Dominique Lépingle 
  
Oblique repulsion in the nonnegative quadrant

We consider the differential system ẋ = α/x + β/y, ẏ = γ/x + δ/y in the nonnegative quadrant. Here α and δ are positive, β and γ are real constants. Under some condition on the constants there exists a unique global solution. The main difficulty is to prove uniqueness when starting at the corner of the quadrant.

1 Introduction.

We are interested in the question of existence and uniqueness of the solution u(.) = (x(.), y(.)) to the following integral system x(t) = x + α (2) for any t ≥ 0. Here α, β, γ and δ are four real constants with α > 0 and δ > 0.

The system has a single singularity at each side of the nonnegative quadrant S = {(x, y) : x ≥ 0, y ≥ 0} and a double singularity at the corner 0 = (0, 0). We write S • := S \ {0} for the punctured quadrant.

We will note ẋ(t) the derivative dx(t)/dt. So the integral system (1) may be written as an initial-value problem ẋ

= α x + β y ẏ = γ x + δ y (3)
with the inital condition (x(0), y(0)) ∈ S.

We first remark that if β < 0, γ < 0 and αδ < βγ, there exist λ > 0 and µ > 0 such that λα + µγ < 0 and λβ + µδ < 0. Thus z(t) := λx(t) + µy(t) is decreasing, min (x(t), y(t)) → 0 and ż(t) → -∞ as t → t f where t f < ∞ and there is no solution. If β < 0, γ < 0 and αδ = βγ, then v(t) := αy(t) -γx(t) remains equal to αy -γx and there is a unique solution (x(t), y(t)) that converges to ( γx-αy β+γ , βy-δx β+γ ) except if (x, y) = 0 in which case there is no solution.

From now on we will make the following hypothesis:

(H) max (β, γ) ≥ 0 or βγ < αδ.

This is equivalent to the existence of λ ≥ 0 and µ ≥ 0 such that λα+ µγ > 0 and λβ + µδ > 0. This last formulation amounts to saying that the matrix

A = α β γ δ
is an S-matrix in the terminology of [START_REF] Fiedler | Some generalizations of positive definiteness and monotonicity[END_REF]. In the sequel, we fix a pair (λ, µ) with λ > 0, µ > 0, such that λα + µγ > 0 and λβ + µδ > 0.

The aim of this note is to prove the following result.

Theorem 1 Under condition (H), there exists a unique solution to (1) for any starting point (x, y) ∈ S.

2 Some preliminary lemmata.

We begin with a comparison lemma.

Lemma 2 Let x 1 and x 2 be nonnegative continuous functions on [0, ∞) which are solutions to the system

x 1 (t) = v 1 (t) + α t 0 ds x 1 (s) x 2 (t) = v 2 (t) + α t 0 ds x 2 (s)
where α > 0, v 1 and v 2 are continuous functions such that 0

≤ v 1 (0) ≤ v 2 (0), and v 2 -v 1 is nondecreasing. Then x 1 ≤ x 2 on [0, ∞).
Proof. Assume there exists t > 0 such that x 1 (t) > x 2 (t). Set

τ := max {s ≤ t : x 1 (s) ≤ x 2 (s)}. Then x 2 (t) -x 1 (t) = x 2 (τ ) -x 1 (τ ) + (v 2 (t) -v 1 (t)) -(v 2 (τ ) -v 1 (τ )) + α t τ ( 1 x 2 (s) -1 x 1 (s) )ds ≥ 0, a contradiction. Lemma 3 Let the system ẋ = α x + φ(x, z) ż = ψ(x, z) (4) 
with x(0) = x 0 ≥ 0, z(0) = z 0 ∈ R, α > 0, φ and ψ two Lipschitz functions on R + × R, and |φ| ≤ c for some c < ∞. Then there exists a unique solution to (4). Moreover, for this solution, x(t) > 0 for any t > 0.

Proof. Assume first x 0 > 0. Then the system (4) is Lipschitz on [min {x 0 , α c }, ∞) × R and the solution does not step out of this domain, so there is a unique global solution. When x 0 = 0, we let w 0 (t) = 0, z 0 (t) = z 0 and for n ≥ 1

w n (t) = 2αt + 2 t 0 w n-1 (s) φ( w n-1 (s), z n-1 (s))ds z n (t) = z 0 + t 0 ψ( w n-1 (s), z n-1 (s))ds. Let M > 0 and assume |w n-1 (t)| ≤ M on some interval [0, T ]. Then, for 0 ≤ t ≤ T , |w n (t)| ≤ T (2α + 2c √ M )
and this is again ≤ M for T small enough. We also have |z n (t)| ≤ M ′ for any n ≥ 0 for T small enough. Equicontinuity of (w n , z n ) n≥0 is easily verified and from the Arzela-Ascoli theorem it follows there exists a subsequence (w

n k , z n k ) converging on [0, T ] to a solution (w, z) of the system ẇ = 2α + 2 √ w φ( √ w, z) ż = ψ( √ w, z) (5) 
with the initial conditions w(0

) = 0, z(0) = z 0 . For small T , ẇ > 0 on [0, T ]. Set now x(t) = w(t). Then (x, z) is a solution to (4) on [0, T ] with x(T ) > 0.
We may extend the solution to [0, ∞) by using the above result with x 0 > 0.

We now prove uniqueness. Let (x, z) and (x ′ , z ′ ) be two solutions of (4). Then

(x(t) -x ′ (t)) 2 + (z(t) -z ′ (t)) 2 = 2α t 0 (x(s) -x ′ (s))( 1 x(s) -1 x ′ (s) )ds + 2 t 0 (x(s) -x ′ (s))(φ(x(s), z(s)) -φ(x ′ (s), z ′ (s)))ds +2 t 0 (z(s) -z ′ (s))(ψ(x(s), z(s)) -ψ(x ′ (s), z ′ (s)))ds ≤ 4L t 0 ((x(s) -x ′ (s)) 2 + (z(s) -z ′ (s)) 2 )ds
where L is the Lipschitz constant of φ and ψ. Uniqueness follows from Gronwall's inequality.

Lemma 4 Let u(.) = (x(.), y(.)) be a solution to [START_REF] Fiedler | Some generalizations of positive definiteness and monotonicity[END_REF] and let ν = (λ, µ). Then the function z(t) := ν.u(t) = λx(t) + µy(t) is increasing on [0, ∞) and we have u(t) ∈ S • for any t > 0.

Proof. Recall that condition (H) is in force. We easily check that ż(t) is positive.

3 Existence. Case x = 0, y = 0.

There is an explicit solution to (1) when the starting point is the corner.

Proposition 5 There is a solution to (1) with initial condition 0 given by

x(t) = c √ t y(t) = d √ t (6) 
where c = (2α + β δ (β -γ + (β -γ) 2 + 4αδ)) 1/2 d = (2δ + γ α (γ -β + (β -γ) 2 + 4αδ)) 1/2 . ( 7 
)
Proof. Writing down x(t) = c √ t and y(t) = d √ t we have to solve the system

c 2 = α c + β d d 2 = γ c + δ d ;
We first compute

d c = γ -β + (β -γ) 2 + 4αδ 2α (8)
and then obtain (7) provided that

C = 2α + β δ (β -γ + (β -γ) 2 + 4αδ) D = 2δ + γ α (γ -β + (β -γ) 2 + 4αδ)
are positive. If β ≥ 0, C is clearly positive. This is also true if β < 0 and βγ < αδ since C may be written

C = 4α(αδ -βγ) 2αδ -βγ + β 2 -β 4(αδ -βγ) + (β + γ) 2 .
The proof for D is similar. Uniqueness in this case is more involved and will be treated in the last section. We only remark for the moment that the system (3) with α = δ = 0, β > 0, γ > 0 and initial value 0 has a one-parameter family of solutions.

Angular behavior.

We are now in a position to study the behavior of y(t)

x(t) . For any u = (x, y) ∈ S • we set

θ(u) = arctan y x .
We also set

u * = (x * , y * ) := c λc + µd , d λc + µd .
Proposition 6 Let u(.) be a solution to (1) starting at u = (x, y) ∈ S • . Then for any t > 0 1.

dθ(u(t)) dt

> 0 and θ(u(t)

) < θ(u * ) if θ(u) < θ(u * ) dθ(u(t)) dt = 0 and θ(u(t)) = θ(u * ) if θ(u) = θ(u * ) dθ(u(t)) dt < 0 and θ(u(t)) > θ(u * ) if θ(u) > θ(u * ).

2.

x(t) ≥ min x, c λx+µy λc+µd y(t) ≥ min y, d λx+µy λc+µd .

Proof. From Lemma 4 we know that u(t) ∈ S • for any t ≥ 0.

1. We compute

dθ(u(t)) dt = 1 x 2 (t) + y 2 (t) d c - y(t) x(t) α + x(t)(β -γ + (β -γ) 2 + 4αδ) 2y(t) (10) 
and the conclusion follows.

2. Let a, b ∈ S • with 0 ≤ θ(a) < θ(u * ), θ(u * ) < θ(b) ≤ π 2 and let l > 0. We set 

A = {v ∈ S • : θ(a) ≤ θ(v) ≤ θ(u * )} B = {v ∈ S • : θ(b) ≥ θ(v) ≥ θ(u * )}. ( 11 
)

Same estimations for y(t).

Corollary 7 Let u(.) be a solution to [START_REF] Fiedler | Some generalizations of positive definiteness and monotonicity[END_REF]. Then

lim t→∞ θ(u(t)) = θ(u * ), i.e. lim t→∞ y(t) x(t) = d c .
Proof. If u = (x, y) ∈ S • , this is an easy consequence of (10). If u = (0, 0) we may apply Lemma 4 and then (10).

5 Existence and uniqueness. Case x > 0, y > 0.

Proposition 8 There exists a unique solution u(.) to (1) starting at u = (x, y) with x > 0, y > 0. It satisfies x(t) > 0, y(t) > 0 for any t ≥ 0.

Proof. We now assume θ(a) > 0 and θ(b) < π 2 in (11). Let l > 0 and ν = (λ, µ). We set L := {v ∈ S • : ν.v ≥ l}. From Lemma 4 and Proposition 6 we know that any solution starting from A ∩ L stays in A ∩ L, and the same is true for B ∩ L. As the system is Lipschitz in A ∩ L and in B ∩ L, there is a unique global solution to (1) in both cases.

6 Existence and uniqueness. Case x = 0, y > 0.

Proposition 9 There exists a unique solution u(.) to (1) starting at u = (x, y) with x = 0, y > 0. It satisfies x(t) > 0, y(t) > 0 for any t > 0.

Proof. Let ε ∈ (0, y µd λc+µd ). We define on R + × R ψ ε (x, z) := 1 max (γx + z, αε) .

We apply Lemma 3 to obtain a unique solution x ε (.), z ε (.) to

x ε (t) = α t 0 ds xε(s) + α m β t 0 ψ ε (x ε (s), z ε (s))ds z ε (t) = αy + α(αδ -βγ) t 0 ψ ε (x ε (s), z ε (s))ds. (12) Let y ε (t) = 1 α (γx ε (t) + z ε (t)) τ y (ε) = inf {t > 0 : y ε (t) < ε}.
On the interval [0, τ y (ε)], (x ε (.), y ε (.)) is the unique solution to [START_REF] Fiedler | Some generalizations of positive definiteness and monotonicity[END_REF]. From (9) we know that y ε (t) > ε on this interval. Thus τ y (ε)) = ∞ and (x(.), y(.)) := (x ε (.), y ε (.)) is the unique global solution to (1).

Path behavior.

Let us note u(t, u 0 ) the solution to (1) starting at u 0 ∈ S • . Using Gronwall's inequality as in the proof of uniqueness, it is easily seen that for any t > 0 the solution u(t, u 0 ) continuously depends on the initial condition u 0 . It has the Scaling Property:

(SC) u(r 2 t, u 0 ) = ru(t, u 0 r )
for any r > 0, t ≥ 0, u 0 ∈ S • . Using Lemma 4 we also note that any solution u(.) to ( 1) has the Semi-group Property:

(SG) u(s + t) = u(t, u(s))
for any s > 0 and t ≥ 0. With Proposition 8 and Proposition 9 this entails that x(t) > 0 and y(t) > 0 for any t > 0. We now set for any r > 0:

L r := {u = (x, y) : x > 0, y > 0, ν.u = r} L r := {u = (x, y) : x ≥ 0, y ≥ 0, ν.u = r}
Lemma 10 Let u(.) be a solution to (1) starting at u 0 ∈ S with ν.u 0 ≤ r. We set τ (r) := inf {t ≥ 0 : ν.u(t) = r}.

Then

τ (r) ≤ r 2 2[λ(λα + µγ) + µ(λβ + µδ)] .
Proof. Set z(t) := ν.u(t).

As

z(t) = ν.u 0 + [λ(λα + µγ) + µ(λβ + µδ)] t 0 ds z(s) + t 0 f (s)ds with f (s) = µ(λα + µγ) y(s) x(s) + λ(λβ + µδ) x(s) y(s) > 0
for s > 0, it follows from Lemma 2 that z(t) ≥ w(t) where

w(t) = ν.u 0 + [λ(λα + µγ) + µ(λβ + µδ)] t 0 ds w(s) ,
and then

z 2 (t) ≥ w 2 (t) = 2[λ(λα + µγ) + µ(λβ + µδ)]t + (ν.u 0 ) 2 .
The conclusion follows. We now define q : L 1 → L 1 by

q(u 1 ) = 1 2 u(τ (2), u 1 )
where

τ (2) = inf {t ≥ 0 : ν.u(t, u 1 ) = 2} (13) 
is finite from the above Lemma. Let now r > 0 and u ∈ L r . From (SC), the geometric paths in S of u(., u) and ru(., u r ) are identical. Therefore

u(τ (2r), u) = ru(τ (2), u r )
where in this equality τ (2r) is relative to u(., u) and τ (2) is relative to u(., u r ). Thus

q( u r ) = 1 2r u(τ (2r), u).
Iterating and using (SG), we get for any n ≥ 1

q n ( u r ) = 1 2 n r u(τ (2 n r), u). ( 14 
)
Proposition 11 There exists k ∈ (0, 1) such that for any

u 1 ∈ L 1 |q(u 1 ) -u * | ≤ k |u 1 -u * |.
Proof. From Proposition 6 we know that q has a unique invariant point u * . We consider the solution u(t, u 1 ) = (x(t), y(t)) on the time interval [0, τ (2)], where τ (2) was defined in (13).

We first assume that

y 1 x 1 < y * x * = d c .
We note for further use that

x * < x 1 ≤ 1 λ 0 ≤ y 1 < y * < 1 µ .
We set

u 2 = (x 2 , y 2 ) := u 1 + (αy 1 + βx 1 , γy 1 + δx 1 ) λ(αy 1 + βx 1 ) + µ(γy 1 + δx 1 )
.

Then, 2u * , u * + u 1 and u 2 ∈ L 2 . Setting for z ∈ [0, ∞] h(z) = γz + δ αz + β we compute dh dz (z) = βγ -αδ (αz + β) 2 . ( 15 
)
From Proposition 6 we know that for any t ∈ [0, τ (2)]

y(t) x(t) < d c . (16) 
When αδ > βγ, it follows from (15) and ( 16) that

ẏ(t) ẋ(t) = h( y(t) x(t) ) > h( d c ) = d c
and then 2q(u 1 ) belongs to the open interval (2u * , u * + u 1 ) on L 2 . Therefore,

|2q(u 1 ) -2u * | < |u 1 -u * |.
When αδ = βγ, the path of the solution is a straight half-line with slope d c and

|2q(u 1 ) -2u * | = |u 1 -u * |.
When αδ < βγ, ẏ(t) ẋ(t) is increasing on [0, τ (2)] and then

γy 1 + δx 1 αy 1 + βx 1 ≤ ẏ(t) ẋ(t) < d c .
As a result, 2q(u 1 ) belongs to the open interval (u * + u 1 , u 2 ) on L 2 . Moreover, using the relation λx 1 + µy 1 = 1 twice, we get

2x 1 -x(τ (2)) > 2x 1 -x 2 = x 1 - αy 1 +βx 1 λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 ) = αλx 1 y 1 +βλx 2 1 +γµx 1 y 1 +δµx 2 1 -αy 1 -βx 1 λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 ) = µ -αy 2 1 +(γ-β)x 1 y 1 +δx 2 1 λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 ) = αµ λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 ) (x 1 d c -y 1 ) y 1 + β-γ+ √ (β-γ) 2 +4αδ 2α x 1 = α(λc+µd) c[λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 )] (x 1 -x * ) y 1 + β-γ+ √ (β-γ) 2 +4αδ 2α
x 1 .

In the same way,

y(τ (2)) -2y 1 > y 2 -2y 1 = α(λc+µd) c[λ(αy 1 +βx 1 )+µ(γy 1 +δx 1 )] (y * -y 1 ) y 1 + β-γ+ √ (β-γ) 2 +4αδ 2α x 1 .
Setting 8 Uniqueness. Case x = 0, y = 0.

k 1 = λµ(β-γ+ √ (β-γ) 2 +4αδ) 4[λ(λα+µγ)+µ(λβ+µδ)] > 0 we obtain |2q(u 1 ) -2u 1 | > 2k 1 |u 1 -u * | and 
Existence was proven in Section 3. We may now conclude the proof of Theorem 1.

Proposition 12 The solution given by ( 6) is the unique solution to (1) starting at 0.

Proof. Let u(.) be a solution to (1) starting at 0. For any n ≥ 1 and s > 0, u(τ (s)) = u(τ (s), u(τ (s2 -n )))

where τ (s) in the l.h.s. is relative to u(.) and τ (s) in the r.h.s. is relative to u(., u(τ (s2 -n ))).

We may apply (14) with r = s2 -n and u = u(τ (s2 -n )). We obtain

u(τ (s)) s = q n ( u(τ (s2 -n )) s2 -n ).
From Proposition 11 (or directly from (10) it follows that the r.h.s. converges to u * as n → ∞. Thus for any s > 0 u(τ (s)) s = u * and this implies y(τ (s))

x(τ (s)) = d c .

From Lemma 10 we know that τ is one-to-one from [0, ∞) to [0, ∞) , and thus for any t > 0,

y(t) x(t) = d c .
Going back to the system (1) we conclude that

x(t) = c √ t y(t) = d √ t.

  x(.) and y(.) are continuous functions from [0, ∞) to [0, ∞) with the conditions t 0 1 I {x(s)=0} ds = 0 t 0 1 I {y(s)=0} ds = 0 t 0 1 I {x(s)>0} ds x(s) < ∞ t 0 1 I {y(s)>0} ds y(s) < ∞

then |q(u 1 )

 1 u * | = |u 1u * | -|q(u 1 )u 1 | < (1 -k 1 ) |u 1u * |. If now y 1 x 1 > d c, in the same way there exists k 2 > 0 such that|q(u 1 )u * | < (1 -k 2 ) |u 1u * |We may take k = 1 -min(k 1 , k 2 )

  It follows from above that any solution starting from A stays in A, and the same is true for B. If u ∈ A,

		x(t) ≥ -	µ λ	y(t) + (x +	µ λ	y) ≥ -	µd λc	x(t) + x +	µ λ	y
	and therefore					x(t) ≥ c	λx + µy λc + µd	.
	If u ∈ B,	x(t) ≥	x y	y(t) ≥	x y	(-	λ µ	x(t) +	λx + µy µ	)
	and therefore									
						x(t) ≥ x.