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Dorothée Charlier, Alejandro Mosino and Aude Pommeret
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Abstract

Home renovation is generally asserted to be a highly effective means for
households to lower expenditures on energy. In this sense, home renova-
tion can also be thought as a means to reduce GHG emissions. In this pa-
per we consider a homeowner who makes an irreversible energy-efficiency
investment in an uncertain environment. In a general equilibrium frame-
work, we solve the program of a representative consumer who uses his
wealth to invest in the energy-saving technology, to save or to consume
energy goods and non-energy goods. Resolution is analytical in a zero
discounting case and numerical for the general case, based on collocation
and Chebychev polynomials. In particular, we show that the threshold
triggering adoption depends not only on technological parameters but on
preference parameters as well. Moreover, we show that uncertainty does
not affect adoption in the same way as in a partial equilibrium framework.

JEL classification: Q55, D11, D81,C61

Keywords : energy-saving technology, uncertainty, optimal timing, res-
idential sector.

1 Introduction

Reducing GHG emissions is nowadays becoming one of the priorities of pol-
icy makers in many developed countries. For instance, the French government
wishes to reduce emissions by four by 2050. Nevertheless, such a concern ap-
pears in a context of growing energy demand. This phenomenon is in part due
to the importance of residential energy: in France, buildings account for 23%
of COy emissions, of which 70% are generated by the residential sector, and for
46% of final energy consumption (ANAH, 2008). Energy demand in the resi-
dential sector depends mainly on the intensity of use of energy appliances and
on their efficiency (see Hausman, 1979). Indeed, home renovations are generally
asserted to be a highly effective means for households to lower expenditures on
energy through increased efficiency and they become therefore a key target for
environmental policies. For instance, enhanced insulation and energy-efficient
ventilation of residential buildings are new technologies that can considerably



reduce the energy consumption for indoor heating and cooling (Farsi, 2009).
Cost-benefit analyses point to the economic viability of these systems even if
the comfort co-benefits such as improvements in indoor air quality and protec-
tion against noise are not taken into account (Jakob, 2006, Ott et alii, 2006).
However, actual investment in these systems is still relatively rare (Banfi et alii,
2008). This paper aims at carefully explaining the home renovation decision
of households in a theoretical model. In particular, we explicitly take into ac-
count that such a decision takes place in an uncertain environment, in which
there exist arbitrages between consumption, savings, and investment in home
renovation.

The literature has already tried to explain the slow diffusion of energy ef-
ficient investments -the so-called "energy paradox" or "energy-efficiency gap"
(Jaffe and Stavins, 1994a). Everything happens as if agents were discounting
with unusually high rates to appraise energy-efficiency investment, ranging from
25% to 30% (see Brown 2001 and Sanstad et al. 1995). The usual suspect is
the option value generated by the irreversibility of the investment decision in a
stochastic environment that drives a wedge between the investment valuation
and the Net Present Value. Hasset and Metcalf (1995) consider models in which
households minimize the cost of energy expenditures subject to a given level of
comfort (moreover, accommodations are heterogeneous in Hasset and Metcalf,
1993). Investment in renewable energy or in insulation is irreversible and future
benefits are uncertain because of energy price fluctuations. Based on simulations
of this model and energy price data, they obtain that the discount rate should be
four times higher for energy-saving investments than for other kinds of invest-
ments. In Ansar and Sparks (2009), the potential investor may delay adoption
not only because of the joint effect of irreversibility and uncertainty, but also
to cash in on future experience-curve effects: with the passage of time, firms
gain practical knowledge in producing and installing the energy-saving tech-
nology, enabling them to reduce the technology cost per unit of energy saved.
Simulations for photovoltaic systems highlight the experience-curve effect as a
fundamental reason for which households and firms delay making energy-saving
investments until internal rates of return exceed values of 50%, consistent with
observations in the Economics literature.

Conversely, for Jaffe and Stavins (1994a,b) delaying energy-saving invest-
ment is costly. An example is the difference between incorporation of energy
saving technology in a new home as opposed to an existing home. In the case
of the new home, forgoing the technology at the time of construction typically
means that the cost of installation later (if it is undertaken) will be higher.
These investment decisions do not satisfy the assumptions of the option value
model, but further development of the option value approach could overcome
such shortcomings. Their conclusion is that there may simply be no way, using
observations of purchase decisions alone and assuming optimizing behaviour,
of disentangling the effects of consumer discounting, energy price expectations,
and principal-agent problems, each of which could account for high implicit dis-



count rates. Finally, some literature now turns to explanations such as behav-
ioral and organisational barriers, leading to some bounded rationality (Sanstad
and Howarth 1994, Boulanger, 2007, or Diaz-Rainey and Ashton, 2009).

In this paper we go back to the standard assumptions of irreversible energy-
saving technology adoption and of uncertain payoffs. Instead of relying on
bounded rationality we focus on the characteristics of consumers that take the
adoption decision in the residential sector. Existing literature considers par-
tial equilibrium settings, and therefore ignores the interaction between optimal
consumption and optimal adoption as well as the notions of risk aversion' or
intertemporal substitutions. To challenge these results, we reconsider the joint
effect of irreversibility and uncertainty on the energy-efficiency investment de-
cision in a general equilibrium framework. Theoretical analyses of technology
adoption in general equilibrium and a stochastic environment are very recent
and very limited in number. Hugonnier et al. (2008) study the optimal adop-
tion of a new technology that increases the productivity of capital.? There
exists then an optimal adoption timing, and this timing is highly sensitive to
the size of uncertainty as well as to the degree of agents’ risk aversion. Moreover,
Pommeret and Schubert (2009) tackle the specific problem of abatement tech-
nology adoption under uncertainty in a general equilibrium. The authors first
determine the socially optimal adoption timing that is affected by the existence
of pollution. Second, they derive the tax scheme such that in a decentralized
economy firms adopt the abatement technology for the same level of economic
development as in the centralized economy.

Tackling the specific problem of a homeowner who may invest in new insu-
lation, or double glazing in order to reduce his energy bill is a bit different. The
determination of the optimal investment timing is affected by the consumption
of goods and services other than residential energy services (called "non-energy
goods" in the rest of the paper). Therefore, we extend the general equilib-
rium model with a real option proposed by Hugonnier et al. (2008). We solve
the program corresponding to the optimal adoption of an energy-saving tech-
nology adoption by a representative consumer who uses his wealth to save or
to consume energy goods and non-energy goods. We assume that the benefits
of such energy-saving technologies are uncertain due to the lack of information
about them.? The financial return on savings is assumed to be stochastic as
well. Because of uncertainty, we obtain that it may be optimal to reduce both
consumptions in order to foster adoption. As usual (see Hugonnier et al., 2008,
or Pommeret and Schubert, 2009) the model can only be solved analytically
if the utility discount factor is zero. Nevertheless, we confirm our results in

!See Farsi (2009) for the role of risk aversion in the energy efficient investment decision
based on an empirical approach.

2This paper, together with Hugonnier et al. (2005), provides the resolution for the optimal
threshold that triggers an irreversible decision in a general equilibrium framework for the first
time in the literature.

3 Another interpretation for this uncertainty (that do not perfectly fit our modelling) would
come from the great fluctuations in energy prices.



the more general case with non-zero discounting using a numerical procedure
based on collocation and Chebychev polynomials. We show that the thresh-
old triggering adoption depends not only on technological parameters but on
preference parameters as well. In particular, the higher the risk aversion para-
meter, the smaller the level of wealth which is required for adoption. Finally, we
also show that while uncertainty on energy-saving technologies efficiency hardly
affects adoption timing, uncertainty on financial returns fosters it. The latter
result is strikingly different from what is obtained in partial equilibrium. As a
consequence, it stresses that the existence of an option value is not sufficient
to explain the "energy paradox", as suggested by Sanstad, Blumstein & Stoft
(1995).

The remainder of the paper is as follows. Section 2 presents the general
model, and explains the assumptions that will be valid for the whole paper.
Because this model is to be solved backwards, we start in section 3 by develop-
ing the general equilibrium framework once the energy-efficient technology has
been adopted. In Section 4 we analytically solve the model before the tech-
nology adoption and derive the optimal adoption timing in the special case of
zero discounting. We provide also some sensitivity analysis based on numerical
resolutions. We confirm these results in section 5 with the more general case of
a strictly positive discount rate. Section 6 concludes.

2 The model

We assume that the homeowner holds risky assets. His income return encom-
passes a deterministic part, 7, and a stochastic one, oodzs. He consumes energy
goods Cy and non-energy goods C7. The function of wealth accumulation con-
sists of two components. The deterministic one is rA; — C1y — xCo; ,with A; the
level of wealth and z, the relative price of energy. The stochastic component
comes from the stochastic financial returns. The function of wealth accumulation
writes therefore:

dA = (rA— Cy — 2Cy)dt + o3 Adz, for t < 7 (1)

At any time 7, the household can lower the cost x of the energy service
by switching to a new technology y. The initial cost of the new technology
is 8. This cost is unrecoverable. Moreover, there exists an uncertainty oy
that is linked to the cost of consumption in energy service after the adoption of
the new technology. Indeed, we assume that the benefits of such energy-saving
technologies are uncertain due to the lack of information about them. Note
that y must be less than = because the cost of the energy service is otherwise
higher with the new technology and the homeowner never adopts. We define
the difference between = and y as the savings in energy efficiency. The function
of wealth accumulation after the adoption of the new technology is:

dA = (TA - Ch - yCQ)dt — UlyCQdZ1t + 09 Adzy for t > 7 (2)



The homeowner preferences over consumption plans are represented by the life-
time expected utility functional

&S] o) ab\1—~
Ey V ePtU(Cu,CQt)dt] = Fy V e*f’t(cllCi?)dt (3)
0 0 -7

To facilitate the presentation, let denote © the set of admissible plans, that is,
the set of consumption plans and dates of adoption (C,7) such that

Eo [ /O Ooe_th(Clt,Cgt)dt] < 00 (4)

where p is the consumer subjective discount factor, v is the constant relative
risk aversion of the household with v # 1 and v > 0. The elasticities a and b
are positives. We define the effective coefficient of risk aversion (see Smith and
Som, 2005):

R=1-(a+b)(1-7) (5)

The optimal switching time should maximize the intertemporal utility subject
to the function of wealth accumulation, the non-negativity constraint and the
initial condition Ag. The value function of the homeowner is :

T (CHC3) Y

V(Ap) = sup Ep [/ e P2 gt e PTIW(A, — B) (6)
() 0 1—v

where W is the value after having adopted the new technology and 7 is the

optimal adoption time.

This program can be solved in two stages. First, we solve for the optimal
consumption plans of the representative agent after the adoption of the new
technology. Then, there is no longer an adoption option in the value of the pro-
gram. We find the expression of the value function which provides the boundary
condition to compute the equilibrium of our general model with a technology
adoption opportunity. Note that it also provides a benchmark for the economy
with the technology adoption option. Second, we formulate the choice of an
optimal consumption plan and an optimal investment time prior to technology
adoption.

3 The optimal path after adoption

We assume in this section that the new technology has been adopted. The set
of admissible plans collapses to the set of consumption plans such that :

E, [ / e P |U(Cy, Cot)| dt} < 00 (7)
The value function of the household is :
0 a b \1—v
W(A,) =sup E;, [/ e_”(f’_'r)%dt] (8)
C T 1- Y



The Bellman equation may be written :

a b \1—~
W(A;) = max {%dt + e_ptht<W(At+dt))} witht > 7 (9)
The first order conditions yield the optimal consumption of energy and non-
energy goods:*

T
cr, = {@MBW”} A, (10)
C3, = BA; (11)

We note that the optimal consumptions are both constant fractions of the wealth
level with:

__ Ryx(1-7)VA
Roty? 2R — b(1 — 7)]

— 1 ’ R 2,2 2 R 2 bp

The feasibility condition imposes B > 0. Depending on the value of v relative to
unity we consider one or the other root of the second order equation. Moreover

, and

a a [a(1—v)—1]
M = B*R |:_ 2 QB j|
2 s o)

The expected optimal wealth growth rate is:

Ei(dAJA) ci 0
dt = ro B G| B

1

M a(l—~)—1

S TR
a

Note that this is a more complex expression than usual (see for instance Smith
and Son, 2005) since consumption expenditure is itself directly affected by un-
certainty in the wealth accumulation equation. The following results can be
obtained analytically:

NCui/Ky) _ [0(Cou/Ke) OM | 9(Cri/ )
02 oM OB OB

8_B(9_A >0fory<1
v—77) OA 003 indeterminate for v > 1

I(Cot/Ky) 0B OA >0fory <1
dot  O0AJoi <O0fory>1
An increase in the uncertainty on the financial returns increases current con-

sumption in both energy and non-energy consumption if the intertemporal elas-
ticity of substitution (1/7) is greater than unity. Moreover, current consumption

4See Appendix A.



in energy goods decreases when uncertainty oo rises if the intertemporal elas-
ticity of substitution is less than unity. These results are consistent with the
usual income and substitution effects: more uncertainty reduces the certainty
equivalent of the financial returns which in turn generates an income effect (less
current consumption) and a substitution effect (more current consumption).
The substitution effect prevails if the intertemporal elasticity of substitution is
large enough. Effects of 03 on Cy4 for v > 1, or of 0% on both Cy; and Cy; are
analytically indeterminate. Figures providing a numerical computation of these
effects can be found at the end of appendix (A).
Finally, the explicit expression of the value function is:

MA;
(1=7)
It is easy to show that the condition on parameters such that the utility function

is concave is (a + b0)(1 — ) — 1 < 0. The transversality condition requires the
convergence of the value function, i.e.

W(A;) = W(Ar) = (12)

tlim Ey(W(A:))=0
It is satisfied if the lifetime utility of wealth does not grow “too fast” in ex-
pectation (see Smith (1996)). Applying Ito’s lemma to W (K;), this requires
that:

1
E(dA) = WAE(dA)+§WAAE(dA2)<O

& M

We assume that this condition is fulfilled.

4 The optimal adoption timing with no discount-
ing

Considering the analytical resolution helps understanding the mechanisms of
the model. However, solving analytically is only possible in the special case in
which the consumer’s discount rate is equal to zero®. This is why we assume
zero-discounting in this section. Note that the expressions of the optimal con-
sumption path and of the value function after the switch that have been derived
in the previous section remain valid but we now impose p = 0 in these expres-
sions. Nevertheless, assuming that the consumer does not discount the future is
not very realistic. Therefore, we will turn to numerical resolutions in the next
section to show that introducing a discount factor does not change the nature
of the results.

5See next section.



Recall that the homeowner has to choose both an optimal consumption plan
and an optimal technology adoption timing. This choice is given by the max-
imization of the intertemporal utility function subject to the wealth accumu-
lation equation. Once the new technology has been adopted, the homeowner
optimally follows the consumption plan described by equations (10) and (11).
Therefore, the value function at the time of adoption is given by the following
value matching and smooth pasting conditions :

V<A‘r) = W(AT - 6) (13)

VA(AT) = WA<AT - 6) (14)

where A, is the level of wealth for which is optimal to adopt. It implicitly
determines the optimal switching time 7. The value matching condition (13)
simply requires that, at the time of the switch (i.e for a level A, of wealth),
the value before the switch is equal to the value after the switch once paid the
initial costs. The smooth pasting condition (14) ensures the smoothness of the
value function around the switch (V' before the switch and W after the switch).
It guarantees that adoption occurs for the optimal level of wealth.

Since it is always possible for the homeowner to indefinitely postpone the
adoption of the new technology, another condition has to be satisfied, namely
that for any level of wealth, the value with the adoption opportunity V' cannot
be smaller than Wy, the value without such an opportunity:

Wo(Ay) < V(Ay) WVt (15)

The household’s program is :

T(Ca Cb 1—~
V(o) = supEy [ [ W, - pam]|  a0)
C,r 0 -7
st. dA = (rA—Cy —xzCs)dt + o9 Adzoy (17)

To solve the program before the switch, we determine the marginal value of
wealth which has to satisfy the smooth pasting condition. Integrating this value
between zero and the level of wealth at the optimal switching time, we can use
the value matching condition to get the optimal adoption date.

4.1 The marginal value of wealth

The first order condition yields:®

b b(lg‘Y)
—b(1— 1
Cr, = a5 <;> vV, ® (18)
l—a(l—v
. at-v (b B -1
C5,=a F p Vy ¥ (19)

6See appendix B.



Using a variable change, the Bellman equation leads to the following expression
for the marginal value of wealth before the switch (see Appendix B) :

- R

Va(Ay) = |DiA7 4+ DyAP: (20)

——
L G(t)
B R b b(1—7)
a(l—7v) R

with D; = ——a R (—) — T 5o (21)
v—1 x (r— 403R)
] 2r

and D3 = _R_U% (22)

We note G(t) = DA, 2773 the option value to switch’. Dy is a constant which
must be determined® using the smooth pasting condition (14). We obtain :
[M(a+b)% Dy

(A, —B)AP>  APsH

Dy = (23)
If the homeowner does not have the opportunity to adopt a new technology,
there is no option value to adopt the new technology, G(t) = 0, and the value
function reduces to:’

R
R a(l—v) b b(lgw _
T—1¢ & (_) A"
We(A _ -1 T t 24
0(4) (r — LoZR) (a+b)(1—7) 2y
Dy
DR A"
& Wl =T

where Wy(A) is the value function of the homeowner with no opportunity to
switch. Moreover, the feasibility condition associated with the program in the
absence of adoption opportunity writes:

D1 >0

Recall that Wy(A;) cannot be greater than the lifetime utility of the agent in
an economy with the new technology; therefore we must have:

Wo(As) < W (Ay) (25)

"Recall that under uncertainty, it is possible to delay an irreversible investment. While
the homeowner is waiting, he can take advantage of an opportunity to invest, similar to what
happens with a financial option. Therefore, there exists an option value of the investment
project that is killed at the time of investment (see Dixit and Pindyck, 1994). This option
value represents an opportunity cost of investment that must be taken into account.

8See appendix B.

9See appendix B.



This condition ensures that there exists an optimal switching date, that is, in the
absence of costs of switching to the new technology, the central planner would
choose to immediately switch for any current level of wealth accumulation.

Using the expressions for Wy4 (computed using equation (24)) and for Wy
(computed using equation (12)), the marginal value V4(A¢) can be rewritten:

2r
AT RU%
Ay

=G(t), part due to the option to switch

Va(Ae) = [Woa(A)F + (Wa(A; = AIF = Woa(4,)F) (26)

The marginal value of wealth differs significantly from the one that can be
derived in the absence of technological change. This is due to the existence of
an option to switch that generates an option value taken into account in the
marginal value of wealth. In the absence of such an option, G(t) = 0 and the
marginal value of wealth reduces to Wy 4(A¢). This option value is the difference
between the marginal value after the switch (having paid initial cost ) and
the marginal value in the absence of opportunity to switch, discounted by the
distance to the switch, that is related to the ratio between the current wealth
A; and At.

We have two cases :

e If v < 1, we have: WOA(At)% < WA(At)% < Wa(A: — 6)% that ensures
that G(t) > 0. There is no problem of existence of V4 in this case. The
marginal value of wealth in the economy with an opportunity to switch
is greater than the marginal value of wealth in an economy without this
opportunity. It means that consumption at each time is smaller in an
economy with opportunity to adopt a new technology, compared to the
consumption which prevails in an economy in which the opportunity does
not exist.

o If v > 1, we have Wou(A;)F > Wa(Ay)%. In this case, the sign of G(t) is
ambiguous.

— G(t) < 0. Tt means that the part due to the option to adopt a
new technology in the expression of the marginal value of wealth is
negative. Therefore, consumption at each period is greater in an
economy with an opportunity to switch compared to the consump-
tion which prevails in an economy without such an opportunity. In
this case, the homeowner does not like to substitute and the option
to adopt a new technology is an incentive to rise his consumption to-
day to smooth his consumption path that is expected to grow more

10



once the technology is adopted. Thus, adoption is delayed. How-
ever such a consumption path cannot happen since for small values

1
of Ay, namely for A; < (—Dl/Dg)l/(l_Q"/R@), the expression of V*
becomes negative and the program is no longer defined. Therefore,
G(t) < 0 cannot be considered.

— G(t) > 0. It implies that when integrating V4, the following condition
Wo(A;) < V(A;) ¥Vt can no longer be satisfied (since for v > 1,
feasibility condition implies 2r/(c3R) > 1). Therefore, G(t) > 0
cannot be considered.

— G(t) = 0. It ensures both that VA% is positive (the program is defined)
and that the condition Wy(A;) < V(A4;) Vit is satisfied. It is the
sole solution that we can consider if v > 1. It involves that the
consumption is not affected by the existence of an option to adopt
a new technology. We denote A* the special value of A; such that
G(t) = 0.

Therefore, we obtain using equation (24) and (26):
B

1
M(a+b)| R
1 Drtarn)

A = (27)

A* must be positive, which requires M(a + b) < D¥ that is ensured by
condition (25). Obviously, this threshold raises with the cost to pay for
adoption and decreases with the savings in energy efficiency (see numerical
resolutions in appendix B). The better the new technology compared to
the old one, the smaller the threshold.

4.2 Boundary conditions

The level of wealth A, is such that, at the time to the adoption, the value with
the initial technology is equal to the value with the new technology once the
cost B is paid (this is the value matching condition):

V(A;) =W(A; - B) (28)
Thus, we have again two cases :

e If v < 1, the threshold A, has to satisfy :

/ MVaaa=wia, ) (20)

since V(0) = 0 for v < 1. Note that V4 is itself a function of A, through
D5. Equation (29) can be solved numerically. Simulations are driven using
the following values for the parameters: o7 = 0.013; b = 0.25; a = 0.7,
v =0.5; x = 10; y = 0.25; r = 0.05; 05 = 0.5; 8 = 0.1. The value of the
effective coefficient of risk aversion is R = 0.525.

11



Figure 1 shows the three value functions: V(A) before the switch, W (A —f3)
after the switch, and Wy(A) without the option to switch. The threshold that
triggers the switch is A, = 0.82. Note that at the time of adoption, yCy (with
Cy computed after adoption) is smaller that xCy (with Cy computed before
adoption). It implies that, at least at the time of adoption, the rebound effect
does not prevail on energy consumption.

0.0 0.2 0.4 0.6 0.8 1.0

Thick line : V(A)
Small dashes : W (A — 3)
Large dashes : Wy (A)

Figure 1 : The value functions for v < 1 (optimum)

o If v > 1, we have that A, = A* with A* given by equation (27). The
boundary condition (13) allows to derive the value of the program before
the switch :

1 _ _ _

V(4) = 7= [DIA; " + [M(a+ b)) (Ar — 8)' = = DIFATT] - (30)
Note that both A* and V(A,) are analytically defined with v > 1. Simula-
tions to draw the value functions are driven using the following values for
the parameters : o1 = 0.013; b = 0.25; a = 0.7; v = 2; x = 10; y = 0.25;
r = 0.05; oo = 0.1; B = 0.1. The value of the effective coefficient of risk
aversion is R = 1.95.

12



Figure 2 shows the three value functions: V(A) before the switch, W(A —f3)
after the switch, and Wy (A) without the option to switch. The threshold which
triggers the switch is A* = 0.265 (see equation (27)). Contrary to what happens
for v < 1, one may compute that the rebound effect prevails at the time of
adoption.

{:|_I T T T T T T 1]
_soooof _d,.f""":' ]
L :’;—__‘-ﬂ' _'-' -4
-

[ Va ; _

-100 000 | )4 .
[ .'I..;:Ilr III :
150000 f 3."{
S A T 5
0,00 D.05 0.10 D.15 0.20 0.25 0.30

A

Thick line : V(A)
Small dashes : W (A — 3)
Large dashes : Wy (A)

Figure 2 : The value functions for v > 1 (optimum)

4.3 Comparative statics

We provide some figures in appendix (C) to show the effect of each parame-
ters. Parameters’ values used to draw the value functions previously are now
considered as baseline parameters for the simulations.

The level of wealth for which it is optimal to switch is a decreasing function
of x and an increasing function of y. It is quite intuitive that the larger the
gain of adoption, the sooner the homeowner wishes to adopt and therefore the
lower the level of wealth for which he wishes to adopt. Of course, we obtain
that the higher the adoption cost, the higher the threshold wealth and the later
the adoption.

Let us consider the effects of preference parameters. As far as parameters a
(on non-energy goods C1) and b (on energy goods C3)'” are concerned, we obtain

10Note that we only present the results for values of b between 0.2 and 0.4 because b cannot
be greater than a.

13



the following results: the more sensitive the utility of the household to non-
energy consumption (i.e. the higher a), the later the homeowner wants to devote
resources to adoption and then, the higher the optimal adoption threshold,
but the effect of b depends on the value of v relative to unity. The relative
risk aversion coefficient v has a complex effect because it summarizes both the
attitude with respect to risk and that with respect to intertemporal substitution.
Simulations show that the higher v, the smaller the level of wealth that triggers
adoption.

Let us now turn to the effect of uncertainties. The level of wealth for which
it is optimal to switch is not sensitive to the uncertainty (o) related to the
efficiency of consumption in energy service after the adoption of the new tech-
nology. It is an increasing function of the deterministic part of financial return
(r) while it is a decreasing function of the uncertainty on the financial returns
(02). First, the larger the deterministic return on wealth, the more reluctant
the homeowner is to devote part of his wealth to technology adoption. Second,
o9 reduces the certainty equivalent of the wealth rate of return (r — —O'QR) and
it is no surprise that it affects adoption in the opposite way compared to r.
These effects of r and o9 only appear for v < 1. For v > 1 adoption becomes
insensitive to these parameters.

5 The optimal adoption time with discounting

It is not possible to go on with the analytical resolution if the consumer discount
rate is not equal to zero. Indeed, the Bellman equation before the switch is:

(Cf,C3)

1
,OV: max { 1=~ +VA(TAC1LL’CQ)+§O'§A2VAA} (31)

Maximizing wit respect to both Cy; and Co; leads to

b(l )

R a-) b
— a ; +rAVA + 02A VA VAA (32)

1-R
pVVLT =

Such an equation can no longer be solved using the variable change proposed
in appendix B for p = 0. As this Bellman equation cannot be solved analytically,
we turn to a numerical resolution. More precisely, we adapt Judd’s metodology
(see Judd, 1992) based on Chebyshev polynomials and projection methods as
proposed in Dangl and Wirl (2004).

5.1 An approximate value function before adoption
Using equation (32), let us define L:

b(A—v)

b 1
a” R’ = —l—rAVA + 0’2A VAR Vaa —pV, " V.
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L is an operator, or a function that maps functions to functions, and A € [0, A.].
As noted in Judd (1992, 1998), the domain of L includes all the C* functions,
and its range is CY. The differential equation (32), combined with the value
matching and smooth pasting conditions, equations (13) and (14) respectively,
can be viewed as the problem of finding a C* function V' such that:

L(V)(4) = 0 (33)
Vi(A;) = W'(A; - B). (35)

The projection method simplifies the original problem (33) by approximating
the function V(A) by means of polynomials.!! As we decided to use Chebyshev
polynomials, our approximation can be written as:

N
V(4,0) = geoTo(4) + Y Ti(A), (30)

where A € [0, A;], and T;(A) is the general ith Chebyshev polynomial of the
first kind that is defined by the following recurrence relationship:

T, = 1
T, = A
Thir = 2AT,(A) — Th1(A),

or by the trigonometric identity:
T,,(A) = cos(n arccos A).

Written in this way, the quality of our approximation is guaranteed by the
Chebyshev approximation theorem (see Judd, 1992).

5.2 Choosing the coefficients

We need to choose ¢ = {cp, c1,¢a,...,cn} so that YA/(A,C) nearly solves the dif-
ferential equation (32). To do this, we first ignore the conditions (34) and (35),
and define the residual function:

RF(A,c) = L(V)(A). (37)
Equation (37) is the deviation of L(V)(A) with respect to the zero target value.
The projection method adjusts the set of coefficients until a set ¢ is found that
makes RF'(A4,c) sufficiently close to the zero function. Equation (36) has then
to be inserted into equation (37). Note that we have N + 1 coefficients ¢; to be

1By Weierstrass theorem, we know that any C! function can be properly approximated by
a large sums of polynomial terms. So, as N becomes larger in our equation (36), we are sure
that V(A,c) is converging to V(A).
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found. Therefore, we choose N + 1 collocation values A; € [0, KT], where A\T is
an arbitrarily chosen value of A,. For example, the Chebyshev-Gauss-Lobatto
collocation points can be used. They are defined as follows:!2

A
Ai 77({% + 1), and

LT
0, = COS(N).

Applying such a collocation method, the initial problem is reduced to that of
solving a set of N 4+ 1 non linear equations:

RF;(A;,¢) =0, i=0,1,...,N. (38)

Boundary conditions, i.e. the value matching and smooth pasting conditions,
need then to be considered. For instance, let us start by introducing the value
matching condition. Choosing an initial value A, for A, equation (36) and
equation (34) imply that:

V(A)~W(A, - B)=0. (39)

To impose that our solution satisfies the value matching, one condition of the
set (38) is then replaced by equation (39). The resulting system can be solved
iteratively starting with a guess ¢ = (c?). Specifically, we use Newton’s method:
k= ¢k — (Jer)7LP(cF), where Jgx is the Jacobian of RF(A,c) evaluated at
the respective point ¢*. Finally, the optimal switching time A, is found using
a search algorithm in order satisfy the smooth pasting condition. We solve for
our non-linear system until a value A, = A, is found that solves:

V'(A,) =W'(A, - B)

5.3 Results

In our computations we are using N = 10 and the baseline parameters’ values
described in the previous section (with no discounting) except that p = 0.0001.
Such a small value allows to compare the results with those obtained under the
assumption of no-discounting.'® Simulations are driven using MatLab software.
In the following figures we show the value functions before and after the switch
and the optimal switching level of wealth A :

12The Gauss-Lobatto-Collocation points are defined for —1 < 6; < 1. The points A; are a
linear transformation of 8; such that 0 < A; < A-.
13 A more realistic value for p can be found in the sensitivity analysis.
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Value functions before and after the switch

———— W(A-bet)
V(A) |
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v < 1. Then A, = 0.5049.
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A

v > 1. Then A, = 0.2653.

5.4 Comparative statics

Figures in the appendix C show the sensitivity of the optimal adoption timing
to the model parameters, starting with the usual baseline. First, this analysis
proves to be fully consistent with that driven under the no-discounting assump-
tion. Second, the figures show that the more concerned about the present the
household is (larger p), the earlier he adopts the new technology, in order to get
the benefits sooner.
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6 Conclusion

In this paper we consider a homeowner who makes an irreversible energy-saving
investment under uncertainty. Both financial returns and the energy-saving
technology efficiency are stochastic. In a general equilibrium framework, we
solve the program corresponding to the optimal adoption of an energy-efficiency
technology adoption by a representative consumer who uses his wealth to save or
to consume energy goods and non-energy goods. The model can only be solved
analytically if the utility discount factor is zero. We confirm the results in the
more general case with non-zero discounting using a numerical procedure. We
show that the threshold triggering adoption depends not only on technological
parameters but on preference parameters as well. In particular, the higher
the risk aversion parameter, the smaller the level of wealth which is required
for adoption. Finally, we also show that while uncertainty on energy-saving
technologies efficiency does not affect adoption timing, uncertainty on financial
returns fosters it. The latter result is strikingly different from what is obtained
in partial equilibrium.
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8 Appendix

A Solving the optimal program after adoption

The Bellman equation is written as:

a (b \1—v
W(A;) = max {%dt + Et(W(Atert))} with ¢ > 7

Using It6’s lemma, this equation becomes:

C1¢,Cat 1-— ¥
(40)
The first order conditions yields:

y

=
c-b(1—y) | aG=9-1 w
Ci, = |Wy—=2 and O3 = L

1t A a 2t bCé’El*“’)*szt(lf"’)+a§y2WAA

We guess that C3, = B.A and W(A,) = W(4) = A([fl:;)R7 with B and M

being constant to de determined and R =1 — (a + b)(1 — 7) being the effective
coefficient of risk aversion (equation (5) in the text). Then:

Wa = M(a+b)AleTDI=1=1

Wax = M(a+b)[(a+b)(1— ) — 1] Ale+b)1=7)-2

By replacing the consumptions by their optimal expressions into the bellman
equation we get:

a(l—7)
—b(1— 0=y =1
0 = : 1 <WA(BA) ( ’Y)> R (BA)b(lf'V)
— a
1
BA)-b1-7)\ =51 2 2
+Wa |rA— (M> — y(BA) 4+ Waa [%yQ(BA)Q + %AQ
a
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a b \1—~ 2 2
max {(CltCQt) dt + WA(TA o Cl o ng)dt + I:%yQCQQ + %TQAQ WAAdt =0



1
1 —b(1—~) a 1-a(1-v) a(]. - 'Y) R 2 212 2
& Ma@=—-1 Bali-m-1 = — | |= B — B
(a+b> (1&(17))[2 (Uly +02) Tty

Moreover, using the expression of C5, we can get:

a(l—v) 1

Ma(l—lv)—l Ba_(f(—l"r_)z)l = %aa(l—v)—l (a + b)m (y + RO’%yQB)

Hence:

1—v 2 2712 2 E_ _E 2,2
(71_“1_7)) [(UlyB + 03) 5 r+yB| = , (y + Roiy’B)

o [t (- 3)] o o (s - 3]

p R 1y
*[I—R ”2"2} (1—a(1—v)>_0

1 \1* [R ,, 2 R, bp
A= {y(a%—b—:ﬂ —4 |:50'1y <2a+b—m>:| |:b50'2—b7'—|—m]

Therefore:

—y((a+b)(1—-7) -1+ (1-7)VA
Roty? [(2a+0) (1 — ) — 2]
—y(a+b)(1—y) -+ (A -—7)VA
Rofy?[2(a+b) (1 —7) =2 —0b(1 —7)]
Ry £ (1-y)VA
RoTy?[2R — b(1 — )]

la(l=7)=1] g(a+b)(1—7)
(I=7)

We insert the expression of the effective coefficient of risk aversion in the
precedent equation and we obtain (equation 12 of the text):

B _a-v_ 1
W(A) = BY1=7) gaau(iwfl (a+ )= (y + Ro%yB)
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W(A;) = B*1=7

Moreover, consumption expenditure can be affected by uncertainty. Effects
of 0% on Cy4 if v > 1 or of 6% on both Cy; and Co; are analytically indeterminate.
The following figures provide a numerical computation of these effects based on

a(l—7)

—ged—-1

(a+ b)m (y + Roty*B)

the set of parameters’ values described in section 4.2.
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B Solving the optimal program before adoption
Using It6’s lemma, the value function before adoption V(A7) <,y has to satisfy:

max

C1¢,Ca¢

a b \1—y 1
{%dt +Va(rA—Cy — aCs)dt + 503A2VAAdt} =0 (41)

The first order conditions yield:

OO T = Vi
ceIpetITL = gy,
Therefore:
b %
Cy = alfb(lfv)(;)b(lfv) V,E
N al=y) b 1-a(i—y) =1
Cgy = ™7 ()

Replacing consumption by its optimal expression in the Bellman equation

1-r
and multiplying by V, * yields:

b(A—v)
R

i 1 1-R
+ AV Er + 5agAQVA T Vaa=0

=

and  f'(4;) =

We make the following variable change: f(A;) = V

1-R
lVA " V4a. Hence, the preceding equation may be written as:

R
R a(l-v) [/}

a  ® —

11— T

We guess that f(A;) can be written as follows:

b(l—~
R

1
+ f(A)Ar + 5agA,?Rf’(At) =0

D 5 .
f(A) = 7+ DeAP = f1(A) = —A—té + DD AP

where Dy, Dy and D3 are constants to be determined. Then:
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b(A—v)

R et (D
a" F —
1—7v x

This equation is of the form:

+<D— + D, AD3) Atr—l— 02RA? <—

D
—+ D2D3A?31) =0
At

Aj

g(A)+v=0

In order for this condition to be satisfied whatever A;, one must have:
g9(A) =0 andv =0
Therefore:

b(1—~
R 0w (D R 1
1_7a R <;> + Dy (r—§U§R> =0

and

7'+ O'QRD?,—O

Thus, we obtain D; and Ds:

R b b(1—~)
a(l—v) R
Dy = a & | =
! v—1 (I (r— 303R)
r
Dae ——
s $Ro3

We show that the marginal value of wealth before the switch is:

R

Laau};w) (%) b(lg'y)

Valdo = - (r — 10%R)

Dy

A7N 4 DA, P

D5 is a constant which must be determined using the smooth pasting con-
dition (see equation (14) of the text). From the last equation we obtain:

Dy
A

=
|

VE = f(A) ==L 4 D,APs

D R
= Va= {71 + DQADL%}
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and using the smooth pasting condition (equation (14) in the text):
Va=Wa(A; = B) = M(a+b)(A, — )"
Hence:

Diypoare]’ — =
7. tDeAr = Ma+b)(4A; - 5)

& Dy =

This is the equation (23) in the text.

1 R
D1 []\4(&—1—())]E Dl D
= Vi=|—+ _ ADs
AT, ((ATﬁ)AES AP+ |
R
B D | Mt D | (AN
- At (A‘r_ﬁ) A‘r A‘r
~ —_—— <~
Woa (Ag)t/ B Wa(Ar—B)V/E  Woa(A)M/E

The expression of the marginal value of wealth can be written as follows:

a(l—~ b(1—~) R
L, (lR : (%) e .
Ay +G(t)

Va(4y) = || 2=

T 1am
where G(t) is the option value. It is the equation (20) in the text.

Note that Wy(A4;), the value function of the homeowner in an economy with
no technological change, has to satisfy:

b(A—v)
R

(@]
I
=
)
|2
T
2
VN
8| o

1
+ AWpar + §U%A2W0AA

R a(l;'y) (2) ] lg'v R

e i At
& Wo(Ay) = (r— 1o3R) (a+b)(1—7)
AI—R
& Wo(A) = Df’m

Finally, notice that in the special case in which 01 = 0 and x = y, we have
M = DE/(a+0).
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C Comparative Statics
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