ∇w) = 1.

Proof. The first equality follows from the fact that Tw0
is self-dual under Verdier

duality. The second equality follows from Corollary 5.10(1) and (2.1). �

Proposition 5.26. We have Tw0
∼= Pe.

Proof. By Lemma 5.2(2) it is enough to prove the claim when E = K or F, which
we will assume in the proof. Lemma 5.25 implies that

(5.12) dim Hom(Tw0
,∇w) = 1

for all w ∈W . We claim that

(5.13) any nonzero map Tw0 → ∇w is surjective.

Indeed, in the special case w = w0 this is clear. Otherwise, it follows from (5.12)
and Lemma 5.24(2).

Next, we claim that

(5.14) Hom(Tw0
, ICw) = 0 if w 6= e.

Indeed, if there were a nonzero map Tw0
→ ICw, we could compose it with the

inclusion ICw → ∇w to get a nonzero, nonsurjective map Tw0 → ∇w, contradict-
ing (5.13).

On the other hand, we know from (5.12) that dim Hom(Tw0
, ICe) = 1. Combin-

ing this with (5.14), we see that Tw0
has a unique simple quotient, isomorphic to

ICe. It must therefore be isomorphic to a quotient of Pe. But Corollary 5.10 and
Lemma 5.25 imply that Tw0 and Pe have the same length, so Tw0

∼= Pe. �
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6. Proof of Theorem 2.1

In this section we finish the proof of Theorem 2.1. We retain the conventions
of §3.1, and we assume from now on that #F > 2. In particular, we continue to
assume that G is a product of groups isomorphic either to GLn(C) or to an adjoint
simple group that is not of type A, so that the results of Sections 3–5 are available.
As explained at the beginning of Section 3, it suffices to prove Theorem 2.1 for
groups of this form.

6.1. Construction of ν. We define the functor ν as the composition:

Parity(B̌)(B̌,E)
Thm. 4.5−−−−−−→
∼

Sgr For−−→ S Thm. 5.1−−−−−−→
∼

Tilt(B)(B,E),

and the isomorphism ε in the obvious way. It is clear by construction that this
functor satisfies condition (1) of Theorem 2.1. Condition (4) follows from the similar
properties of the functors H and V proved in Theorems 4.5 and 5.1, respectively.

Let us prove now that ν also satisfies condition (2). In fact, by definition we have
H(Ěw) = Dgr

w and Dw = For(Dgr
w ). Hence it is enough to check that V(Tw) ∼= Dw−1 .

However, using Lemma 5.21 one can check that, if w = s1 · · · s`(w) is any reduced
decomposition of w, then Tw is characterized by the fact that it appears as a direct
summand of T (s`(w), . . . , s1), but does not appear as a direct summand of any T (s)
where s is a sequence of simple reflections of length strictly less than `(w). Since
Dw−1 admits a similar characterization in terms of modules BS(s) (see §4.4), we
conclude using (5.11).

6.2. Proof of condition (3). We will deduce condition (3) of Theorem 2.1 from
(1) and (2). In fact, it is enough to prove the formula when Ě = Ěw−1 for some
w ∈W . Then by (2) the formula reduces to

(6.1) (Tw : ∇v) = rkE
(
H•(B̌v−1 , ı̌∗v−1 Ěw−1)

)
.

We first note that for v, w ∈W we have

rkE Hom(Tv, Tw) =
∑
u∈W

u≤v, u≤w

(Tv : ∆u) · (Tw : ∇u) =
∑
u∈W

u≤v, u≤w

(Tv : ∇u) · (Tw : ∇u).

(In the second equality we have used the Verdier self-duality of Tv.) This formula
allows us to compute the numbers (Tw : ∇u) by induction if one knows the ranks
of the Hom-spaces, using the formula

(6.2) (Tw : ∇u) = rkE Hom(Tu, Tw)−
∑
x<u

(Tu : ∇x) · (Tw : ∇x)

for u ≤ w.
We have a similar formula for parity sheaves. In fact from [20, Proposition 2.6]

we deduce

rkE Hom•(Ěv−1 , Ěw−1) =
∑
u∈W

u≤v, u≤w

rkEH•(B̌u−1 , ı̌∗u−1 Ěv−1) · rkEH•(B̌u−1 , ı̌!u−1 Ěw−1)

=
∑
u∈W

u≤v, u≤w

rkEH•(B̌u−1 , ı̌∗u−1 Ěv−1) · rkEH•(B̌u−1 , ı̌∗u−1 Ěw−1).

(Here again, the second equality uses Verdier self-duality of Ěw−1 . We also use the
fact that Ěv−1 , resp. Ěw−1 , is supported on the closure of B̌v−1 , resp. B̌w−1 .) This
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formula gives rise to an inductive way of computing the ranks of the cohomology
groups of stalks, using the formula

(6.3) rkEH•(B̌u−1 , ı̌∗u−1 Ěw−1) = rkE Hom•(Ěu−1 , Ěw−1)

−
∑
x<u

rkEH•(B̌x−1 , ı̌∗x−1 Ěu−1) · rkEH•(B̌x−1 , ı̌∗x−1 Ěw−1).

if u ≤ w.
Comparing formulas (6.2) and (6.3) and using (1), one easily proves (6.1) by

induction on v.

Appendix A. (Twisted) equivariant derived categories
for acyclic groups

A.1. Definitions. In this section X is either a complex algebraic variety equipped
with the classical topology (in which case k is an arbitrary noetherian commutative
ring of finite global dimension) or a variety over Fp equipped with the étale topology
(in which case k is a finite extension of Q`, or its ring of integers, or a finite field
of characteristic `, with ` 6= p). We denote by Db

c (X,k) the constructible derived
category of k-sheaves on X. We assume that an algebraic group V (either over C
or over Fp) which satisfies

(A.1) H•(V ;k) = k

acts on X, with action morphism a : V × X → X. (This condition implies in
particular that V is connected.)

We let X be a rank-one local system on V which is a multiplicative sheaf,
i.e. which is endowed with an isomorphism

(A.2) m∗X ∼−→ X � X

(where m : V × V → V is the multiplication map on V ) satisfying the obvious
associativity condition.

Definition A.1. A (V,X )-equivariant complex on X is a pair (F , β) where F ∈
Db

c (X,k) and β is an isomorphism a∗F ∼−→ X � F satisfying the usual cocycle
condition. A morphism of (V,X )-equivariant complexes is a morphism in Db

c (X,k)
that “commutes with β” in the obvious sense. The category of (V,X )-equivariant
complexes on X is denoted Db

V,X (X,k).

In the case where X = kV , we abbreviate Db
V,X (X,k) to Db

V (X,k). (We will see

in Remark A.6 below that the category Db
V (X,k) is equivalent to the V -equivariant

derived category of X in the sense of Bernstein–Lunts [12].)
We let

For : Db
V,X (X,k)→ Db

c (X,k)

be the forgetful functor.

Remark A.2. Consider the case X = V × Y , where Y is any variety and V acts by
left multiplication on itself. Let p2 : X → Y be the projection. Then p∗2 defines in an
obvious way a functor from Db

c (Y, k) to Db
V (X,k). We claim that this functor is an

equivalence of categories. Indeed, by (A.1) the functor p∗2 induces an isomorphism

HomDb
c (Y,k)(F ,G)

∼−→ HomDb
c (X,k)(p

∗
2F , p∗2G).
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From this it easily follows that the morphism

HomDb
V (X,k)(p

∗
2F , p∗2G)→ HomDb

c (X,k)(p
∗
2F , p∗2G)

induced by For is an isomorphism, and then that p∗2 is fully-faithful. To show that

it is essentially surjective it suffices to restrict the isomorphism β : (m× idY )∗F ∼−→
kV � F to the image of the embedding X → V ×X given by (v, y) 7→ (v, 1, y).

The functor Db
V (X,k)→ Db

c (Y,k) defined by p2∗ provides a quasi-inverse to p∗2.

A.2. Averaging functors. We will also consider two “averaging” functors

av! : D
b
c (X,k)→ Db

V,X (X,k),

av∗ : Db
c (X,k)→ Db

V,X (X,k)
by

av!(F) = a!(X � F)[dimV ],

av∗(F) = a∗(X � F)[dimV ].

In both cases, the isomorphism β is the natural one, obtained from the Künneth
formula and the base change theorem applied to the cartesian square

V × V ×X m×idX //

idV ×a ��

V ×X
a
��

V ×X a // X

using condition (A.2) and, in the second case, the fact that a and m are smooth
morphisms.

Lemma A.3. The functor av! is left-adjoint to For[dimV ]. Similarly, av∗ is right-
adjoint to For[−dimV ].

Proof. Let p1 : V ×X → V and p2 : V ×X → X be the projection maps. By Remark
A.2 the functor p∗2 defines an equivalence from Db

c (X,k) to Db
V (V ×X,k) (where V

acts on V ×X via left multiplication on V ), and the functor p2∗ : Db
V (V ×X,k)→

Db
c (X,k) is a quasi-inverse (in particular a right adjoint) to p∗2. Similar remarks

apply to p!
2 and p2!.

Let Q : Db
V (V ×X) → Db

V,X (V ×X) be the functor given by Q(G) = p∗1X ⊗ G.

This functor is an equivalence of categories; the inverse is given by G 7→ p∗1X−1⊗G,
where X−1 is the dual local system to X on V . Now, av!

∼= a![dimV ] ◦ Q ◦ p∗2,
where a! is considered as a functor from Db

V,X (V × X) to Db
V,X (X,k). So av! is

left-adjoint to p2∗ ◦Q−1 ◦ a![−dimV ] ∼= p2∗ ◦Q−1 ◦ a∗[dimV ]. The latter is clearly
isomorphic to For[dimV ].

Similarly, av∗ ∼= a∗ ◦ Q ◦ p∗2[dimV ] ∼= a∗ ◦ Q ◦ p!
2[−dimV ] is right-adjoint to

p2! ◦Q−1 ◦ a∗[dimV ] ∼= For[− dimV ]. �

Lemma A.4. The composition av! ◦ For[dimV ] : Db
V,X (X,k)→ Db

V,X (X,k) is iso-
morphic to the identity functor.

Proof. By Lemma A.3 we have an adjunction morphism av! ◦For[dimV ]→ id, and
it suffices to prove that this morphism is an isomorphism. Now if F is in Db

V,X (X,k)
we have

av! ◦ For(F)[dimV ] = a!(X � F)[2 dimV ] ∼= a!a
∗(F)[2 dimV ]

∼= F
L
⊗k a!(kV×X)[2 dimV ]

by the projection formula. However by (A.1) we have H•c(V ;k) = k[−2 dimV ],
hence a!(kV×X) ∼= kX [−2 dimV ], and the claim follows. �
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As an immediate consequence, we obtain the following facts.

Proposition A.5. (1) The functor For : Db
V,X (X,k)→ Db

c (X,k) is fully faith-

ful. An object F ∈ Db
c (X,k) is in the essential image of Db

V,X (X,k) if and

only if the adjunction morphism F → For(av!F [dimV ]) is an isomorphism.
(2) The essential image of For : Db

V,X (X,k) → Db
c (X,k) is a triangulated sub-

category of Db
c (X,k). In particular, the category Db

V,X (X,k) has a natural
triangulated structure.

Proof. (1) is a corollary of Lemma A.4. Then (2) follows from the description of the
essential image of For together with standard facts on triangulated categories. �

Remark A.6. In the case X = kV , the category Db
V (X,k) is equivalent to the con-

structible V -equivariant derived category in the sense of Bernstein–Lunts. Indeed
by [12, Theorem 3.7.3], under our assumption (A.1) the latter is also equivalent
to a full triangulated subcategory of Db

c (X,k). Moreover this full subcategory is
generated (as a triangulated subcategory) by constructible V -equivariant sheaves in
the sense of [12, §0.2], see [12, Proposition 2.5.3]. The similar claim for the essential
image of our functor For : Db

V (X,k)→ Db
c (X,k) is easy to check, which proves the

claim.

Finally we remark that if V ′ ⊂ V is a closed subgroup which also satisfies (A.1),
the restriction X ′ of X to V ′ is multiplicative, and the functor For factors through
a (fully faithful) functor For′ : Db

V,X (X,k)→ Db
V ′,X ′(X,k).

Appendix B. Tilting perverse O-sheaves and Radon transform
(joint with Geordie Williamson6)

In this section we denote by O the ring of integers in a finite extension K of Q`,
and by F its residue field. We use the letter E to denote either of K, O or F.

B.1. Notation. Let us consider an algebraic variety X endowed with a finite
stratification

X =
⊔
s∈S

Xs

by locally closed subvarieties, and denote by is : Xs → X the inclusion. We assume
that each Xs is isomorphic to an affine space, and consider the derived category
Db

S (X,O) of complexes whose cohomology is constant on each stratum Xs, and
the subcategory of perverse sheaves PS (X,O). We assume either that X is defined
over C and work with the classical topology as in the main body of the paper, or
that X is defined over Fp, with p 6= `, and work with étale sheaves as in [23]. In
the latter case we assume that the following condition is satisfied:

(B.1) for all s, t ∈ S and n ∈ Z, Hn(i∗t is∗OXs) is constant.

For any s ∈ S we denote by is : Xs → X the inclusion, and consider the objects

∆s := is!OXs [dimXs], ∇s := is∗OXs [dimXs].

Recall that, in this generality, a perverse sheaf T in PS (X,O) is called tilting if it
admits both a standard filtration (i.e. a filtration with subquotients of the form ∆t,

6Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany. E-mail:
geordie@mpim-bonn.mpg.de.
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t ∈ S ) and a costandard filtration (i.e. a filtration with subquotients of the form
∇t, t ∈ S ).

We can similarly consider the categories Db
S (X,F) and PS (X,F) of sheaves with

coefficients in F, the objects

∆F
s := is!FXs [dimXs], ∇F

s := is∗FXs [dimXs],

and the corresponding notions of standard or costandard filtrations, and tilting
perverse sheaves.

We have a “modular reduction” functor

F := F
L
⊗O (−) : Db

S (X,O)→ Db
S (X,F)

which commutes with all the usual sheaf operations (derived direct and inverse
images with or without support, derived tensor product, bifunctors RHom and
RHom). In particular, this implies that

(B.2) F(∆s) ∼= ∆F
s and F(∇s) ∼= ∇F

s .

B.2. Tilting perverse sheaves: existence. In this subsection we show how
standard arguments giving constructions of tilting modules in highest weight cate-
gories (see [24, 16, 22]) can be adapted to prove the existence of “enough” tilting
objects in PS (X,O).

First, the following easy result can be proved as in [9, Proposition 1.3].

Lemma B.1. Let F be in PS (X,O). Then F admits a costandard filtration iff for
any t ∈ S , the object i!tF is a direct sum of copies of OXt [dimXt].

Proposition B.2. For any s ∈ S there exists a tilting object T in PS (X,O)
supported on Xs and such that i∗sT ∼= OXs [dimXs].

Proof. Assume (without loss of generality) that X = Xs. For any subset I ⊂ S ,
we set XI := tt∈IXt. We will prove the following property by induction on #I:

(B.3)
for I ⊂ S containing s with XI ⊂ X open there exists a tilting

perverse sheaf TI in PS (XI ,O) extending OXs [dimXs].

The proposition is the case I = S of this property. Taking T = OXs [dimXs] shows
that (B.3) is satisfied with I = {s}.

So assume that {s} ⊂ I ⊂ S is arbitrary (with XI ⊂ X open), choose t ∈ I
such that Xt ⊂ XI is a closed stratum and write I = J ∪ {t}. By induction there
exists a perverse sheaf TJ which satisfies (B.3) for J .

Let j : XJ ↪→ XI denote the (open) inclusion and set T pre
I := j!TJ . Note that

T pre
I is a perverse sheaf since it has a filtration (in the triangulated sense) with

subquotients ∆u, u ∈ J . Now set

E := Ext1
PS (XI ,O)(∆I,t, T pre

I ) = Ext1
Db

S (XI ,O)(∆I,t, T pre
I )

which is a finitely generated O-module. (Here, in a minor abuse of notation, we still
denote by S the stratification of XI induced by S , and by ∆I,t the shifted !-push-
forward of OXt to XI , i.e. the standard object of PS (XI ,O) associated with t.)
Let Efree be a finitely generated free O-module endowed with a surjection to E,
and set E∗free := HomO(Efree,O). We have a natural map

O→ E∗free ⊗O E = E∗free ⊗O Ext1
PS (XI ,O)(∆I,t, T pre

I )

∼= Ext1
PS (XI ,O)(Efree ⊗O ∆I,t, T pre

I )
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and hence a canonical extension in PS (XI ,O)

(B.4) T pre
I ↪→ TI � Efree ⊗O ∆I,t

obtained as the image of 1 ∈ O.
We claim that TI is tilting. First, this object clearly has a standard filtration (as

an object of PS (XI ,O)). Now we show (using Lemma B.1) that it has a costandard
filtration. For any u ∈ I we denote by iIu : Xu ↪→ XI the inclusion, and similarly for
J . For u 6= t, it is easy to check that (iIu)!TI is a direct sum of copies of OXu [dimXu]:

indeed in this case we have iIu = j◦iJu , so (iIu)!TI = (iJu)!j!TI = (iJu)!TJ . We conclude
using the fact that TJ has a costandard filtration.

Now, consider the case u = t. We claim that

(B.5) ExtiDb
S (XI ,O)(∆I,t, TI) = 0 for i ≥ 1.

We first show that (B.5) holds for i = 1. Applying Hom(∆I,t,−) to (B.4) yields a
long exact sequence

· · · → HomDb
S (XI ,O)(∆I,t, Efree ⊗O ∆I,t)→ Ext1

Db
S (XI ,O)(∆I,t, T pre

I )

→ Ext1
Db

S (XI ,O)(∆I,t, TI)→ Ext1
Db

S (XI ,O)(∆I,t, Efree ⊗O ∆I,t)→ . . .

Now Ext1
Db

S (XI ,O)(∆I,t,∆I,t) = 0, so it only remains to see that the first arrow is

surjective. But under the canonical identification

HomDb
S (XI ,O)(∆I,t, Efree ⊗O ∆I,t) = Efree ⊗O HomDb

S (XI ,O)(∆I,t,∆I,t) = Efree

this map corresponds to the surjection Efree � E = Ext1
Db

S (XI ,O)(∆I,t, T pre
I ) chosen

above. Hence this map is indeed surjective.
We now turn to (B.5) for i ≥ 2. Because TJ has a costandard filtration, T pre

I =
j!TJ has a filtration (in the triangulated sense) by objects of the form j!∇J,u for
u ∈ J . (Note that j!∇J,u need not be a perverse sheaf.) Hence it is enough to show
that

Homi
Db

S (XI ,O)(∆I,t, j!∇J,u) = 0 for all u ∈ J and i ≥ 2.

Consider the distinguished triangles in Db
S (XI ,O)

(B.6) M→ j!∇J,u → IC(XJ ,∇J,u)
[1]−→, IC(XJ ,∇J,u)→ j∗∇J,u → N

[1]−→ .

(Here, IC(XJ ,−) is the intermediate extension for the embedding j.) Note that
both M and N are supported on Xt. Moreover, N is perverse, and M is concen-
trated in nonpositive perverse degrees. In particular, both of these objects are direct
sums of objects of the form (iIt )!L[dimXt+i], where L is a constant local system on

Xt and i ≥ 0. It follows that Homk
Db

S (XI ,O)(∆I,t,M) = Homk
Db

S (XI ,O)(∆I,t,N ) = 0

for k > 0. Applying Hom(∆I,t,−) to the second triangle in (B.6) and using the
fact that

Homi
Db

S (XI ,O)(∆I,t, j∗∇J,u) = Homi
Db

S (XI ,O)(∆I,t,∇I,u) = 0

for i ≥ 1, we get that ExtiDb
S (XI ,O)

(
∆I,t, IC(XJ ,∇J,u)

)
= 0 for i ≥ 2. Then apply-

ing the same functor to the first triangle in (B.6) we get ExtiDb
S (XI ,O)(∆I,t, j!∇J,u) =

0 as claimed.
Property (B.5) implies that (iIt )

!TI is a perverse sheaf. To show that it is a
shifted free local system, it is enough to prove that F

(
(iIt )

!TI
)

= (iIt )
!F(TI) is in

nonnegative perverse degrees. However, F(TI) is a perverse sheaf since TI has a
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standard filtration, and (iIt )
! is left exact. Hence indeed pHkF

(
(iIt )

!TI
)

= 0 for
k < 0, which finishes the proof. �

B.3. Tilting perverse sheaves: properties. In the case of coefficients F, it is
well known that if s ∈ S there exists a unique indecomposable tilting perverse
sheaf T F

s (up to isomorphism) which is supported on Xs, and such that i∗sT F
s =

FXs [dimXs]. Moreover, any tilting perverse sheaf in PS (X,F) is a direct sum of

objects T F
s for s ∈ S . (Although the case of coefficients F is not considered in

[9], the proofs generalize to this case. Alternatively, one can can use the theory of
highest weight categories, see [24].)

Proposition B.3. (1) For any tilting perverse sheaf T in PS (X,O), F(T ) is
a perverse sheaf. It is tilting in PS (X,F).

(2) If T and T ′ are tilting perverse sheaves in PS (X,O), the O-module

HomPS (X,O)(T , T ′)
is free. Moreover, the natural morphism

F⊗O HomPS (X,O)(T , T ′) → HomPS (X,F)

(
F(T ),F(T ′)

)
is an isomorphism.

(3) A tilting perverse sheaf T in PS (X,O) is indecomposable iff F(T ) is inde-
composable.

(4) For any s ∈ S , there exists a unique indecomposable tilting perverse sheaf
Ts in PS (X,O) supported on Xs and such that i∗sTs ∼= O

Xs
[dimXs]. We

have F(Ts) ∼= T F
s , and any tilting perverse sheaf in PS (X,O) is a direct

sum of objects Ts (s ∈ S ).

Proof. The proof of (1) is immediate from (B.2). (2) follows from the facts that T
admits a standard filtration, and that T ′ admits a costandard filtration, together
with the property that

ExtiDb
S (X,O)(∆s,∇t) = 0 if i > 0,

and similarly for coefficients F. Then (3) and (4) can be proved as in [23, Corollary
2.4.2]. �

Remark B.4. From the uniqueness statement in Proposition B.3(4) one deduces
that DX(Ts) ∼= Ts for any s ∈ S , where DX denotes Verdier duality.

B.4. Extension of scalars. The results of this subsection are not used in this
paper, but are needed in [2, 3]. For simplicity, here we restrict to the case where X
is defined over C.

Tilting perverse sheaves can also be defined when the coefficients are K. We use
similar notation as above in this case. We denote by TiltS (X,E) ⊂ PS (X,E) the
additive full subcategory whose objects are tilting perverse sheaves.

Lemma B.5. The natural functors

KbTiltS (X,E)→ DbPS (X,E)→ Db
S (X,E).

are equivalences of categories.

Proof sketch. For E = K, this was proved in [9, Proposition 1.5]. The same proof
applies verbatim for E = F. Thanks to the results above (see also [23, Corol-
lary 2.3.4]), these arguments go through for E = O as well. �
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The preceding lemma makes it possible to interpret extension of scalars as
the derived functor of a functor between categories of perverse sheaves. Because
F(−) : Db

S (X,O)→ Db
S (X,F) is right t-exact, it gives rise to a right exact functor

of abelian categories F0 := pH0 ◦ F(−) : PS (X,O) → PS (X,F). Since PS (X,O)
has enough projectives (see [23, Corollary 2.3.3]), we can form its left derived func-
tor LF0. On the other hand, by Proposition B.3(1), F0 restricts to an additive
functor TiltS (X,O)→ TiltS (X,F).

Lemma B.6. The following diagram commutes up to isomorphism of functors:

KbTiltS (X,O)
∼ //

KbF0

��

DbPS (X,O)
∼ //

LF0

��

Db
S (X,O)

F(−)

��
KbTiltS (X,F)

∼ // DbPS (X,F)
∼ // Db

S (X,F)

There is a similar commutative diagram for K(−).

Proof. For the right-hand square of this diagram, by adjunction, we may instead
check the commutativity of the corresponding diagram for the restriction-of-scalars
functor Db

S (X,F)→ Db
S (X,O) coming from the map O→ F. The latter functor is

exact on (ordinary, not perverse) sheaves, so it lifts to a suitable “filtered” version
of Db

S (X,F). In other words, it conforms to the setting of [6, Lemma A.7.1], which
asserts the desired commutativity.

We can now recast Proposition B.3(1) as follows: if T ∈ PS (X,O) is tilting,
then LF0(T ) is perverse and tilting.

For the left-hand square above, commutativity is a consequence of general prop-
erties of derived functors. In more detail, recall that the derived functor LF0

comes equipped with a natural transformation ε : LF0 ◦ QO → QF ◦ KbF0, where
QE : KbPS (X,E) → DbPS (X,E) is the obvious functor for E = O or F. More-
over, for any object F ∈ PS (X,O) such that LF0(F) is perverse, the morphism
εF : LF0(QO(F))→ QF(KbF0(F)) is an isomorphism. In particular, if T is tilting,
then εT is an isomorphism. Since KbTiltS (X,O) is generated as a triangulated
subcategory of KbPS (X,O) by tilting perverse sheaves, ε becomes an isomorphism
when we restrict the domain of QE to KbTiltS (X,E).

The argument for K(−) is similar and will be omitted. �

B.5. Radon transform. In this subsection we recall the formalism of Radon
transform (see [7, 9, 35]) and check that it generalizes to coefficients in O. We
follow the approach in [35] closely.

We let B be an algebraic group with maximal torus T and consider two B-
varieties X and Y with finitely many B-orbits, each of which is isomorphic to an
affine space. We denote by

X =
⊔
s∈S

Xs, Y =
⊔
t∈T

Yt

the stratifications by B-orbits. In the étale case, these stratifications automatically
satisfy condition (B.1). We fix an open B-stable subvariety U ⊂ X×Y , and denote
the natural morphisms as follows:

X U
←−uoo

−→u // Y.

We will assume that the following conditions are satisfied (see [35, §4.1]):
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(1) for any s ∈ S (resp. t ∈ T ), Xs (resp. Yt) contains a unique T -fixed point
xs (resp. yt);

(2) for each s ∈ S (resp. t ∈ T ), the open subset Y s := −→u (←−u −1(xs)) ⊂ Y
(resp. Xt :=←−u (−→u −1(yt)) ⊂ X) contains a unique T -fixed point yŝ for some
ŝ ∈ T (resp. xt̂ for some t̂ ∈ S ) and contracts to that fixed point under
some one-parameter subgroup Gm ⊂ T (depending on s or t);

(3) for each s ∈ S we have dimXs = codimY Yŝ.

It follows in particular from these assumptions that s 7→ ŝ and t 7→ t̂ are inverse
bijections between S and T . Note also that if dimX = dimY then these assump-
tions are symmetric in X and Y . For s ∈ S and t ∈ T , we denote by iXs : Xs ↪→ X
and iYt : Yt ↪→ Y the inclusions.

Remark B.7. Our assumptions are satisfied in the setting of §2.3 by [35, §5.1].

We set

RX→Y := −→u !
←−u ∗[dimY ] : Db

S (X,O)→ Db
T (Y,O),

RX←Y :=←−u ∗−→u ![−dimY ] : Db
T (Y,O)→ Db

S (X,O).

Proposition B.8. For any s ∈ S , t ∈ T there exist isomorphisms

RX→Y (∇s) ∼= ∆ŝ, RX←Y (∆t) ∼= ∇t̂.

Proof. This proof is copied from [35, Proposition 4.1.3]. We only prove the first
isomorphism; the proof of the second one is similar. For any v ∈ T (resp. w ∈ S ),
let us denote by jYv : {yv} ↪→ Y (resp. jXw : {xw} ↪→ X) the inclusion. As RX→Y (∇s)
is T -constructible, it is sufficient to show that for v ∈ T we have

(B.7) (jYv )∗RX→Y (∇s) ∼=

{
O[dimYu] if v = ŝ;

0 if u 6= ŝ.

By definition and the proper base change theorem we have

(jYv )∗RX→Y (∇s) = (jYv )∗−→u !
←−u ∗(∇s)[dimY ]

∼= H•c
(−→u −1(yv),

←−u ∗(∇s)|−→u−1(yv)

)
[dimY ].

Hence, again by definition, we obtain

(jYv )∗RX→Y (∇s) ∼= H•c(Xv,∇s|Xv )[dimY ].

Now, using assumption (2) and [26, Proposition 1] we have

H•c(Xv,∇s|Xv )[dimY ] ∼= k!
v̂∇s|Xv [dimY ],

where kv̂ : {xv̂} ↪→ Xv is the inclusion. As Xv ⊂ X is open, we finally obtain an
isomorphism

(jYv )∗RX→Y (∇s) ∼= (jXv̂ )!∇s[dimY ].

Now, let lv̂ : {xv̂} ↪→ Xv̂ be the inclusion. We have

(jXv̂ )!∇s[dimY ] ∼= l!v̂(i
X
v̂ )!∇s[dimY ].

If s 6= v̂ (or equivalently if v 6= ŝ) the right-hand side is zero, which proves (B.7) in
this case. If s = v̂, the right-hand side identifies with

l!v̂OXv̂ [dimY + dimXv̂] ∼= O[dimY − dimXv̂].

Using assumption (3), this finishes the proof of (B.7). �
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Corollary B.9. (1) The functors RX→Y and RX←Y are quasi-inverse equiva-
lences of categories between Db

S (X,O) and Db
T (Y,O).

(2) For any tilting perverse sheaf T in PS (X,O), the object RX→Y (T ) is a
projective perverse sheaf in PT (Y,O).

(3) For any projective perverse sheaf P in PT (Y,O), the object RX←Y (P) is a
tilting perverse sheaf in PS (X,O).

Proof. (1) This proof is copied from [35, Corollary 4.1.5]. Consider the morphism

(B.8) id→ RX←Y ◦ RX→Y
defined by adjunction. By Proposition B.8, this morphism is an isomorphism when
applied to any object ∇s (s ∈ S ). By an easy induction on the number of strata,
one can check that these objects generate the categoryDb

S (X,O), which proves that
(B.8) is an isomorphism. A similar argument proves that the adjunction morphism
RX→Y ◦ RX←Y → id is also an isomorphism.

(2) This proof is copied from [35, Proposition 4.2.1]. Set P = RX→Y (T ).
As T has a costandard filtration, by Proposition B.8 P is in the subcategory of
Db

T (Y,O) generated by objects ∆t under extensions, hence is a perverse sheaf.
Now, let us show that it is projective, i.e. that HomDb

T (Y,O)(P,M) = 0 for any

M ∈ pDb
T (Y,O)<0. As pDb

T (Y,O)<0 is generated (under extensions) by objects

∆t[m] for t ∈ T , m ∈ Z>0, it is sufficient to prove that ExtiDb
T (Y,O)(P,∆t) = 0 for

i > 0. Now we have, using Proposition B.8,

ExtiDb
T (Y,O)(P,∆t) ∼= ExtiDb

S (X,O)(T ,RX←Y (∆t)) ∼= ExtiDb
S (X,O)(T ,∇t̂),

which proves the claim since T has a standard filtration.
(3) The proof is similar to that of (2). Set T = RX←Y (P). As P has a standard

filtration, by Proposition B.8 T is perverse and has a costandard filtration. It fol-
lows that DX(T ) is also perverse. (Here DX is Verdier duality.) To prove that T has
a standard filtration, it is enough to prove that DX(T ) has a costandard filtration.
By Lemma B.1, this would follow if we can prove that ExtiDb

S (X,O)(∆s,D(T )) = 0

for i > 0 and is O-free for i = 0. This follows from the chain of isomorphisms

ExtiDb
S (X,O)(∆s,DX(T )) ∼= ExtiDb

S (X,O)(T ,∇s) ∼= ExtiDb
T (Y,O)(P,RX→Y (∇s))
∼= ExtiDb

T (Y,O)(P,∆ŝ)

(see (1) and Proposition B.8), using Lemma 5.2 and the fact that P is projective. �
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