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STATISTICAL SIGNIFICANCE OF MOLECULAR SEQUENCE

FEATURES
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CELLIER, D., CHARLOT, D.,∗∗ University of Rouen

Abstract

Using random walk theory, we first establish explicitly the exact distribution

of the maximal partial sum of a sequence of independent and identically dis-

tributed random variables. This result allows us to obtain a new approximation

of the distribution of the local score of one sequence. This approximation

improves the one given par Karlin et al., which can be deduced from this new

formula. We obtain a more accurate asymptotic expression with additional

terms. Examples of application are given.
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1. Introduction

Molecular sequence analysis has become an important tool in molecular biology. Deter-

mining what is likely or unlikely to occur by chance may help in identifying interesting

patterns in sequences. Let A1...An be an observed sequence (DNA, protein, ...) from a

finite alphabet (nucleotides or amino acids). Let σ be a scoring function taking values

in Z. Scoring assignments for nucleotides or amino acids may arise from a variety of

considerations like biochemical categorization, physical properties, or association with
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2 MERCIER,CELLIER,CHARLOT

secondary structures. The local score of the sequence A1...An according to the scoring

scheme σ is defined as follows:

Hn = max
1≤i≤j≤n

(

j
∑

k=i

σ(Ak)

)

.

Hn corresponds to a segment of the sequence with maximal aggregate score. The local

score has been already studied many times using a random model when successive

letters of a sequence are generated independently and with an identical distribution,

or with a Markov chain model. For surveys of this subject, see [21] and [10]. Arratia

and Waterman [3], proved that for sequences of length n, as n → +∞, there exists

a transition phase : when the average score is positive, there is a “linear growth”

of the local score in n, Hn = O(n); and when the average score is negative, it is

called the logarithmic case, Hn = O(ln n). See also [22], [15] and [8] for studies of the

logarithmic domain. Arratia, Gordon and Waterman [2], studied approximations of

the distribution of counts of matches in the best matching segment of specified length

when comparing two long sequences of independent and identically distributed (i.i.d.)

letters. The key tools are large deviations inequality and the Chen-Stein method of

Poisson approximation, [1].

Karlin and Altschul [13] and Karlin and Dembo [14] presented for the first time a result

on the distribution of the local score for one sequence when the average score per letter

is non positive. That is for a sequence X = (Xi)i≥1 of independent and identically

distributed random variables with E[X1] < 0 and Hn = max1≤i≤j≤n

(

∑j
k=i Xk

)

, they

proved that

P [Hn ≤
ln n

λ
+ x]

n→∞
∼ exp

(

−K∗ · e−λx
)

, (1)

where λ and K∗ depend only on the parameters of the model of the sequence. Karlin

et al. [9], generalized formula (1) to gap-less alignment of two sequences.

The work of Karlin et al. [14] stands on two steps : they first established an approxi-

mation for the distribution of the maximal partial sum M = maxk≥0(X1 + ... + Xk),

using renewal theory and the work of Iglehart [12]. This last approximation is then

used to obtain the result (1) on the distribution of the local score Hn. But it is an usual

result that the distribution of M is the unique stationary distribution of a Windley
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process W defined as follows:

Wn = (Wn−1 + Xn)+ ,

see for example [5] (Chapter 3), or [11]. This distribution has never been explicitly

given and so can’t have been directly used to deduce a result for the distribution of

the local score Hn.

In this article, we are interested in theoretical and explicit formula to assess the

statistical significance of sequence analysis. Using the random walk theory, we establish

(see Proposition 1) the exact distribution of the maximum of the partial sums of a

sequence of independent and identically distributed random variables when the average

score per letter is non positive. We don’t have found this result in the litterature ;

maybe it is due to the fact that our particular case (biological sequence analysis,

sequences comparison) is not a very interesting problem for the specialists of waiting

file. Some works seem to be very similar, see [5] (Chapter 3), or Wald [20], but they

focus on stopping time identities or first passage time probability and don’t go further

for the distribution of the maximal partial sums. The explicit distribution of M in

Proposition 1, allows us to obtain a more precised approximation for the distribution

of the local score of one sequence. This result improves the one given par Karlin et

al., [13], [14]: we obtain additional terms which give us a more accurate asymptotic

expression.

Daudin and Mercier [19], give a theoretical method to calculate directly the exact

distribution of the local score Hn of an i.i.d. sequence in linear or logarithmic domain:

using Markov chain theory, the distribution of Hn is given by a power of a matrix. This

work does not stand on the study of the partial sum and is independent of the sign of

E[X1]. The method is simple and largely usable but does not give the explicit formula

of the distribution. It is a very practical method to obtain the statistical significance of

local score of short sequences, but the computation for very long sequences can become

more fastidious. This work must be put together in a complementary way with the

asymptotic result of this article to study the statistical problem of sequence analysis

for both long or short sequences.
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This article is organized as follows. Section 2 deals with the distribution of the

maximum partial sums and an approximation of the distribution of the local score.

These results are proved in Section 3. Several examples are developed in Section 4 for

scoring functions with non positive drift (see (2)). We give a conclusion in Section 5.

2. Notations and results

The following notations will be used. Let X = (Xi)i∈N be a sequence of independent

and identically distributed random variables from the alphabet A = {+u, ...,−v}.

Let pi = P [X0 = i] for i = 0, 1, ..., u, and qj = P [X0 = −j] for j = 1, ..., v, with
∑

i=0,...,u pi +
∑

j=1,...,v qj = 1. The sequence X corresponds to the score sequence: Xi

modelizes σ(Ai). We suppose

E[X0] =

u
∑

i=1

i · pi −

v
∑

j=1

j · qj < 0 , (2)

so we are in the logarithmic domain. For all k ∈ N
∗, we denote Sk =

∑k
i=1 Xi the

partial sums associated to the sequence X and we set S0 = 0. Let M = supk≥0 Sk be

the maximal partial sum.

For a real x, ⌊x⌋ = max{k ∈ Z : k ≤ x} will denote the integer part of x.

For part of our work, we are going to adopt the same blueprint than Karlin et al.; that

is, in order to get results on the local score distribution, we are first going to work on

the distribution of M .

Let P be the polynomial

P (x) =
u

∑

i=1

pi · x
u−i + (p0 − 1) · xu +

v
∑

j=1

qj · x
u+j , (3)

of degree u + v. We have P (x) = xu · (E[x−X0 − 1]).

Proposition 1. (Distribution for the maximal partial sums.)

1. The sum of multiplicities of the roots with modulus stricly smaller than 1 is equal

to u, and equal to v for the ones with modulus equal or more than 1.
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2. The polynomial P defined in (3) has only two real positive roots that are of simple

multiplicity: 1 and R with 0 < R < 1. For any other root Ri of P such that

|Ri| < 1, we have |Ri| < R.

3. The probability of M is as follows

γk = P [M = k] =
∑

i

δi · R
k
i , (4)

with Ri the real roots and Cj the complex roots of P with modulus smaller than 1.

Letting p = P [X0 ≥ 0], the (γi) (and the (δi), δRj, δI j implicitly) are computed

with the following linear equations systems:

γk =

v
∑

j=1

(qj · γk+j) +

k
∑

i=0

(pi · γk−i) (1 ≤ k ≤ u − 1)

and
∑

k≥0

γk = 1 .

The method we use to prove this result is also totally different from the way Karlin

et al. established their approximation on the distribution of M . Our method stands

on Markov chains and random walk theory and brings additional terms that allow us

to confirm their approximation, see [14] and also [16]. We then apply our result to the

distribution of the local score. Let us define T1 as the stopping time of the first non

positive partial sum. We denote by S− = ST1 the first non positive partial sum and

µ = E[T1]. Wald’s identity gives us µ = E[S−]/E[X0]. The negative drift of Xi, (cf

(2)) assures that µ is finite.

Theorem 2.1. (New approximation for local score distribution.) Let

Hn = max
1≤i≤j≤n

(

j
∑

k=i

Xk

)

.

We have the following asymptotic distribution

P

[

Hn ≤
lnn

λ
+ x

]

n→+∞
∼

[

1 −
∑

i

∆(i)
a

Ki · ρi
x

nΓi

]
n
µ +1

, (5)

with

λ = ln(1/R), ρi = |Ri|, Γi = ln(ρi)/ln(R) ,
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∆(i)
a = (−1)an(x) for Ri 	= R and , 1 for R ,

an(x) = ⌊
lnn

λ
+ x⌋ ,

Ki =
δi · Ri

(1 − Ri)
· (1 − E[R−S−

i ]) ,

Ri and δi being defined in Proposition 1.

The term in the sum corresponding to the root R (see Proposition 1 Point 2) is the

main term due to the fact that |R| is the greatest modulus smaller than 1 among the

roots of P . Considering only this root corresponds to the result of Karlin et al., and

we have λ = ln(1/R). This will be shown in Section 5.

3. Proofs

3.1. Proposition

3.1.1. Point 1 of Proposition 1 Point 1 can be deduced from [5]. As it is written in [5],

Wald [20] has worked on the problem of computing the first passage time probability

of a random walk. He suggested an approach using the following martingale f̂(x) =

E[xX0 ]. We have : P (x) = xu · (f̂(1/x) − 1).

3.1.2. Point 2 of Proposition 1 Let f be the following function defined on R
+ \ {0} by:

f(x) = E[x−X0 ] .

We have the following equivalence: x is a root of P ⇔ x is solution of f(x) = 1.

The function f is strictly convex. We also have f(1) = 1, f ′(1) = −E[X0] > 0 and

limx→0 f(x) = +∞. So there exists a unique root R in ]0, 1[.

3.1.3. Point 3 of Proposition 1 As we have already said in the introduction, it is an

usual result that the distribution of M is the unique stationary distribution of the

Markov chain W , a Windley process, defined as follows

Wn = (Wn−1 + Xn)+ .

See for example [6], [4] and [5].

The equations given in Proposition 1 come from the translation of this result. Let

γ = (γk)k∈N
be the distribution of M and π = (πij)i,j∈N

the probability transition
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of W . Due to the distribution of the Xi, and with p = P [X0 ≥ 0] =
∑u

i=0 pi, the

probability π is given by

π0,0 = P [X0 ≤ 0] =

v
∑

i=1

qj + p0,

π0,i = pi (∀i = 1, ..., u),

πk,0 =
v

∑

j=k

qj (∀1 ≤ k ≤ v),

πk,k−j = qj (∀1 ≤ j ≤ v) (∀k > j),

πk,k+i = pi (∀k ≥ 1) (∀i = 0, ..., u),

πk,l = 0 else.

The stationarity of the distribution γ brings us γπ = γ, with γπ = (
∑

i∈N
γiπik)k∈N.

Thus, γ satisfies

γ0 =

v
∑

k=1









v
∑

j=k

qj



 · γk



 +





v
∑

j=1

qj + p0



 · γ0, (6)

γk =

v
∑

j=1

(qj · γk+j) +

k
∑

i=0

(pi · γk−i) (1 ≤ k ≤ u − 1), (7)

γk =
v

∑

j=1

(qj · γk+j) +
u

∑

i=0

(pi · γk−i) (k ≥ u). (8)

(9)

From the equation (8), we deduce that (γk)k∈N
is a linear combination of sequences

(

(Rk
i )k≥0

)

,

where Ri are the distinct roots of the polynomial defined in (3), with module less than

1. As γ is a probability, we only consider roots with a modulus smaller than 1.

Point 3. of Proposition 1 is then proved.

The conditions for the δi and (δRj , δIj ) are deduced from the equations (6) and (7) and

the fact that
∑

k γk = 1. We can show that (6) is a combination of the u− 1 equalities

of (7), so we correctly have u equations to solve the u coefficients of the interesting

roots of P .
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3.2. Proof of Theorem 1

3.2.1. Notations Using Proposition 1, we are going to establish an approximation for

the distribution of the local score Hn. Let Tk be the successive decreasing excursions

of the process {Sk}: T0 = 0 and Tk+1 = inf{i > Tk : Si − STk
< 0}. According to the

negative drift, the independence and the identical distribution of the Xi, we have

(Σk)k≥0 = (Si − STk
, Tk ≤ i < Tk+1)k≥0

that are independent and identically distributed. Let’s define as well

Q = Q1 = max
0≤k<T1

Sk and Qi = max
Ti≤k<Ti+1

(Sk − STi).

The Qi are i.i.d. random variables. We have

∀m ≥ 0 HTm = max
1≤i≤m

Qi . (10)

As in [14], the determination of the distribution of HTm is obtained in two steps: we

first establish the distribution of Q1 according to the one of M , and then we use the

result on Q1 to get the distribution of HTm . The second step is easy due to (10) and

to the fact that the (Qi)i are i.i.d. We have

P [HTm ≤ a] = P [ max
i=1,...,m

Qi ≤ a]

= P [∀i = 1, ..., m Qi ≤ a]

= (P [Q1 ≤ a])
m

. (11)

With the notations of Theorem 1 and S− = ST1 the first non positive partial sum, we

have

Lemma 1.

P [Q > a]
a→∞
∼

∑

i

KiR
a
i where Ki =

δi · Ri

(1 − Ri)
· (1 − E[R−S−

i ]) . (12)

Proof

Let F (y) denote the distribution of the maximum Q = max0≤k<T1 Sk and G(y) the

one of M : F (y) = P [Q ≤ y], G(y) = P [M ≤ y]. To prove Lemma 1, we employ the
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method of Karlin et al. [14]. For y > 0, let σy = inf{k, Sk < 0 or Sk > y} be another

stopping time. We have

1 − G(y) = P [M > y, Sσy > y] + P [M > y, Sσy < 0]

= P [Sσy > y] + P [M > y, Sσy < 0] .

By definition, we have {Sσy > y} = {Q1 > y}. Thus

1 − G(y) = 1 − F (y) + P [M > y, Sσy < 0] ,

and

P [M > y, Sσy < 0] =
∑

z≥1

P [M > y, Sσy = −z] =
∑

z≥1

P [max
k≥0

Sk > y, Sσy = −z]

=
∑

z≥1

P [max
k≥σy

Sk − Sσy > y + z, Sσy = −z]

=
∑

z≥1

P [max
k≥σy

k
∑

i=σy+1

Xi > y + z, Sσy = −z]

=
∑

z≥1

P [max
k≥0

k
∑

i=1

Xi > y + z] · P [Sσy = −z]

=
∑

z≥1

P [M > y + z] · P [Sσy = −z]

=
∑

z≥1

P [M > y + z] · P [Sσy = −z, Q ≤ y] .

Thus

P [Q > y] = P [M > y] −
∑

z≥1

[1 − G(y + z)] · P [Sσy = −z, Q ≤ y] . (13)

It follows from Proposition 1 that

P [M > y] =
∑

i

αiR
y
i with αi = δi · Ri/(1 − Ri) .

So

P [Q > y] =
∑

i

αiR
y
i −

∑

z≥1

(

∑

i

αiR
z+y
i

)

P [Sσy = −z, Q ≤ y] .

Using the following equality

P [Sσy = −z, Q ≤ y] = P [S− = −z, Q ≤ y] ,
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we get that

P [Q > y] =
∑

i

αiR
y
i ·



1 −
∑

z≥1

Rz
i P [S− = −z, Q ≤ y]





=
∑

i

αiR
y
i ·



1 −
∑

z≥1

Rz
i (P [S− = −z]− P [S− = −z, Q > y])





=
∑

i

αiR
y
i (1 − E[R−S−

i ])

+
∑

i

αiR
y
i





∑

z≥1

Rz
i P [S− = −z, Q > y]



 .

(14)

Let

T (y) =

m
∑

i=1

αiR
y
i





∑

z≥1

Rz
i P [S− = −z, Q > y]



 (15)

and α = max1≤i≤m |αi|. We get

|
T (y)

P [Q > y]
|≤ mαRy ·

∑

z≥1

Rz = mα ·
Ry+1

(1 − R)
.

So

lim
y→+∞

T (y)

P [Q > y]
= 0 .

Then

P [Q > y]
y→∞
∼

∑

i

KiR
y
i , (16)

with Ki = αi · (1 − E[R−S−

i ]) =
δi · Ri

1 − Ri
· (1 − E[R−S−

i ]) .

Lemma 1 is proved. �

3.2.2. Distribution of Hn In this subsection, we will control P [Q ≤ ⌊ ln n
λ + x⌋]. Let

an(x) = ⌊ lnn
λ + x⌋. From (14), we have

P [Q > ⌊
lnn

λ
+ x⌋] =

m
∑

i=1

KiR
an(x)+1
i + T̃ (n) (17)

with

T̃ (n) = T (⌊
lnn

λ
+ x⌋)) , (18)
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where T is defined in (15).

Using the notations of Theorem 1 and Lemma 1, we get

P [Q > ⌊
lnn

λ
+ x⌋]

n→+∞
∼

∑

i

Ki∆
(i)
a ρx+1

i

nΓi

n→+∞
∼

K1R
x+1

n
. (19)

Thus

P [Q > ⌊
lnn

λ
+ x⌋] = O(

1

n
) . (20)

We need to control T̃ (n) as well. We have

T̃ (n) =
∑

i

αiR
an(x)
i ·





∑

z≥1

Rz
i P [Q > an(x), S− = −z]



 .

Then, with Γi = ln |Ri|/ lnR = − ln |Ri|/λ,

|T̃ (n)| ≤
∑

i



|αiR
an(x)
i | ·

∑

z≥1

|Rz
i |P [Q > an(x), S− = −z]





=
∑

i



|αi|ρ
an(x)
i ·

∑

z≥1

ρz
i P [Q > an(x), S− = −z]





≤
∑

i





|αi|ρ
x
i

nΓi
·
∑

z≥1

ρz
i P [Q > an(x), S− = −z]



 .

For all i, we have

∑

z≥1

ρi
z · P [Q > an(x), S− = −z] ≤

∑

z≥1

Rz · P [Q > an(x)] = P [Q > an(x)] ·
R

1 − R
.

Thus, we obtain that

|T̃ (n)| ≤
R

1 − R
· P [Q > ⌊

lnn

λ
+ x⌋] ·

m
∑

i=1

|Ci| · ρi
x

nΓi

≤
mCRx+1

1 − R
·
P [Q > ⌊ lnn

λ + x⌋]

n
,

using also the fact that the Γi > 1 and Γ1 = 1 in relation with R.

Let β ∈ R
+\{0}. We have

|nβ · T̃ (n)| ≤
mCRx+1

1 − R
· nβ−1P [Q > ⌊

lnn

λ
+ x⌋] .
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Applying the estimate of P [Q > ⌊ ln n
λ + x⌋] which is provided by (19), we get

nβ−1P [Q > ⌊
lnn

λ
+ x⌋]

n→+∞
∼ K1R

x+1nβ−2 .

Then, for β < 2, we have limn→+∞ nβ T̃ (n) = 0. The next result is also proved,

(∀ 0 < β < 2) T̃ (n) = o(
1

nβ
) . (21)

Let Nn = sup{i ∈ N : Ti ≤ n} denote the number of decreasing excursions in S1...Sn.

By the law of large number we have

lim
n→+∞

Nn

n
=

1

µ
as , (22)

where µ = E[T1]. One must not forget that Hn is increasing with n and we get

P [HTNn+1 ≤ a] ≤ P [Hn ≤ a] ≤ P [HTNn
≤ a] .

Let ǫ > 0. Using (22), we obtain

P [HTNn
≤ a] = P [HTNn

≤ a; n(1/µ − ǫ) ≤ Nn ≤ n(1/µ + ǫ)]

+P [HTNn
≤ a; | Nn/n − 1/µ |> ǫ]

≤ P [HT⌊n(1/µ−ǫ)⌋
≤ a] + P [| Nn/n − 1/µ |> ǫ]

= (P [Q ≤ a])⌊n(1/µ−ǫ)⌋ + o(1) .

A similar computation yields

P [HTNn+1 ≤ a] = P [HTNn+1 ≤ a; n(1/µ− ǫ) ≤ Nn ≤ n(1/µ + ǫ)]

+P [HTNn+1 ≤ a; | Nn/n − 1/µ |> ǫ]

≥ P [HT⌊n(1/µ+ǫ)⌋+1 ≤ a; n(1/µ− ǫ) ≤ Nn ≤ n(1/µ + ǫ)]

= P [HT⌊n(1/µ+ǫ)⌋+1 ≤ a]

−P [HT⌊n(1/µ+ǫ)⌋
≤ a; | Nn/n − 1/µ |> ǫ]

= P [HT⌊n(1/µ+ǫ)⌋+1 ≤ a] − o(1)

= (P [Q ≤ a])
⌊n(1/µ+ǫ)⌋+1

− o(1) .
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So we have

(P [Q ≤ z])
⌊n(1/µ+ǫ)⌋+1

− o(1) ≤ P [Hn ≤ z] ≤ (P [Q ≤ z])
⌊n(1/µ−ǫ)⌋

+ o(1) . (23)

Let z = ⌊ln(n)/λ + x⌋. We get

Gn(ǫ) − o(1) ≤ P [Hn ≤ ⌊
ln(n)

λ
+ x⌋] ≤ Dn(ǫ) + o(1) ,

with Gn(ǫ) =

(

P [Q ≤ ⌊
ln(n)

λ
+ x⌋]

)⌊n(1/µ+ǫ)⌋+1

and Dn(ǫ) =

(

P [Q ≤ ⌊
ln(n)

λ
+ x⌋]

)⌊n(1/µ−ǫ)⌋

.

Then, for all ǫ > 0

Gn(ǫ) − o(1)
(

1 −
∑

i
Ki∆ρx

i

nΓi

)
n
µ +1

≤
P [Hn ≤ ln(n)

λ + x]
(

1 −
∑

i
Ki∆ρx

i

nΓi

)
n
µ +1

≤
Dn(ǫ) + o(1)

(

1 −
∑

i
Ki∆ρx

i

nΓi

)
n
µ +1

,

where ∆ = ∆
(i)
a . In order to prove

lim
n→+∞

P [Hn ≤ ln(n)
λ + x]

(

1 −
∑

i
Ki∆ρx

i

nΓi

)
n
µ +1

= 1 ,

it suffices to show

lim
ǫ→0

lim
n→+∞

Dn(ǫ) + o(1)
(

1 −
∑

i
Ki∆ρx

i

nΓi

)
n
µ +1

= 1 , (24)

and a similar expression for Gn(ǫ). (17), (20) and (21) give (24).

4. Applications

4.1. The most amphoteric segments

Amphoteric amino acids (mixed charge) can be positively or negatively charged de-

pending on the medium they are. For high-scoring mixed charge segment, we use the

scoring scheme given by Karlin et al., [13]: σ = 2 for Aspartate (D), Glutamate (E),

Lysine (K), Arginine (R) and l’Histidine (H); σ = −1 for the others. Let p = P [X0 = 2]

be the probability to get the five amino acids cited previously. Xe have E[X0] = 3p−1.

The probability transition of the Markov chain W is given by

(∀k ≥ 0) πk,k+2 = p ,

(0 ≤ k ≤ 1) πk,0 = 1 − p ,

(∀k > 1) πk,k−1 = 1 − p .
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So the invariant measure satisfies

γ0 =
1 − p

p
· γ1 , γ1 = (1 − p) · γ2 ,

and for (k ≥ 2) γk = (1 − p) · γk+1 + p · γk−2 .

The polynomial P is P [x] = (1 − p) · x3 − x2 + p, and the two roots different from 1

are real.

0 < R =
p +

√

p(4 − 3p)

2(1 − p)
< 1 , (25)

and − 1 < R′ =
p −

√

p(4 − 3p)

2(1 − p)
< 0 . (26)

We have

(∀a ∈ N) P [M = a] = δ ·
[

Ra+1 − R′a+1
]

, (27)

with δ =
(1 − 3p)

√

p(4 − 3p)
. (28)

The scoring function is such that S− = −1. So Lemma 1 brings

P [Q > a]
a→∞
∼ K1 · R

a + K2 · R
′a , (29)

with K1 = δR2 > 0 and K2 = −δR′2 > 0 . (30)

Example 4.1. The distribution of the local score is approximated by the formula

P

[

Hn ≤
lnn

λ
+ x

]

n→+∞
∼

[

1 −
K1R

x

n
− (−1)an(x) ·

K2ρ
x

nΓ

]
n
µ +1

, (31)

where ρ = |R′|, Γ = ln(ρ)/ln(R), an(x) = ⌊ ln n
λ + x⌋, µ = 1/(1 − 3p), and with R, R′,

K1, K2, δ given in (25), (26), (28) and (30).

Let’s deduce Karlin’s formula from this result. We deduce of Example 4.1 with a =

ln n
λ + x

P

[

Hn ≤
lnn

λ
+ x

]

n→+∞
∼ [1 −

K1R
x

n
]

n
µ +1

n→+∞
∼ exp

(

−
K1

µ
Rx

)

,
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and we want to compare the two constants, K1/µ and K∗, (cf (1)), in order to verify

that the two results are compatible. We have, see [13] and [14]

P [Hn ≤
lnn

λ
+ x]

n→+∞
∼ exp

(

−K∗ · e−λx
)

, (32)

with

K∗ =
(1 − e−λ) · e−λ · E[X0]

2

E[X0 · eλX0 ]
.

Using λ = ln(1/R) and the fact that R is a root of P , we get

K∗ =
(1 − R)R(1 − 3p)2

2p(1/R2) − (1 − p)R
=

(1 − R)R3(1 − 3p)2

2p − (1 − p)R3
=

(1 − R)R3(1 − 3p)2

3p − R2
,

Our method gives

K1/µ =
δR2

µ
= −δR2E[X0] = δR2(1 − 3p) =

(1 − 3p)R2

√

p(4 − 3p)
.

Using (25), It is now easy to show that K∗ = K1/µ.

Our approximation deals with two terms. Taking into account only the main one allows

us to obtain by a different way the result of Karlin et al. Numerical investigations

indicate that our approximation is better, see [18].

4.2. The most hydrophobic segments

A scoring scheme quite consistent with the Kyte-Doolittle scale of hydrophobicity, (see

[17]), takes σ = 2 for I, L, V; σ = 1 for F, M, A, C; σ = 0 for G, S, Y, W, T, P; σ = −1

for N, Q, H, D, E; σ = −2 for K, R.

This example of scoring function is proposed in [15] and [14] (Example 3). The

polynomial is

P (x) = q2x
4 + q1x

3 + (p0 − 1)x2 + p2x + p1 .

Let p = P [σ ≥ 0]. Only two roots are in ] − 1, +1[, noted R and R′, such that

0 < |R′| < R < 1. The distribution of the maximum M is given by

(∀k ≤ 2) p2 · γk−2 + p1 · γk−1 + p0 · γk + q1 · γk+1 + q2 · γk+2 = γk (33)

[p0 + (1 − p)] · γ0 + (1 − p) · γ1 + q2 · γ2 = γ0 , (34)
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p1 · γ0 + p0 · γ1 + q1 · γ2 + q2 · γ3 = γ1 , (35)

The recurrent equation (33) brings us

P [M = k] = γk = δ1R
k + (−1)kδ2R

′k , (36)

with R1 = R and R2 = −R′ the two roots of P (x) satisfying |Ri| < 1 for i = 1, 2.

Injecting (36) in (34) and (35) brings the same relation:

δ1 =
R

R′
· δ2 .

Using the fact that
∑

k≥0 γk = 1, we have also

δ1

1 − R
+

δ2

1 + R′
= 1 .

Then we get with

τ =
(1 − R)(1 + R′)

R(1 + R′) + R′(1 − R)
,

δ1 = R′τ, δ2 = Rτ .

We define Πi = P [S− = −i], i = 1, 2. Considering the work of Asmussen [5] (Chapter

3), there is a much more elegant way to get the distribution of S− using the v roots

noted zi of P (x) with modulus superior or equal to 1:

(P (zi) = 0, |zi| ≥ 1) ⇒ E[(zi)
−S−

] = 1 . (37)

Using Asmussen (see Prop. 3.15, [5]), we have exactly 2 roots of P (x) with |Ri| < 1

and two roots zi with |zi| ≥ 1. Let’s note R3 = 1 and R4 the last root of P (x) with

|R4| ≥ 1. The equation (37) gives







1 = Π1 + Π2

1 = Π1 · R4 + Π2 · R
2
4 .

So we get Π1 = (1 + R4)/R4 ∈]0, 1[, and E[S−] = (1 − R4)/R4.

This method has the advantage to be generalized to any scoring function taking value

in {−v, ...,0, 1, 2, ...,+u}, whith {−1, −2, ...,−v} the possible value of S−. The

equation (37) gives a linear system of v equations to get the (Πi = P [S− = −i])1≤i≤v.
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We have then

µ =
E[S−]

E[X0]
=

R4 − 1

R4 · [2(p2 − q2) + p1 − q1]
.

Example 4.2. An approximation of the distribution of Hn is

P [Hn ≤
lnn

λ
+ x]

n→+∞
∼

[

1 −
K1R

x

n
− (−1)an(x) K2R

′x

nΓ

]
n
µ +1

, (38)

with K1 = δ1R, K2 = δ2R
′, R, R′, δi, µ given above, and λ = − lnR, Γ = lnR′/ lnR

and an(x) = ⌊ ln n
λ + x⌋.

Karlin et al. in [14] (example 3) give

K∗ =
(1 − Π1e

−λ − Π2e
−2λ)2E[X0]

2

(2 − Π1)2(eλ − 1)E[X0 exp (λX0)]
.

The two different approximations for the hydrophobic example have been numerically

tested and compared with empirical distribution of the local score or with the distri-

bution given by Daudin and Mercier [19], see Figure 1.

5. Conclusion

Proposition 1 deals with the maximal partial sum of a random walk. An approximation

of its distribution has been obtained previously using the renewal theory, see [14]. We

give explicitly in this paper the exact distribution using classical results of Markov

Chain Theory.

The application of this result to the distribution of the local score allows us to get a

better approximation of this distribution. Theoretical formulas seems not so easy to

manipulate, but applications are practical and simple. This approximation allows us

to confirm and improve numerically the result of Karlin et al. [13].

Some work remains to deal with the alignment scoring problem of two sequences but

we think that our result can be easily generalized to the case of Markovian dependent

sites.
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