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Abstract. Let Xi,..., X, be a sequence of i.i.d. integer valued random variables
and H, the local score of the sequence. A recent result shows that H, is actually
the maximum of an integer valued Lindley process. Therefore known results about
the asymptotic distribution of the maximum of a weakly dependent process, give
readily the expected result about the asymptotic behavior of the local score in the
logarithmic case, with a simple way for computing the needed constants. Genomic
sequence scoring is one of the most important applications of the local score. An
example of an application of the local score on protein sequences is therefore given
in the paper.

Key words and phrases: Extremal index, genomic sequence, Lindley process, local
score, Markov chain.

1. Introduction

Let X = X1,...,X, be a sequence of independent and identically distributed ran-
dom variables of integers with E[X;] < 0 and P(X; > 0) > 0. Let S = X1 +--- + X
be the partial sums and Sy = 0. The local score of X is defined as follows

(1.1) H,= ogr{légaxgn(sj - Si) = ogr?gaffgn(o’Xi + -+ X;).

It is well known that H, = O(logn) when n — oo, so that the case E[X;] < 0 is
called “the logarithmic case” (see Dembo et al. (1994), Arratia and Waterman (1992)).
Following Iglehart (1972), Karlin et al. (1990) proved the following limit for X; non
lattice:

(1.2) lim P [Hn <

n—oo

logn
A

where A and K depend only on the probability distribution of X;.
In the lattice case Karlin et al. (1990) give the following results:

+ :c] = exp (—Ke™**),

(1.3) exp (—K*e %) < liminf P [Hn < logn + :c] ,
n—0co A
1
(1.4) limsup P [Hn < oen + 33] < exp (_K—e—m)’
n—oo A
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where

K- — AaK Kt AaK

et — 1’ T 1=’

and « is the span of X;.

The goal of this paper is to propose a new, simple and direct proof for results as
(1.2), (1.3) and (1.4). Moreover, we obtain new bounds for the lattice case which are
easier to compute and sharper than those in (1.3) and (1.4).

The results of Karlin et al. (1990) were obtained using the fact that H, is a regenera-
tive process. Therefore a natural way consists in decomposing the process in independent
subprocesses. The next step is to obtain the law of the maximum of each subprocess and
the fact that the subprocesses are i.i.d. leads to the conclusion. This natural approach
has two drawbacks: first the number of regenerative points is not known and must be
approximated and secondly the law of the maximum of a subprocess is more complicated
than the law of the maximum of H,, itself.

Our approach is completely different, more direct and stands on three different
results. The first one is a recent result on the local score: Daudin and Mercier (1999)
and Mercier and Daudin (2001) have proved that the local score H,, is the maximum of
a Lindley process
(1.5) H, = max Uj,

where (Uj);>0 is the following integer valued Lindley process:
U;j=Uj-1+X;)", Up=0.

The second step deals with a work about the asymptotic distribution of the maximum of
a Lindley process and more generally about the maximum of weakly dependent processes
(see for example Rootzen (1988)). The case of a non lattice Lindley process is completely
known (Rootzen (1988)). The only work we have to do is to adapt these results to the
case of a lattice valued process which is not explicitly resolved in the literature. The
asymptotic distribution given by Rootzen is linked with the stationary distribution of the
Lindley process (U;) ;>0 (see Theorem 2 and Theorem 4) whose c.d.f noted F' is already
given by Mercier (1999) for the lattice case. This third result given in Theorem 3, allows
us to compute a constant 6, and two bounds b, (F, 8, z) and by(F, 0, z) such that

+ x] < limsup P [Hn < logn + w} < by(F,8,x).

n—o0 A

logn

bi(F,6,z) < liminf P [Hn <
n—oo
These bounds can be controlled using the exact distribution of the local score H,, given
by Daudin and Mercier (1999).

This article is organized as follows. The general theory about the maximum of
weakly dependent processes and the results about the maximum of a non lattice Lindley
process are briefly recalled in Section 2. Section 3 is devoted to the case of the lattice
valued Lindley process. Simple ways for computing the bounds are proposed and a
numerical comparison with (1.3) and (1.4) and the exact values is made in Section 4 on
a protein scoring example.

2. General theory about the maximum of a process application to the Lindley's process

There is a lot of work about the maxima and exceedances of a stationary process.
The work of Leadbetter (1983) summarizes the results obtained in the i.i.d. case and
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gives more insight about the case of a dependent process. Rootzen (1988) and Perfect
(1994) have explicitly given results about the maxima and exceedances of stationary
Markov chains and applied them to the continuous Lindley process.

In this section, we recall the results of Rootzen (1988) for the general continuous
case and for the Lindley process in particular.

THEOREM 1. (Theorem 4.1, Rootzen (1988)). Let us consider a stationary process
Z, with marginal c.d.f. F verifying the three following conditions:

(C1) VY1 > 0,3un(r) : lim n{l - Flup(7)]} =7

(C2) D(un(7)) and A(un(7)) are verified for all T (see below)

(C3) 36 € (0,1],7 > O such that

lim {limsup |Pmax(Z1, ..., Zine)) < unlT) | Zo > un(r)] — 0|} =0
€ n—00
Then:
(R1) V7 > 0, limp—oo P [MaXo<i<n Zt < un(T)] =€
(R2) N(n) = #{t < n : Zy > uy(7)}, the exceedances process, is a compound
Poisson process.

or

The condition (C2) is a mixing condition which is quite technical (see Rootzen
(1988)). (C2) is not explicitly given here, but it is well known that such a condition
is satisfied by any regenerative process with finite return time and in particular by the
Lindley’s process (Rootzen (1988)).

Applying Theorem 1 to the case of the Lindley’s process, we have:

THEOREM 2. (Rootzen (1988)). Let (X5 )n>0 be an i.i.d. sequence of random vari-
ables and Upy1 = (Un + Xn41)T be the associated Lindley process.

Assume the following conditions

(C].) E[Xl] <0 and P(Xl > 0) >0

(C2) X, is non lattice

(C3) 3A > 0 such that E[e**1] =1 and E[|X1]e**1] < 00
then

(R1) (Un)nxo has a stationary distribution with c.d.f. Fy whose tail is such that’

1— Fy(u) "R Ce™ ™

(R2) (Up)n>o possesses an extremal indez 0, given by 6 = PV +U'+ X, < 0] where
V has an exponential p.d.f. with parameter A and U’ has the c.d.f. Fy
(R3) limp_ 00 Pmaxo<j<n Uj < b—‘j\—" + 2] = exp (—Che™*).

Note that V + U’ + X; is a three fold convolution between independent variables
and that we have
U’ =sup(0, X1, X1 + Xo,...).
The notation U’ refers to the fact that its distribution is exactly the stationary distribu-
tion Fiy of the Lindley process (U;)(j>0) (see Remark 1). However U’ is not the random
variable corresponding to the studied Lindley process. V is the excess of the stationary
Lindley process U whose c.d.f is defined by

P(V<v)= lim PU<v+u|U>u).
u—00
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As the tail of U is exponential, the distribution of V' is also exponential with the same
parameter. However U and V do not have the same distribution except in the very
peculiar case when U has itself an exponential distribution. Daudin and Mercier (1999)
have proved that H, = maxo<j<n Uj, where the Lindley process U; only depends on
the p.d.f. of X;. Therefore (1.2) is directly proved in the non-lattice case by Theorem
2. The constant A is the same as in (1.2) and the constant K of Karlin et al. (1990) is
related to the extremal index of U;: we have K = Cf. For computational purpose, one
only needs a good evaluation of C and of Fy in order to compute 6.

Note. In Section 4, we shall be interested in bounded random variables X;. In this
case (C1) implies (C2) (see Dembo and Karlin (1991)).

3. The maximum of a lattice Lindley process

The case of the discrete valued process is more difficult because of the discontinuities
of the distribution function: it is well known for example, that the geometric and Poisson
distributions do not possess a limit for the distribution of extremes values, in contrast to
most of the continuous distributions. In the context of queuing theory, Iglehart (1972)
noted that it was possible to obtain a limit distribution for the maximum of waiting
times, but that no such limit exists for the size of the queue. Anderson (1970) has given
some results for some discrete distributions and we shall go further on his line. More
recently, McCormick and Park (1992) and McCormick and Sun (1993) have obtained
asymptotic bounds for some class of discrete distribution such as autoregressive negative
binomial process. However, their results can not be applied in the case of the Lindley
process because their mixing conditions are too stringent.

Let X, take its values in expression Z and assume that the g.c.d. of the absolute
values of X, is equal to one (if it is not the case, we can divide each value by the g.c.d.
without loss of generality). Therefore, one can see by using the Bezout theorem that the
span of (U;);>o0 (introduced in expression (1.3) and (1.4)) is equal to one, so there is no
need for using a general span possibly greater than one as in Karlin et al. (1990). For if

-z1 < 0 and x5 > 0 are two values of X, prime with each other, it is possible to find two
integers a; and as such that a;z1+azz2 = 1. Thereforeif X; = Xy = .-+ = X,, = z; and
Xa1+1 = Xa1+2 == KAgi+ap, — T2 and if Uj > —ayT1,we obtain Uj+a1+a2 = Uj + 1.
Therefore, one can see that the minimum increase of (U;) ;>0 is 1 for U; sufficiently high.

It is obvious that (U;) ;>0 is a regenerative process with the state {0} as regenerative
point, and E[T] < oo if E[{X1] < 0 where T is the time between two successive returns to
{0}. The Lindley process is an infinite Markov chain whose transition probability matrix
depends only of the p.d.f. of X;. Mercier (1999) has obtained the following results about
the stationary distribution of (U;);>0-

THEOREM 3. (U;);>0 possesses a stationary distribution Py (with c.d.f. Fy) whose
probabilities satisfy a linear recurrence relation of order d = max(X;) —min(X;). There-
fore

(R1) 38, Ri)gi=1,..., Pu (k) = Ty 6iRY

(R2) Let R = max;—1,. 4(R; € R,R; < 1) and § its associated coefficient. We have

1 - Fy(z) "= [6/(1 — R)| Rl=IF!

where || is the integer part of x.
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ProOOF. Let II be the infinite transition matrix of the Lindley Markov chain. It
is well known (Asmussen (1987), Borovkov (1976)) that this Markov chain possesses a
stationary distribution u which satisfies uII = p. The non null terms of the columns of II
are composed with the same finite vector of size d (except the first |min(X;)| ones). This
implies that u satisfies a linear recurrence of order d = max(X;) — min(X;). Standard
theory about linear recurrence equations gives the result.

Remark 1. The invariant distribution of the Lindley process is also the distribution
of the maximum of the partial sums Sy = X; +--- + X% and So = 0 (see Mercier (1999)
for example). It is easy to prove that R is the only positive root different to 1 of the
polynomial linked to the linear recurrence relation, and that A = —log(R). So (R2)
is in agreement with the result of Karlin and Dembo (1992) on the distribution of the
maximum of the partial sums.

Remark 2. Note that g = lim,_,(1,0,...,0)II". Therefore, the stationary dis-
tribution may easily be numerically approximated by

(3.1) p=(1,0,...,0)Ip

using a North-West truncation II; of the infinite transition matrix II and n sufficiently
high. It is also possible to use the first eigenvector of II;, but there may be some numerical
stability problems when ¢t is high and the numerical method for the diagonalization is
not well suited. Note that we are interested in the tail probabilities of p.

We now express 0:

THEOREM 4. Let § = P(V + U’ + X; < 0) where V — 1 has a geometrical p.d.f.
with parameter R and U’ has the stationary distribution of (U;)j>0. Then

liII(l) {limsup IP[max(Ul, oy Ulne)) S tn | Up > un] — 6!} =0
£~

n—oo

for a normalizing sequence uy,.

Proor. It is a simple adaptation of the Rootzen proof given in the continuous
case with the geometric distribution in place of the exponential one (Rootzen (1988)).
The geometric distribution of V' — 1 (and not V') comes from the following argument:
actually 6 is defined (Rootzen (1988)) by

=PV +U + X, <V |V >0)=P(V' =o' +U' + X, <0| V' =o' > 0)

and the distribution of V = V' — ¢’ conditionally to V/ — v’ > 0 is a shifted geometric
distribution, for V’ has a geometric distribution. This comes from the lattice structure of
X, and is a difference with the exponential continuous case. Note that the convolution is
easy to compute numerically for its range is restricted to the integers between min(X1)
and 0. The p.d.f. of V and U are easily obtained numerically using (3.1).

Remark 3. Note that one can use an alternative way for computing 8 using the
analogy with the extremal index in the non-lattice case: the following expression where
T, is a normalizing sequence

(3.2) P(H, < 2,) "~ [Fy(wn)]’
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may be approximated for ng and x sufficiently large by
(3.9) P(Ha, < 2) ~ [Fy(@)"™.

We can compute the left hand side by exact computation (Daudin and Mercier (1999))

and Fy(z) is also known.
Therefore using (3.2) and (3.3):

. 1In(P[H, <z,]) 1 In(P[Hp, <zl)
f=lm - —————— ————2 —

n—oon In(Fy(zy)) no In(Fy(z))
Practically, for numerical reasons, the right hand side term does not depend on z if
1072 > Fy(x) > 1078, The two preceding methods for computing 6 have been evaluated
and give very similar results, the second one being generally lower than the first one.

Finally we conclude by the following theorem which is the main result of this paper:

THEOREM 5. Let (Xp)n>0 be an i.i.d. Z-valued sequence and (Up)n>0 be the asso-
ciated Lindley process. Assume the following conditions:

(C1) E[Xi] <0
(C2) PIX1>01>0
then
_ % or®) <lmintP|H, < 18" L,
PA\TICR =R " = Tlog(R) ’

logn 6
i P|H, < ————— < ———0R*t1 ).
fim sup [ = —log(R) ”] - exp( 1-R )

Proor. This result is a simple adaptation of the continuous case given in Lead-
better (1983) and Rootzen (1988). The limits of P[U, < % + z] and P[H, <

_—ll%‘g% + z] do not exist and are replaced at each step of the proof by the liminf and

lim sup.

There are two possible ways for computing the constants 6 and R. The first one
consists in resolving the linear recurrence satisfied by p. It is not difficult to obtain
the largest real root of modulus less than 1 of the characteristic polynomial of the
recurrence. The computation of § is more cumbersome if the degree of the polynomial
(i.e. max(X;) — min(X;)) is high for it implies to have as many side conditions as the
number of roots and to solve the linear system associated. In such a case the following
way may be better. It consists in using (3.1) for obtaining u and then to adjust the values
of 6 and R on some values of y in its tail distribution by any numerical method such as
linear regression, for example: pu, = Py(z) ~ §R” implies that log u, ~ logé + zlog R
for z € N.

4. Examples and applications

Here are two examples for the lattice case. The first deals with the standard random
walk and the results of the different methods applied to this case are given. Applications
to biological sequences analysis are tackled in the second subsection.
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4.1 The standard random walk

When X; = +1 with p = P[X; = 1], ¢ = P[X1 = —1] and p < ¢, we have the
well known result (Feller (1968)) about the stationary distribution of (Uj);>0 which is
geometrical Py (k) = (1 - f;—)(%)’c therefore 6 =1 — £, R = E<1.SoC= £==1,and
using the c.d.f. and independence property of V,U’, Xy, (V — 1 and U have the same
geometric distribution) we obtain § = P[V + U’ + X; < 0]

p\* _(@-p’
0=P(V=1,U'=0,X1:—1)=(1—”) g= ,
q q
which is in accordance with the value of K given by Karlin and Altschul (1990):
)2
K=co=0="9"P" qp) _

Using Theorem 5, we have:
—p)2 z 1
exp (—(—q—L) <B> ) <liminfP |H, < __O_gn_e + x|,
q q n—00 —log(%)

! PAY z+1
limsup P | H, < _osn +z| <expl - (¢—p) (_IZ) .

4.2 Protein scoring

The assessment of the statistical significance of scores of DNA and protein sequence
is an important stage in the work of molecular biologists. Let Ai,..., A, be a nucleic
or protein sequence. In order to identify interesting patterns, appropriate scoring values
can be assigned to each residue. Scoring assignments for nucleotides or amino acids may
arise from a variety of considerations like biochemical categorization, physical properties,
or association with secondary structures. The local score of the sequence Aj,...,An
according to a scoring scheme o is defined as follows.

J
Ho= max (Z U(A'“)> '

=1
The local score is a very useful tool for biological sequence analysis in order to identify
unusual sequence pattern or similarity that may reflect biological significance. See Karlin
and Altschul (1990), Karlin et al. (1990) for examples of simple scoring functions. It is
desirable to know whether interesting patterns can arise by chance. We are therefore
interested in the distribution of H,, under the null hypothesis of only random variation,
so that we may judge the statistical significance of a local score of a real biological
sequence.
We consider the examples given in Karlin and Altschul (1990). Table 1 gives the values
obtained for the constants in their 10 examples where

5 T
(41) Pmax =1- exp <‘—m0R >,

z41
—0R )

(4.2) Pain = 1 — exp (—
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Table 1. Numerical comparisons between the bounds of Karlin and Altschul (1990) given by
(1.3) and (1.4), the bounds we propose (see Theorem 5) and the exact value of the distribution
of the local score calculated with the method of Mercier and Daudin (2001). The examples of
the scoring function are the ones proposed by Karlin and Altschul (1990).

Example a (i) a (ii) b c (i) c (ii)
Values of X1 -1,2 -1,2 -2,—-1,2 -2,—1,2 —-2,—1,2
Probabilities 0.799, 0.201 0.798, 0.202 0.08, 0.8296, 0.0904 0.099, 0.799, 0.102 0.094, 0.796, 0.11

n 643 331 575 1320 575

a 21 29 11 10 12
T 6.364 15.75 4.740 2.393 4.900
0 0.1418 0.1397 0.4790 0.4632 0.4271
é 0.3088 0.3072 0.4596 0.4542 0.4413
R 0.6429 0.6453 0.3624 0.3889 0.4086
K= Tf—ﬁe 0.1226 0.1210 0.3476 0.3442 0.3210
Priin 4.73e-3 7.88e-5 1.024e-3 1.39e-2 1.63e-3
Prnax 7.34e-3 1.22e-4 2.82e-3 3.53e-2 3.99e-3
P 6.99e-3 1.04e-4 2.75e-3 3.56e-2 3.97e-3
Prax K& A 8.0e-3 2e-4 3.7e-3 3.4e-2 4.0 e-3

Table 1. (continued).

Examples c (iit) d (i) d (ii) d (iii) e
Values of X —2,-1,2 ~2,-1,1 —2-1,1 —2,-1,1 -1,5
Probabilities 0.185, 0.564, 0.251 0.364, 0.319, 0.317 0.234, 0.298, 0.468 0.316, 0.268, 0.416 0.915,0.085

n 614 552 325 1480 575

a 37 17 15 21 12
T 19.25 10.39 0.1345 8.821 -14.88
4 0.1236 0.3586 0.0882 0.1892 0.1011
b 0.2670 0.6149 0.3224 0.4508 0.1523
R 0.6965 0.3851 0.6777 0.5491 0.7895
K= 1—_6—59 0.1087 0.3642 0.0882 0.1892 0.0732
Ppin 7.17e-5 6.98e-6 5.52e-2 5.25e-4 0.857
Prax 1.03e-4 1.81e-5 8.03e-2 9.56e-4 0.912
P 9.22e-5 1.73e-5 7.47e-2 9.31e-4 0.950

PraxK&A 2.0 e-4 1.8 e-5 8.0e-2 1.0e-3 0.91

are respectively the lower and upper bounds given by Theorem 5, P is the exact value
of P(H, > a) given by Daudin and Mercier (1999), where a is the maximal local score
of the sequence and = = a + logn/log R. The last row of each table gives the upper
bound obtained by Karlin and Altschul (1990). One can see that the bounds are correct
unless in two cases (in bold) where the value of z is too small (z = 2.39 in the case c(i),
and x = —14.8 in case e) or equivalently P is too large (P = 0.0356 in the case c(i), and
P =0.95 in case e).

These results are not unexpected because the bounds are only valid for extreme
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values. Our upper bound is generally better (closer to the true value) than the Karlin
and Altschul one. In three cases, there is a large difference between these two bounds:
a(ii), b, c(iii). It is not possible to give more insight about this difference for the Karlin
and Altschul (1990) paper does not give the numerical values of K. Note that P is
nearer from Py, than from Py, for a = 2 — logn/log R is an integer. For example, if
we take in the first case a(i) ¢ = 20.2 in place of a = 21, there are only four modified
terms in the associate column of the table: a,z, Py, and Pah.x. We have obviously
P[H,, > 21] = P[H, > 20.2] = 0.00699 but the two bounds are changed. We obtain
a =20.2, x = 5.56, Pyi, = 0.00672 and P, = 0.0104, and the true value is thus nearer
from the lower bound. In practice we are only interested by P[H,, > a| for integer values
of a, so the continuous function 1 — exp (—TE—RHR“” ) is somewhat artificial for we use it
only for discrete values z such that ¢ = z — logn/log R € N.

We can use two alternative methods for computing P[H, > a]: the exact and
the asymptotic bounds. What method can we advise? We have made some tests for
very low values of P[H, > a] which show that the exact method gives very precise
result if P[H, > a] > 10730, It takes into account the discrete nature of a and is
not computationaly intensive. Its drawback is that it gives only one value for a given
a and we have to start again for any new value. The asymptotic bounds are precise
when P[H, > a] < 10719 however even if the interval between the bounds is narrow in
absolute value, the relative precision W does not increase with n. However once
the constants 6,6 and R have been computed, the bounds can be readily obtained using
expressions (4.2) and (4.1) for any value of a under the condition that z = a+logn/log R
is sufficiently large.

5. Conclusion

Combining new results on the local score (Mercier and Daudin (2001)) with known
results on the extremes of the Lindley process (Rootzen (1988)), allows us to propose a
new approach to describe the asymptotic behavior of the local score in the logarithmic
case. This approach has the following advantages:

e in the non lattice case, the limit distribution result of Karlin et al. (1990), (1.2)
is straightforward;

e in the lattice case, this new method brings similar results as (1.3) and (1.4) but
with slightly different bounds which are more directly obtained. Moreover, they also
seem to be more precise.
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