N
N

N

HAL

open science

New decoding strategy for underdetermined mimo
transmission sparse decomposition

Yasser Fadlallah, Abdeldjalil Aissa El Bey, Karine Amis Cavalec, Dominique

Pastor, Ramesh Pyndiah

» To cite this version:

Yasser Fadlallah, Abdeldjalil Aissa El Bey, Karine Amis Cavalec, Dominique Pastor, Ramesh Pyndiah.
New decoding strategy for underdetermined mimo transmission sparse decomposition.

2013: 21st European Signal Processing Conference, Sep 2013, Marrakech, Morocco. hal-00937815

HAL Id: hal-00937815
https://hal.science/hal-00937815

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

EUSIPCO


https://hal.science/hal-00937815
https://hal.archives-ouvertes.fr

NEW DECODING STRATEGY FOR UNDERDETERMINED MIMO TRANSMISSION USING
SPARSE DECOMPOSITION

Yasser Fadlallah, Abdeldjalil Aissa-El-Bey, Karine Amisniinique Pastor, and Ramesh Pyndiah

Institut Télécom; Télécom Bretagne; UMR CNRS 6285 Lab-STICC
Technopdle Brest Iroise CS 83818 29238 Brest, France
Université européenne de Bretagne
Email: Firstname.Lastname@telecom-bretagne.eu

ABSTRACT three major weaknesses. First its performance depends on

In this paper we address the problem of large dimension dé[he searching sphere radius value. Secondly it is based on

coding in MIMO systems. The complexity of the optimal an iterative algorithm and the required iteration numbeiois

maximum likelihood detection makes it unfeasible in preeti bounded. Thirdly, the computation cost keeps high in the low

when the number of antennas, the channel impulse respongoémed'um SNR region and for large MIMO dimensions [4].

length or the source constellation size become too high. We
consider a MIMO system with finite constellation and modelo . \yith finjte constellations. We aim to find an efficient de-

it as a system with sparse signal sources. We formulate the d@oder with polynomial time complexity . We adapt the detec-
coding problem as an underdetermined sparse source recqy;

. R . lon algorithm that we have proposed in [5] to the underdeter
ering problem qnd apply tr@-m|n|m|zatlon to solve it. The mined MIMO decoding problem. The first step is the trans-
resulting decoding scheme is applied to large MIMO SYSteMg, ation of the MIMO channel with input belonging to a
and to frequency selective channel . We also review the co

) ST : : Minite alphabet into an equivalent higher-dimensional MIMO
putatlonal cost of s_omél-mln!mlzatlon algorithms. Simula- channel with sparse input vector. Then the decoding prob-
tIO!’l r_esults show significant improvement compared to othelrem becomes equivalent to thg-norm minimization prob-
existing receivers. lem subject to some constraints that we define. This prob-
lem is usually solved using exhaustive search; also NP-hard

1. INTRODUCTION On the other hand, thg-norm minimization problem can be
relaxed by/;-norm minimization [6]. Based on this relax-
Multiple input multiple output (MIMO) systems have known ation, the transmitted data can be decoded or recovereg usin
a regain of interest since the mid nineties as a solution-to interative algorithms reviewed in [6, 7]. In addition, we sho
crease the data rate in wireless point-to-point networkiseat  the performance of the proposed decoding scheme for the fol-

expense of a multi-antenna interference (MAI) [1]. The per{owing applications) large MIMO systems, anid) frequency
formance of the MIMO system is conditioned to a clever manselective MIMO channel.

agement of the MAI. Maximum likelihood joint detection en-

ables to detect at once the signals transmitted inthe samee ti ~ This paper is organized as follows. In Section 2, we de-
interval [2]. It has been proved to minimize the error proba-scribe the system model. In Section 3, we reformulate the
bility for medium to high signal to noise ratio (SNR) values. MIMO channel with finite input constellation, and we intro-

It can be applied even if the decoding problem is underdeterduce the decoding strategy based/@morm minimization.
mined [3] (for example when the number of transmit anten-This decoding strategy is then applied to two different appl
nas is higher than the number of receive antennas). Howeveayations described in Section 4. The computational require-
its complexity grows exponentially with the constellatg&ire  ments are discussed in Section 5. In Section 6, the simalatio
and the antenna dimensions, and makes it unfeasible in pra@sults enable to evaluate our work. Finally, Section 7 con-
tice. Linear equalizers such as minimum mean square errgiudes the paper.

(MMSE) and zero-forcing (ZF) present rather low complexity

but achieve poor performance when used in underdetermined Notations: boldface upper case letters and boldface lower
MIMO systems. Solutions alternative to ML detection andcase letters denote matrices and vectors, respectivalyh&o
with reduced complexity have been proposed, among whictranspose, transpose conjugate and conjugate matricesewe u
the sphere decoder performs the best provided the searchy”, (.)* and(.)*, respectively||.||, denotes the norn,

ing sphere is well defined. The sphere decoder suffers frormnd® is defined as the Kronecker product.

In this paper, we consider an underdetermined MIMO sys-



2. SYSTEM MODEL whereS = {||y — HBgs|[3 < ¢, andBys = 1y }. The/,-

minimization problems are usually solved using exhaustive
We consider a MIMO transmission over a flat fading channelsearch where all coefficients sfoelong to{0,1}. The N x

where the transmitter and the receiver are equipped With N A/ matrix B, is defined as

andn antennas, respectively. We assume no prior knowledge

of the channel state information (CSl) at the transmittet an B, = Iy®1i (6)
a perfect CSI knowledge at the receiver. The received signal

for MIMO transmission channel is defined as where 1, is the ones vector of length/. The equality
constraintBys = 1y ensures that the solutiaB,s hasN
y=Hzx + z, (1)  nonzero components, and that the decoded symbols belong to
the finite input constellation. The other inequality coastt
where H is ann x N random channel (or mixing) ma- aims to select a codeword within an euclidean less than a con-
trix (n < N), « is the N x 1 data vector, anct is the stante from the received signal. Hence, the problem in (5)
n x 1 circularly symmetric additive Gaussian noise vec-is somehow similar to the ML decoding problem. However,
tor with zero mean and covariane€I. The components in our problem the decoded symbols depend heavily on the
of  belong to a finite alphabet constellation defined ashoice ofe, which in turn depends on the current SNR value.
Q= {q1,4q2, - ,qu}. For example, assuming 4-QAM con- In order to judiciously seleat, we define it as follows
stellation yieldsQ = {1—\};, %, g’, \1/51} and.M =4. o
The goal of our work is to find out an efficient decod- €=Fo(l=7), 7
ing scheme of the transmitted data symbols with moderate ) ) o .
computational complexity order on the whole SNR region.WherEFxg(p2) is the cumulative distribution function of the
To this end, we exploit the fact that the transmitted data vechon-central? distributiony(p*) with d degrees of freedom
tor components belong to a finite alphabet, and we transfor@nd non-central parametgf. The threshold parameters in
the MIMO channel above into an equivalent MIMO chan-our problem are defined as followsg:= 2n due to the com-
nel where the input data vector becomes sparse. The spai@éx noise,p* = (2log(n))o” i.e. the universal threshold,
source vector is then recovered using iterative algorithsos ~ and+y € (0, 1]. Discussion on the optimality of the chosen

ally employed to resolvé; -minimization problems. is given in the Appendix.
When the minimization problem in (5) is solved via an
3. MIMO DECODING SCHEME OF AN exhaustive search, thg complexity grows exponentiallyr wit
EQUIVALENT SPARSE INPUT the number of transmitted symbols per channel use; result-

ing in an NP-hard problem. That is why the authors in [6]
In this section we exploit the fact that transmitted data-sym@ve proposed to replace thgminimization problem by the
bols belong to the finite alphabet &tand we formulate the £1-minimization, and have shown that the equivalence holds

vectorz as when the restricted isometry property (RIE) is [ess than a
small constant. On the other hand, as mentioned in [8], in our
x = Bys, (2) case, the RIP condition is sufficient and not necessary. It is
where also shown that for binary alphabet, when the random mixing
. q matrix satisfiess > /2 the convergence to the optimal solu-
s = [s1, 82, ---, sn], @n tion obtained by the problem in (5) is guaranteed for lakge
si = [I(xi=aq), I(x; =q2), ---, I(x; = qu)], using/; minimization. Thus, more transmitted symbols per
I = B 1 ifa; =g channel use results in a robuster decoding scheme.
(@i = gj) 0 otherwise
B, = In®qum 4. APPLICATIONS
av = [q1,q2, " ,qul 3)

In this section, we apply the decoding scheme based, on
I(z; = g;) is the indicator function indexed by 0,; is the minimiza}Fion to the foIIowing applications) Large MIMO
zeros vector of lengthi/, and B, is a block diagonal matrix Systemsii) Frequency selective MIMO channel.
with dimensionN x N M. Substituting (2) into (1) yields
4.1. large MIMO systems
y=HBgs+ z. (4)
Large MIMO systems, also known as large-scale antenna sys-
The new problem is the decoding of the binary source vectdi€ms, is a research topic proposed recently in communitatio
s, it is equivalent to the following minimization problem theory, antenna systems, and some other fields [9,10]. The in
creased attention is mainly due to their high spectral effici
arg mirj|s||o, subjecttos €S, (5) cies [1]. Large MIMO scheme involves tens to hundreds of



Nxn MIMO for different SNR values, where N=(8/7)n

antennas at the transmitter and the receiver sides. Thelmode 10

is similar to the standard MIMO scheme except that the di- : EE%ENRSB%EEEESB
mensions are larger- Assuming a point-to-point MIMO trans- 10l -5-SD, SNR=14dB
mission in flat fading channel, the received signal is exqeds Lii
as: :

y=Hxz+z=HBs+ z, (8) Ty
where H is then x N channel matrix, anet is the N x 1 ) — =3
data vector. The equivalence between (8) and (1) is obvious. TR ST U S

The decoding problem can be solved using the following min-
imization problem
) ) Fig. 1. Time-run comparison of thé -minimization versus
arg mirj|s||1, subjecttos €. () the Sphere Decoder for different SNR values.

wheresS is given in (5).

. 5. COMPUTATIONAL REQUIREMENTSOF THE
4.2. Frequency Selective MIM O channel ¢1-MINIMIZATION

Another application is the frequency selective MIMO chdnne L _

whereL + 1 multipaths interfere at every channel use. Thell Order to solve/;-minimization problems, different algo-
transmitter and the receiver are equipped wiitandn anten- rithms he_lve been proposed [11]. In this _sectlon we review the
nas, respectively. We consider a transmission over a fram§CMPplexity order of some of these algorithms.

and for every transmitted symbals+ 1 copies are received ~_ 11€ ¢1 minimization algorithms are solvable in polyno-
throughL + 1 different paths. A guard interval is inserted be- M@l time, however, their computational complexity orders
tween consecutive frames to avoid inter-symbol interfegen &€ dissimilar. The authors in [11] have discussed the per-

from one frame to another. The frequency selective channéprmance of some algorithms including: the primal-dual in-
output at instant is expressed as terior point (PDIP) method and the Homothopy method. The

PDIP method requires an average running time that increases
linearly with the projection dimensions. The number of re-
quired iterations i) N)), and each iteration can be ex-
y(n) =) Hiz(n—1)+z=>) HBusn—1)+z ecuted inO(N?) opérat(ion)s). Besides, thig minimization

1=0 1=0 (10 problem requires less computational operations using the H
mothopy method©(In? + InN) wherel is the number of
dterations. However, it entails an accuracy loss .

L L

where H; represents th&" path in the frequency selective
channel. In order to decode the original symbol vector, w
propose a joint detection over the whole frame. Thus, imstea
of applying the decoding procegstimes, one time for each 6. SSIMULATION RESULTS
data vector, we only decode at once a concatenated vector
which consists of all transmitted vectors. The channel rhoddn this section we evaluate the Bit Error Rate (BER) and the
is reformulated as computational complexity of the proposed decoding scheme
. PINT based or?;-minimization. We considelN x n underdeter-

yr, = (InT @ [Hy - Hy|) @ +2, (11)  mined MIMO systemsi{ < N), whereN andn are the num-

. . T . ber of transmit and receive antennas, respectively. The-cha
whereTy = T + L, yr, = [y"(1),--,y"(T)]" i pol coefficients are iid. circular symmetric complex Gaus
the n.Ty x 1 vector ‘_N'th all received vectors stached OV€lsian distributed with zero mean and unit variance, and the
one frame observationy = [z (1),---,="(T)]" and  gata symbols belong to a finite constellation. The number
z=[2T(1),-- ,zT(Tl)}T. of transmitted symbols is equal 19 at one channel use. For

One can notice that the performance of the proposed deur proposed decoding scheme, we use the cvx toolbox which
coding scheme is heavily dependent on the number of multis a Matlab-based modeling system for convex optimization.
paths. So when there are no multipaths, the channel matri@vx employs the SeDuMi solver to solve theminimization
H becomes block diagonal, and the problem of (10) is themproblem under convex constraints [12,13]. We simulate this
equivalent to decoding eacti x 1 data vector independently, system using Matlab 2009b on a CPU Intel Xeon E5620 at
and the joint decoding over the received frame is no longer ex2.40GHz and memory 6GB RAM.
ploited. In contrast, more multipaths results in higheri@ch Fig. 1 compares the time-run of the sphere decoder (SD),
able diversity order implying more reliable joint decodivig  described in [14], to thé;-based decoder. The time-run rep-
¢;-minimization. This explanation is better clarified in sec-resents the average duration that needs a processor toedecod
tion 6. the received signal. We assume a 4-QAM constellation map-



Nxn MIMO single user channel 3x2 MIMO sinlgle user channel

Bit Error Rate
Bit Error Rate

-©-L1-based, 1=2| i
-6-L1-based, 16x14| ) 107k |—+L1-based, 1=3 N SO, ]
10 "t | L1-based, 21x24| = L1-based, 1=4| O\\
—+L1-based, 28x32 107 L1-based, 1=5 e
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igg: ;Ei;j \\x\‘b 107 |-+ Viterbi, 1=3 y

-B-Viterbi, 1=4
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Fig. 2. Performance of thé, -minimization versus the Sphere Fig. 4. Performance of thé,-minimization versus the ML-
decoder for different antenna dimensions in large MIMO sysViterbi decoder for different number of multipaths assugnin

tems BPSK modulations represents the number of multipaths.
1 frequency seiective 332 MIMO channel in Fig. 4. For example, at BER)~2, the gain fluctuates be-
e o e 14 o tween1dB and2.5dB, and at BERLO? the gain fluctuates
't g ] betweerBdB and4dB, for different multi-path number.

Remarks: 1) It is important to mention that despite the
non-optimality of the current Matlab solver, it can always
o : show the increase of the computational complexity order of
the above decoding schemes.
2) The gain obtained over the proposed scheme can be re-
duced using an error-correcting code e.g. turbocode.

Time Run (sec)

4
Number of multipaths

Fig. 3: Time-run comparison of thé -minimization versus
the Viterbi-ML for SNR =14dB, assuming BPSK modulation
7. CONCLUSION

ping known at both the transmitter and the receiver. Ong, this paper we have addressed the problem of decoding in
can notice that using thi-based decoder, the computational yigh dimension MIMO systems with finite constellation. We
complexity keeps almost invariant with the system diment,5ye modeled the transmission as a higher-dimension MIMO
sions and the SNR level, whereas the SD time-run increases$,annel with sparse input vector. We have then defined-an
exponentially with these two factors. For the SD, we do nofyinimization problem to detect the sparse vector. An iteeat

go beyond the x 21 due to a too high computational com- 4jgorithm of polynomial moderate complexity has been used
plexity, which is upper-bounded by (1/7™), wherey € 5 solve the problem. Simulations carried out in the cases
(0,1] [15]..On the other hanq, Fig. 2 |IIustrates§sI|ght perfgr—of large MIMO systems on flat fading channel and MIMO
mance gain of our scheme in the low SNR region. OtherW'SE‘systems on frequency selective channels, where the efficien

i.e. beyondsdB, the SD outperforms the proposed schemeg the proposed decoding scheme has been proved.
For example at BER0~2, we observe a gain of aboitB

with a16 x 14 and of4dB with a24 x 21.

Next, Fig. 3 compares the time-run of our proposed de-
coder to the Viterbi decoder one. The Viterbi algorithm ex-
ploits the channel multi-paths, and achieves optimal perfo
mance over a frequency selective channel. The frame lesgthFrom a general point of view, I&f ©, X be threei-dimensional
equal tol’ = 20, and the constellation mapping is BPSK. Thereal random vectors whet€ ~ N(0, 0l ;) when© and X
computational complexity of the Viterbi decoder is known toare independent and = © + X. Given tolerancer > 0,
grow exponentially with the number of transmit antennas and®Random Distortion Testing (RDT) [16] is the problem of test-
the number of channel multi-pathsas©(2V-7). Thisis con-  ing whether||©(w) — || < 7 or not, when we are givel
sistent with the obtained results in Fig. 3, where the Viterband the probability distribution & is unknown. By analogy
time-run increases from 0.73 seconds foe= 3 to 6.77 sec- with standard terminology in statistical inference, we et
onds forr = 4, whereas the time-run of our proposed scheméhis problem is the testing of the null evefrit® — ;|| < 7 |
remains constant and equal to around 0.25 seconds. Howevagainst the alternative eveht© — 6y|| > 7] on the basis
the Viterbi decoder leads to a BER improvement as illustrate of observationy”. The RDT problem [16] is summarized as

8. APPENDIX



follows:

© and X independent
X NN(O,U2|d),

Null event: [ |© — 6] < 7|,

Alternative event: [ [|© — 6| > 7].

Observation: Y =0 4+ X
RDT:

12)
Given anyn > 0, let 7,, be any thresholding test with
threshold height) defined for any € R? by

ly — 6ol >n

13
ly — 0oll <. (13)

0 ={ o i

Giveny € (0,1] andp > 0, there exists a unique solu-

tion\,(p) = 0iNNto 1~ Fyz(,2)(n°) = v, whereF,z 2 is
the cumulative distribution function of the non-centyaldis-

tribution x(p?) with d degrees of freedom and non-central
parameterp?. In [17], it is then proved that the threshold-

ing testT),_(, with threshold height\, (7) is such that the
conditional probability valueB [Ty (0 +X) =1||© —
bo|| < 7] have supremum equal tg whatever® such that
P[[|© — 6]l < 7] # 0. We thus say thaf, (-, has size
v for RDT. Moreover, it turns out thal,_ (- is optimal for
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