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ABSTRACT

In this paper we address the problem of large dimension de-
coding in MIMO systems. The complexity of the optimal
maximum likelihood detection makes it unfeasible in practice
when the number of antennas, the channel impulse response
length or the source constellation size become too high. We
consider a MIMO system with finite constellation and model
it as a system with sparse signal sources. We formulate the de-
coding problem as an underdetermined sparse source recov-
ering problem and apply theℓ1-minimization to solve it. The
resulting decoding scheme is applied to large MIMO systems
and to frequency selective channel . We also review the com-
putational cost of someℓ1-minimization algorithms. Simula-
tion results show significant improvement compared to other
existing receivers.

1. INTRODUCTION

Multiple input multiple output (MIMO) systems have known
a regain of interest since the mid nineties as a solution to in-
crease the data rate in wireless point-to-point networks atthe
expense of a multi-antenna interference (MAI) [1]. The per-
formance of the MIMO system is conditioned to a clever man-
agement of the MAI. Maximum likelihood joint detection en-
ables to detect at once the signals transmitted in the same time
interval [2]. It has been proved to minimize the error proba-
bility for medium to high signal to noise ratio (SNR) values.
It can be applied even if the decoding problem is underdeter-
mined [3] (for example when the number of transmit anten-
nas is higher than the number of receive antennas). However,
its complexity grows exponentially with the constellationsize
and the antenna dimensions, and makes it unfeasible in prac-
tice. Linear equalizers such as minimum mean square error
(MMSE) and zero-forcing (ZF) present rather low complexity
but achieve poor performance when used in underdetermined
MIMO systems. Solutions alternative to ML detection and
with reduced complexity have been proposed, among which
the sphere decoder performs the best provided the search-
ing sphere is well defined. The sphere decoder suffers from

three major weaknesses. First its performance depends on
the searching sphere radius value. Secondly it is based on
an iterative algorithm and the required iteration number isnot
bounded. Thirdly, the computation cost keeps high in the low-
to-medium SNR region and for large MIMO dimensions [4].

In this paper, we consider an underdetermined MIMO sys-
tem with finite constellations. We aim to find an efficient de-
coder with polynomial time complexity . We adapt the detec-
tion algorithm that we have proposed in [5] to the underdeter-
mined MIMO decoding problem. The first step is the trans-
formation of the MIMO channel with input belonging to a
finite alphabet into an equivalent higher-dimensional MIMO
channel with sparse input vector. Then the decoding prob-
lem becomes equivalent to theℓ0-norm minimization prob-
lem subject to some constraints that we define. This prob-
lem is usually solved using exhaustive search; also NP-hard.
On the other hand, theℓ0-norm minimization problem can be
relaxed byℓ1-norm minimization [6]. Based on this relax-
ation, the transmitted data can be decoded or recovered using
iterative algorithms reviewed in [6, 7]. In addition, we show
the performance of the proposed decoding scheme for the fol-
lowing applicationsi) large MIMO systems, andii) frequency
selective MIMO channel.

This paper is organized as follows. In Section 2, we de-
scribe the system model. In Section 3, we reformulate the
MIMO channel with finite input constellation, and we intro-
duce the decoding strategy based onℓ1-norm minimization.
This decoding strategy is then applied to two different appli-
cations described in Section 4. The computational require-
ments are discussed in Section 5. In Section 6, the simulation
results enable to evaluate our work. Finally, Section 7 con-
cludes the paper.

Notations: boldface upper case letters and boldface lower
case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate matrices we use
(.)T , (.)H and (.)∗, respectively,||.||p denotes the normℓp

and⊗ is defined as the Kronecker product.



2. SYSTEM MODEL

We consider a MIMO transmission over a flat fading channel,
where the transmitter and the receiver are equipped withN
andn antennas, respectively. We assume no prior knowledge
of the channel state information (CSI) at the transmitter and
a perfect CSI knowledge at the receiver. The received signal
for MIMO transmission channel is defined as

y = Hx + z, (1)

where H is an n × N random channel (or mixing) ma-
trix (n < N ), x is the N × 1 data vector, andz is the
n × 1 circularly symmetric additive Gaussian noise vec-
tor with zero mean and covarianceσ2I. The components
of x belong to a finite alphabet constellation defined as
Q = {q1, q2, · · · , qM}. For example, assuming 4-QAM con-
stellation yieldsQ = { 1+i√

2
, 1−i√

2
, −1+i√

2
, −1−i√

2
} andM = 4.

The goal of our work is to find out an efficient decod-
ing scheme of the transmitted data symbols with moderate
computational complexity order on the whole SNR region.
To this end, we exploit the fact that the transmitted data vec-
tor components belong to a finite alphabet, and we transform
the MIMO channel above into an equivalent MIMO chan-
nel where the input data vector becomes sparse. The sparse
source vector is then recovered using iterative algorithmsusu-
ally employed to resolveℓ1-minimization problems.

3. MIMO DECODING SCHEME OF AN
EQUIVALENT SPARSE INPUT

In this section we exploit the fact that transmitted data sym-
bols belong to the finite alphabet setQ, and we formulate the
vectorx as

x = Bqs, (2)

where

s = [s1, s2, · · · , sN ]T , and

si = [I(xi = q1), I(xi = q2), · · · , I(xi = qM )],

I(xi = qj) =

{

1 if xi = qj

0 otherwise

Bq = IN ⊗ qM

qM = [q1, q2, · · · , qM ]. (3)

I(xi = qj) is the indicator function indexed byi, 0M is the
zeros vector of lengthM , andBq is a block diagonal matrix
with dimensionN × NM . Substituting (2) into (1) yields

y = HBqs + z. (4)

The new problem is the decoding of the binary source vector
s, it is equivalent to the following minimization problem

arg min||s||0, subject tos ∈ S, (5)

whereS =
{

||y − HBqs||22 < ǫ, andB1s = 1N

}

. Theℓ0-
minimization problems are usually solved using exhaustive
search where all coefficients ofs belong to{0, 1}. TheN ×
NM matrixB1 is defined as

B1 = IM ⊗ 1
T
M (6)

where 1M is the ones vector of lengthM . The equality
constraintB1s = 1N ensures that the solutionBqs hasN
nonzero components, and that the decoded symbols belong to
the finite input constellation. The other inequality constraint
aims to select a codeword within an euclidean less than a con-
stantǫ from the received signal. Hence, the problem in (5)
is somehow similar to the ML decoding problem. However,
in our problem the decoded symbols depend heavily on the
choice ofǫ, which in turn depends on the current SNR value.
In order to judiciously selectǫ, we define it as follows

ǫ = F−1
χ2

d
(ρ2)

(1 − γ), (7)

whereFχ2

d
(ρ2) is the cumulative distribution function of the

non-centralχ2 distributionχ2
d(ρ

2) with d degrees of freedom
and non-central parameterρ2. The threshold parameters in
our problem are defined as follows:d = 2n due to the com-
plex noise,ρ2 = (2 log(n))σ2 i.e. the universal threshold,
andγ ∈ (0, 1]. Discussion on the optimality of the chosenǫ
is given in the Appendix.

When the minimization problem in (5) is solved via an
exhaustive search, the complexity grows exponentially with
the number of transmitted symbols per channel use; result-
ing in an NP-hard problem. That is why the authors in [6]
have proposed to replace theℓ0-minimization problem by the
ℓ1-minimization, and have shown that the equivalence holds
when the restricted isometry property (RIP) is less than a
small constant. On the other hand, as mentioned in [8], in our
case, the RIP condition is sufficient and not necessary. It is
also shown that for binary alphabet, when the random mixing
matrix satisfiesn ≥ N/2 the convergence to the optimal solu-
tion obtained by the problem in (5) is guaranteed for largeN
usingℓ1 minimization. Thus, more transmitted symbols per
channel use results in a robuster decoding scheme.

4. APPLICATIONS

In this section, we apply the decoding scheme based onℓ1-
minimization to the following applications:i) Large MIMO
systems,ii) Frequency selective MIMO channel.

4.1. large MIMO systems

Large MIMO systems, also known as large-scale antenna sys-
tems, is a research topic proposed recently in communication
theory, antenna systems, and some other fields [9,10]. The in-
creased attention is mainly due to their high spectral efficien-
cies [1]. Large MIMO scheme involves tens to hundreds of



antennas at the transmitter and the receiver sides. The model
is similar to the standard MIMO scheme except that the di-
mensions are larger. Assuming a point-to-point MIMO trans-
mission in flat fading channel, the received signal is expressed
as:

y = Hx + z = HBqs + z, (8)

whereH is then × N channel matrix, andx is theN × 1
data vector. The equivalence between (8) and (1) is obvious.
The decoding problem can be solved using the following min-
imization problem

arg min||s||1, subject tos ∈ S. (9)

whereS is given in (5).

4.2. Frequency Selective MIMO channel

Another application is the frequency selective MIMO channel
whereL + 1 multipaths interfere at every channel use. The
transmitter and the receiver are equipped withN andn anten-
nas, respectively. We consider a transmission over a frame,
and for every transmitted symbolsL + 1 copies are received
throughL+1 different paths. A guard interval is inserted be-
tween consecutive frames to avoid inter-symbol interference
from one frame to another. The frequency selective channel
output at instantn is expressed as

y(n) =

L
∑

l=0

Hlx(n − l) + z =

L
∑

l=0

HlBas(n − l) + z,

(10)
whereHl represents thelth path in the frequency selective
channel. In order to decode the original symbol vector, we
propose a joint detection over the whole frame. Thus, instead
of applying the decoding processT times, one time for each
data vector, we only decode at once a concatenated vector
which consists of all transmitted vectors. The channel model
is reformulated as

yT1
=

(

IN.T ⊗
[

HT
0 · · ·HT

L

])T
.x + z, (11)

where T1 = T + L, yT1
=

[

yT (1), · · · ,yT (T1)
]T

is
the n.T1 × 1 vector with all received vectors stacked over
one frame observation,x =

[

xT (1), · · · ,xT (T )
]T

and

z =
[

zT (1), · · · ,zT (T1)
]T

.
One can notice that the performance of the proposed de-

coding scheme is heavily dependent on the number of multi-
paths. So when there are no multipaths, the channel matrix
H becomes block diagonal, and the problem of (10) is then
equivalent to decoding eachN ×1 data vector independently,
and the joint decoding over the received frame is no longer ex-
ploited. In contrast, more multipaths results in higher achiev-
able diversity order implying more reliable joint decodingvia
ℓ1-minimization. This explanation is better clarified in sec-
tion 6.
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Fig. 1: Time-run comparison of theℓ1-minimization versus
the Sphere Decoder for different SNR values.

5. COMPUTATIONAL REQUIREMENTS OF THE
ℓ1-MINIMIZATION

In order to solveℓ1-minimization problems, different algo-
rithms have been proposed [11]. In this section we review the
complexity order of some of these algorithms.

The ℓ1 minimization algorithms are solvable in polyno-
mial time, however, their computational complexity orders
are dissimilar. The authors in [11] have discussed the per-
formance of some algorithms including: the primal-dual in-
terior point (PDIP) method and the Homothopy method. The
PDIP method requires an average running time that increases
linearly with the projection dimensions. The number of re-
quired iterations isO(

√

(N)), and each iteration can be ex-
ecuted inO(N3) operations. Besides, theℓ1 minimization
problem requires less computational operations using the Ho-
mothopy method,O(In2 + InN) whereI is the number of
iterations. However, it entails an accuracy loss .

6. SIMULATION RESULTS

In this section we evaluate the Bit Error Rate (BER) and the
computational complexity of the proposed decoding scheme
based onℓ1-minimization. We considerN × n underdeter-
mined MIMO systems (n < N ), whereN andn are the num-
ber of transmit and receive antennas, respectively. The chan-
nel coefficients are i.i.d. circular symmetric complex Gaus-
sian distributed with zero mean and unit variance, and the
data symbols belong to a finite constellation. The number
of transmitted symbols is equal toN at one channel use. For
our proposed decoding scheme, we use the cvx toolbox which
is a Matlab-based modeling system for convex optimization.
Cvx employs the SeDuMi solver to solve theℓ1 minimization
problem under convex constraints [12, 13]. We simulate this
system using Matlab 2009b on a CPU Intel Xeon E5620 at
2.40GHz and memory 6GB RAM.

Fig. 1 compares the time-run of the sphere decoder (SD),
described in [14], to theℓ1-based decoder. The time-run rep-
resents the average duration that needs a processor to decode
the received signal. We assume a 4-QAM constellation map-
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Fig. 2: Performance of theℓ1-minimization versus the Sphere
decoder for different antenna dimensions in large MIMO sys-
tems
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Fig. 3: Time-run comparison of theℓ1-minimization versus
the Viterbi-ML for SNR =14dB, assuming BPSK modulation

ping known at both the transmitter and the receiver. One
can notice that using theℓ1-based decoder, the computational
complexity keeps almost invariant with the system dimen-
sions and the SNR level, whereas the SD time-run increases
exponentially with these two factors. For the SD, we do not
go beyond the24 × 21 due to a too high computational com-
plexity, which is upper-bounded byO(MγN ), whereγ ∈
(0, 1] [15]. On the other hand, Fig. 2 illustrates a slight perfor-
mance gain of our scheme in the low SNR region. Otherwise,
i.e. beyond8dB, the SD outperforms the proposed scheme.
For example at BER10−2, we observe a gain of about5dB
with a16 × 14 and of4dB with a24 × 21.

Next, Fig. 3 compares the time-run of our proposed de-
coder to the Viterbi decoder one. The Viterbi algorithm ex-
ploits the channel multi-paths, and achieves optimal perfor-
mance over a frequency selective channel. The frame length is
equal toT = 20, and the constellation mapping is BPSK. The
computational complexity of the Viterbi decoder is known to
grow exponentially with the number of transmit antennas and
the number of channel multi-pathsτ asO(2N.τ ). This is con-
sistent with the obtained results in Fig. 3, where the Viterbi
time-run increases from 0.73 seconds forτ = 3 to 6.77 sec-
onds forτ = 4, whereas the time-run of our proposed scheme
remains constant and equal to around 0.25 seconds. However,
the Viterbi decoder leads to a BER improvement as illustrated
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Fig. 4: Performance of theℓ1-minimization versus the ML-
Viterbi decoder for different number of multipaths assuming
BPSK modulation.τ represents the number of multipaths.

in Fig. 4. For example, at BER10−2, the gain fluctuates be-
tween1dB and2.5dB, and at BER10−3 the gain fluctuates
between3dB and4dB, for different multi-path number.

Remarks: 1) It is important to mention that despite the
non-optimality of the current Matlab solver, it can always
show the increase of the computational complexity order of
the above decoding schemes.
2) The gain obtained over the proposed scheme can be re-
duced using an error-correcting code e.g. turbocode.

7. CONCLUSION

In this paper we have addressed the problem of decoding in
high dimension MIMO systems with finite constellation. We
have modeled the transmission as a higher-dimension MIMO
channel with sparse input vector. We have then defined anℓ1-
minimization problem to detect the sparse vector. An iterative
algorithm of polynomial moderate complexity has been used
to solve the problem. Simulations carried out in the cases
of large MIMO systems on flat fading channel and MIMO
systems on frequency selective channels, where the efficiency
of the proposed decoding scheme has been proved.

8. APPENDIX

From a general point of view, letY,Θ,X be threed-dimensional
real random vectors whereX ∼ N(0, σ2Id) whenΘ andX
are independent andY = Θ + X. Given toleranceτ > 0,
Random Distortion Testing (RDT) [16] is the problem of test-
ing whether‖Θ(ω) − θ0‖ 6 τ or not, when we are givenY
and the probability distribution ofΘ is unknown. By analogy
with standard terminology in statistical inference, we saythat
this problem is the testing of the null event

[

‖Θ − θ0‖ 6 τ
]

against the alternative event
[

‖Θ − θ0‖ > τ
]

on the basis
of observationY . The RDT problem [16] is summarized as



follows:

RDT:















Observation: Y = Θ + X

{

Θ andX independent,
X ∼ N(0, σ2Id),

Null event:
[

‖Θ − θ0‖ 6 τ
]

,
Alternative event:

[

‖Θ − θ0‖ > τ
]

.
(12)

Given anyη > 0, let Tη be any thresholding test with
threshold heightη defined for anyy ∈ R

d by

Tη(y) =

{

1 if ‖y − θ0‖ > η
0 if ‖y − θ0‖ 6 η.

(13)

Given γ ∈ (0, 1] andρ > 0, there exists a unique solu-
tion λγ(ρ) > 0 in η to 1−Fχ2

d
(ρ2)(η

2) = γ, whereFχ2

d
(ρ2) is

the cumulative distribution function of the non-centralχ2 dis-
tribution χ2

d(ρ
2) with d degrees of freedom and non-central

parameterρ2. In [17], it is then proved that the threshold-
ing testTλγ(τ) with threshold heightλγ(τ) is such that the
conditional probability valuesP

[

Tλγ(τ)(Θ + X) = 1
∣

∣ ‖Θ−

θ0‖ 6 τ
]

have supremum equal toγ, whateverΘ such that
P

[

‖Θ − θ0‖ 6 τ
]

6= 0. We thus say thatTλγ(τ) has size
γ for RDT. Moreover, it turns out thatTλγ(τ) is optimal for
RDT among all tests with same size in the following sense:
1) Save for values ofρ in some subsetD ⊂ (τ,∞) such
that P

[

‖Θ − θ0‖ ∈ D
]

= 0, the conditional probability
P

[

Tλγ(τ)(Θ + X) = 1
∣

∣ ‖Θ − θ0‖ = ρ
]

does not depend
on the distribution ofΘ for every ρ ∈ (τ,∞) \ D and 2)
P

[

Tλγ(τ)(Θ + X) = 1
∣

∣ ‖Θ − θ0‖ = ρ
]

> P
[

T(Θ + X) =

1
∣

∣ ‖Θ − θ0‖ = ρ
]

for all testT with level γ and such that
P

[

T(Θ + X) = 1
∣

∣ ‖Θ − θ0‖ = ρ
]

does not depend on
the distribution ofΘ either. In other words, with respect to
some criterion suitable for the natural invariance exhibited by
RDT on the spheres centered atθ0 in R

d, thresholding tests
Tλγ(τ) are optimal.
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