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Subspace clustering through parametric
representation and sparse optimization

Laurent Bako

Abstract—We consider the problem of recovering a finite
number of linear subspaces from a collection of unlabeled data
points that lie in the union of the subspaces. The data are
such that it is not known which data point originates from
which subspace. To address this challenge, we show that the
clustering problem is amenable to a sparse optimization problem.
Considering a candidate subspace and the distances of the data
points to that subspace, the foundation of the proposed method
lies in the maximization of the number of zero distances. This can
be relaxed into a convex optimization. Efficiency of the relaxation
can be significantly increased by solving a sequence of reweighted
convex optimization problems.

Index Terms—Subspace Clustering, Sparse Optimization, Sub-
space Arrangement.

I. INTRODUCTION

We consider the problem of estimating a finite number s
of linear subspaces {Sk}2:1 of the euclidean vector space
R™, with equal dimension d. More precisely, assume we are
given a finite set {yl}f\il of noise-free data points drawn from
the subspace arrangement S; U --- U Ss. Then the problem
of interest in this paper is to infer the individual subspaces
S1, ..., S, from the collected data. This can indeed be viewed
as a clustering problem because the available data are mixed
in the sense that we do not know which data point originates
from which subspace.

The literature on subspace clustering/segmentation contains
a variety of methods that can be roughly divided into four
categories: algebraic methods [1], [2], [3], statistical meth-
ods [4], matrix factorization-based methods [5], [6], sparse
representation-based methods [7], [8], [9]. For a detailed ex-
position of some of those methods we refer to the recent survey
[10]. The more recent trend in the treatment of the subspace
segmentation problem builds on some ideas borrowed from
the field of compressed sensing [11], [12]. The subspace seg-
mentation methods reported in [7] and [8] allow for an elegant
retrieval of the subspaces, their dimensions and their number
by solving a convex optimization problem and then applying
spectral clustering. However, these methods assume that the
subspaces to be estimated are independent, a requirement that
imposes a constraint on the number and the dimensions of
the subspaces. Another relevant method is the one described
in [13] which relies on sparse representation over a fixed but
optimized dictionary in a probabilistic framework.

In this note, we describe a technique for subspace clustering
that uses sparse optimization. The method makes it possible
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to compute one subspace from the entire mixed dataset by
minimizing the number of nonzero vectors obtained when
the data are projected onto the orthogonal complement of a
single subspace. In contrast to the methods mentioned above,
the method presented here can estimate subspaces that are
not independent, for example an arrangement of hyperplanes.
The principle of the method is as follows. Considering a
candidate subspace and the distances of the data points to
that subspace, we propose to maximize the number of zero
distances. Because this is a hard sparse optimization problem,
we later consider a convex relaxation of it. While the initial
sparse formulation requires only very mild conditions, the
convex surrogate might necessitate a higher level of sparsity
to yield the desired solution. This means that there must exist
a subspace in the arrangement which contains the majority of
the data points. To overcome this limitation, a sequence of
reweighted convex optimization problems can be solved [14].

II. DESCRIPTION OF THE PROPOSED METHOD

We will assume, for the sake of exposition clarity, that
all subspaces have equal and known dimension d. Also, the
subspaces Si,...,Ss are assumed to be discernible in the
sense that for any pair (k,¢) of indices, Sy Z Sy. But the
method to be presented can be extended to arrangements of
subspaces with different dimensions.

For any i = 1,...,s, let B; € R"*?, with rank(B;) = d,
be a basis of the subspace S;. Denote with S;* the orthogonal
complement of S; in R™. If we assume noiseless data, then
for any y; € S;, the orthogonal projection of y; onto Si* is
equal to zero, that is

(In—P)y; =0 (D

where P; is the projection matrix defined by FP; =
Bi(B B;)"!'B;" and I,, stands for the identity matrix of
order n. Note in passing that P; is uniquely determined by
the subspace S; ; it does not depend on any specific basis B;
of ;. For, if the matrix B; forms a basis for S;, any other
basis has necessarily the form B; = B;T with T € R"*"
being a nonsingular matrix. As a consequence, it can be
checked that the corresponding projection matrix P; is equal
to P;. We can therefore describe the subspaces S; with the
matrices P;, ¢ =1,...,s. Each P; and I,, — P; are orthogonal
projections matrices that project the ambiant space onto S;
and Sf respectively. Let us formalize.

Definition 1. A square matrix P € R"™ ™ s called an
orthogonal projection matrix (or an orthogonal projector) if P
is idempotent and symmetric, that is, P> = P and P" = P.



At this point, it is worth recalling some useful properties of
orthogonal projectors.

Lemma 1. 1) If P; is an orthogonal projection matrix onto
S;, then im(P;) = ker(I, — P;) = S; and ker(P;) =
im(I, — P;) = S,

2) The eigenvalues of an orthogonal projector are 0 or 1.
Hence, any orthogonal projector P; satisfies I, = P; =
0, where A = B means that A — B is a positive semi-
definite matrix.

3) The trace of an orthogonal projector equals its rank.

Let now Y = [y yn] € R™*N be a matrix formed
with all the available data samples and define F(P) to be the
projection of Y onto SZ-L, ie.,

E(P) = (I, - P)Y. o)

The method to be presented is based on the fundamental
observation that the matrix £(P) contains a significant number
of zero column vectors. We shall then say that E(P) is sparse
(to some degree) as a sequence of vectors. More precisely, all
the columns of the form (I,, — P;)y; with y; € S;, are equal
to zero. Let F5(P) be the vector obtained by applying the
euclidean norm ||-||, to the columns of E(P), i.e.,

Ey(P) = [[(In — P)yull, (I, — P)yn|,] € RN,

We can then search for one matrix P; by solving the sparse
optimization problem

min || E5 (P
P ’ 3)
st. P=P" I,> P >0, rank(P) = d.

Here, ||-||, refers to the ¢y pseudo-norm which counts the
number of nonzero entries in a vector.

Assumption 1. The data {y; };Vzl are in general position in

each subspace S, that is, any group {y;,,...,yj,} C S; of d
data samples is formed of linearly independent vectors.

Theorem 1. Let P* denote any solution to (3). For any
P e R"™", define #(P) = {y; : (I — P)y; =0}. Under
Assumption 1, if |7 (P;)| > sd for alli =1,...,s, then

P e{P,...,P}.

Proof. Because the matrices P; are feasible points of the
optimization problem (3), it holds that |.#(P*)| > |.Z(P;)]
for i = 1,...,s. We claim that there is an index * €
{1,...,s} such that |.Z(P*)N.#(P;»)| > d. Assume, for
contradiction, that this is not the case. Then by letting n;
denote the cardinality of the set .#(P*) N .#(P;), we have
n; < d, for i = 1,...,s. Since all the data points lie in
F(P)U---U.Z(Ps), it follows that

[ (P*) <ni+---+ns <sd < |I(P),

i = 1,...,s. However this contradicts the definition of P*,
hence proving the existence of an index ¢* such that . (P*)N
#(P;+) contains at least d different vectors. Note that

span [ (P*)N Z(P;+)] C ker(I, — P+) =S« (4)

By invoking Assumption 1 with the fact that
|2 (P*)N.#(P~)| > d, the dimension of the span of
J(P*) N J(P;~) is equal to d. Since dim(S;«) = d, it can
be concluded from (4) that

span [ (P*) N Z(P;+)] = S;» C ker(I,, — P™).

It follows that P* possesses 1 as an eigenvalue with geometric
multiplicity larger or equal to d = dim(S;~). Since P* is sym-
metric, it is diagonalizable. Hence, there exists an orthonormal
matrix U € R™*"™ such that P* can be factorized in the form

P* = UXUT, with © = diag(A1y ..oy Ady Adt1s -+ 5 An),
A1 = Ay = -+ = A\g = 1. Recalling that rank(P*) = d,
we have necessarily, Agy1 = --- = A, = 0 so that P* obeys

(P*)? = P*. It can also be noticed that rank([,, — P*) =
rank(U(I, — £)U") = n — d, which, by the rank theorem,
implies that dim (ker(I,, — P*)) = d and S;« = ker(l,, — P*).
From this, we deduce that P* is in fact the orthogonal
projection matrix onto S;«. Hence P* = P;« concluding the
proof. O

Problem (3) is in general very hard to solve exactly be-
cause it involves a combinatorial search. The difficulty arises
essentially from the presence of the /y-norm objective and the
rank constraint. To get a more tractable optimization problem,
a classical idea intensively used in the field of compressed
sensing [12], [11], is to approximate the ¢y pseudo-norm with
the ¢,-norm', the main advantage being that the last one is
convex and therefore efficiently solvable. This leads to the
following formulation

min [|WE,(P)||,
P )
stt P=P" I, > P =0, rank(P) = d

where W = diag(ws,--- ,wy) is a user-defined weighting
diagonal matrix with positive entries. Prior knowledge, when
available, can be incorporated in W; by default W is set to the
identity matrix I. The next step is to relax the rank constraint.
Knowing from Lemma 1 that the rank of a projection matrix
equals its trace, we can try to enforce the rank constraint by
replacing it with a constraint on the trace. As a result, we
obtain a completely convex relaxation of (3) in the following

form
N

; (L — P)us
mlsl,n;wz (L, )%”2 ©6)

st P=P" I, =P >0, tr(P) =d.

We first look at well-posedness by showing that if a single
subspace was to be estimated, then (6) is a convenient formu-
lation for recovering the orthogonal projection matrix.

Lemma 2. Assume s = 1, i.e., the data are drawn from a
single subspace S. If rank(Y') = dim(S;) = d, then problem
(6) has a unique solution P* which corresponds exactly to the
orthogonal projection matrix onto Si.

Proof. Let P; be the orthogonal projection matrix onto Si.
It is clear that P is a feasible point for problem (6) and

!The £1-norm of a vector z = [z1 ... zy]" € RY is given by ||z, =

|Z1| + ...+ ‘ZN‘.



minimizes the associated cost function (whose optimal value is
actually equal to zero). Therefore P, is obviously one solution
to problem (6). We just need to prove uniqueness. We do so
by showing that any solution P* to (6) is necessarily equal
to P;. In effect, if P* solves (6), then (I, — P*)Y = 0.
Since rank(Y) = d, we have (I, — P*)y = 0 for any y €
&1, the span of Y. In other words, 1 is an eigenvalue of P*
with geometric multiplicity at least d. Let Ay,..., A, be the
eigenvalues of P* enumerated in descending order. We have
A1 =---=X=1,s0that \gy1+---+ A, = tr(P*)—d = 0.
With P* > 0, this leads to A\gy1 = --- = A, = 0. P* is the
orthogonal projection matrix onto S; and therefore P* = P.

Consider now the general case where s > 2.
Next we state a condition under which a subspace
can be exactly recovered by solving (6). Let H =
{A R A=AT tr(A)=0,[|All, < 1}.

Theorem 2. Assume that wi + --- +wy = 1. Let
(V) =max|[|Af],
(7

st A€ H, |AY ||y =1

where ||Al|, .., IS, for any matrix A, the sum of the 2-norms
of the column vectors of A. If there is a P; satisfying

1
Z wj >1-— (8)
T 2r(YW)
with 1 = max; ||ly;|l,, then P; is the unique solution to

problem (6).

Proof. P; uniquely solves problem (6) if, for any nonzero
matrix A in R™*™ such that P; + A is feasible, it holds that

N N
ij H(In - Pi) ysz < ij H(In -P—-A
J=1 J=1

Feasibility of P; 4+ A translates into tr(A) =0, AT = A and
I, — P, = A = —P;. These, together with the fact that P; is
a projection matrix implies that A lies 7. An equivalent form
of the inequality above is

> i I — P

) Yilly —
J¢I(Py)
< Y wilAyl,-
jes(P;)

)Yl -

1(In = Pi = 8) g5,

From the triangle inequality property of vector 2-norm, the
following identity ||al|, — |la + ||, < [|b]|, holds for any two
vectors a and b of compatible dimensions. By applying this,
it can be observed that for P; to be a solution to problem (6),

it is sufficient that
o willdyill, < Y wyllAyl,
JEL(P;)

J¢I(Py)

for any A € R"*™ obeying the conditions above. Adding
the term 3o »p,) wj [[Ay;ll, on each side of the previous
inequality yields, after simple algebraic manipulations,

[ > WjIIij||2]<1/2.

max
IAYWIl; =1L
¢S (Fs)

AcH

Note that the maximum here could have been taken over the
set
"o {A AY Wy o = 1} N {A I, = P+ A= o}.

Thanks to the identity maxaca [|All, < maxaesr [|All,
whenever A C B, we can restrict the maximum to the first
two members of the above chain of intersections and get
a more conservative condition. Finally, from the inequality
lAy;lly < 1 |All,, it can be seen that the maximum above is
bounded from above by 7(1 — 3¢ ;(p,) w;)r(YW). There-
fore P; is the unique solution to (6) if

77(1 - Z wj>r(YW) <1/2

JEI(P;)
as claimed.

A. Enhancing sparsity

As shown by Theorem 1, the formulation (3) can obtain
a solution to the subspace clustering problem under mild
conditions. However, for the convex relaxation (6) to yield
the desired solution, a relatively high level of sparsity might
be needed. That is, a large majority of the data must pertain
to the same subspace. This may not be the case in general.
A possible solution is to solve a sequence of problems of the
type (6) with different weights computed iteratively [14], [15].
The iterative scheme can be defined for a fixed number r
of iterations as follows. At iteration » =0, ...,

max

Tma» COMpute

N
P") = arg min w'™ L, — P)yil,,
i Yol I = Pl o

st P=P" I, = P>0, tr(P)=d

r _

with weights defined, for all j by wﬁ.o) = 1/N, and w;

v§7-)/ Zjvzl U§T) for r > 1, where
o) 1
Yj H I _ p(r—1) ysz +<

¢ > 0 is a small number preventing division by zero, r is
the iteration number and v > 1. Since we are dealing here
with a sequence of convex optimization problems, they can
be numerically implemented using any convex solver, see
e.g., [16]. Many simulations results show that the iterative
scheme increases significantly the recoverability of the F;’s
in situations where the degree of sparsity is low.

After a first parameter matrix P is identified, we still need to
identify the other subspaces. For this purpose, we can remove
the data samples pertaining to the already identified subspace
and repeat the iterative algorithm over the remaining set of
data. The different steps are described in Algorithm II-A.

III. SPECIAL CASE OF INDEPENDENT SUBSPACES

In this section we analyze the particular case where the
subspaces 51, . . ., Ss are independent, that is when they satisfy

Sin(Si+--- Ss) = {0}

for any ¢. If this is the case, then for all i, S, & ®;j£S; C
ker(P;) while im(P;) = S;. Here @ refers to direct sum of

+Si 1 +Sip1++



Algorithm 1 Subspace clustering algorithm

nputs: {y;},
1) Initialization- 2 — 0, J+{1,.
2) Repeat
« Compute, up to convergence, the sequence {P(")}
defined in (9) based on the data whose indices are
contained in J.
« Record the identified matrix P: & + 2 U {]5 }
¢ Remove from J the indices of data y; satisfying
|| (I, — P )Yill, < 6, where 6 is a threshold.
Until |J| =0
3) Return & and set s = |Z|.

IV}

I,

subspaces. For s > 2, the number of samples pertaining to
subspace S; is generally larger than those pertaining to S;. As
a result, solving problem (6) is likely to yield the orthogonal
projector onto S;. More precisely, the following corollary of
Theorem 2 holds.

Corollary 1. Assume that the subspaces S1,...,Ss are inde-
pendent. Define P* as
= arg min
8 Z [(In = Pyl (10)
st. P = PT, I, = P =0, tr(P) <d(s—1).
Ifmin,—y,._ |7 (F;)| < Y then {y; : j € J°(P*)} C
Sio, where i° = argmin,|S(P;)| and S°(P*) =

{1,...,N}\ #(P").

Proof. Denote with P the projection matrix onto S;o =
@;-i-S;. Since the subspaces are independent, tr(P) =
rank(P) = dim(S;,) = d(s — 1). Hence P is feasible for
the underlying optimization problem in (10). The condition
mini:L s |2 (P)| < 2nr(Y) is equivalent to |ﬂ(15)] >
N — W’ which, by Theorem 2, implies that P is the unique

solution to (10). It follows that P* = P. Data which are not
in Z(P*) are necessarily in S;o = span(¥(Pjo)). O

The corollary suggests that it is presumably easier to seg-
ment the subspaces when they are independent.

IV. ROBUST FORMULATION

The method derived above can still work in the presence
of a moderate amount of noise. However, when the noise
level is high, we might need to resort to a more robust
implementation. The convex problem (6) can, similarly as in
[17], be reformulated in the form

N
min w;i&s
RE; i3
st. |(I, = Pylly, <e+&,j=1,...,N (11)

P=P' I,=P>0, tr(P)=d
5]207]:177]\[

where ¢ is a user-defined parameter to be tuned in function
of the noise level. The rationale behind the formulation
(11) is that, for an appropriately chosen ¢, the distances
||(I. — Pi)y;l|, should be less than ¢ for all the y; close to
the subspace spanned by F;.

V. EXPERIMENTS

This section provides some numerical results to illustrate
the previous theory. Two experiments are considered: one
with noise-free data and the other with noisy data. Both
experiments are conducted in the same way as follows. We
generate 100 datasets in RS. Each dataset contains 400 data
points normally sampled from s = 4 different subspaces of the
same dimension d. To challenge the proposed algorithm, each
dataset is designed such that the number of samples originating
from all subspaces is the same (this is indeed the most difficult
scenario according to the discussions above). The algorithm
is then run on each of the 100 datasets. The experiment
is repeated for different values of the subspaces’ dimension
d = 1,...,5. Results are reported in Tables I and II. For
more comments on the effects of the user-defined parameters
¢ and 9, see [15].

A number of observations can be made from these results:
(a) The reweighted scheme (9) endows the proposed frame-
work with a capability to accommodate subspace clustering
problems where none of the subspaces contains the absolute
majority of the data; (b) The proposed method can seg-
ment arrangements of subspaces with non trivial intersections.
However, such arrangements seem more difficult to segment
(more iterations are needed) than those formed of independent
subspaces. Comparison with the SSC algorithm [7] reveals the
benefit of the proposed approach.

dimensiond | 1 2 3 4 5

# iterations | 2 5 5 10 10
TABLE T
NUMBER OF ITERATIONS OF THE REWEIGHTED SCHEME (9) (ON
NOISE-FREE DATA) NECESSARY FOR ACHIEVING 100% SUCCESSES IN THE
CLUSTERING. PARAMETERS ARE( = le — 3,6 = 0.1, v = 5.

dimension d 1 2 3 4 5

this paper 0.022 0.027 0.030 0.029 0.035

SSC [7] 0.074 0.158 0.350 0.519 1.028
TABLE IT

AVERAGE ESTIMATION ERROR FOR 10 ITERATIONS OF THE REWEIGHTED
SCHEME (9) ON NOISY DATA. THE NOISE IS GENERATED FROM A
GAUSSIAN DISTRIBUTION OF MEAN ZERO AND VARIANCE 0.05.

VI. CONCLUSION

We have described a technique for estimating multiple
subspaces from unlabeled data which lie in the union of the
subspaces. The main idea hinges on solving a sequence of
sparsity-inducing optimization problems. In contrast to com-
parable methods using sparse representation, the subspaces
to be segmented need not be independent here. Theoretical
correctness of the method is analyzed under some sufficient
condition related to the proportion of data drawn from each
subspace.
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