
HAL Id: hal-00937438
https://hal.science/hal-00937438

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduced Model of Three Ways Catalyst Converter
and Stored Oxygen Rate Estimation Using Switched

Observer
Caroline Ngo, Damien Koenig, Olivier Sename, Hubert Béchart

To cite this version:
Caroline Ngo, Damien Koenig, Olivier Sename, Hubert Béchart. A Reduced Model of Three Ways
Catalyst Converter and Stored Oxygen Rate Estimation Using Switched Observer. ECC 2013 - 12th
biannual European Control Conference, Jul 2013, Zurich, Switzerland. pp.n/c. �hal-00937438�

https://hal.science/hal-00937438
https://hal.archives-ouvertes.fr


A Reduced Model of Three Ways Catalyst Converter and Stored
Oxygen Rate Estimation Using Switched Observer

Caroline Ngo, Damien Koenig, Olivier Sename and Hubert Béchart

Abstract— Pollutant emissions limitations ruled by the latest
standards force car manufacturers to improve after treatment
systems. This improvement is achieved by new systems on one
hand, and by more efficient control strategies, on the other.
This paper describes a 0-D model of Three Ways Catalyst
converter (TWC) which is able to reproduce the transient
dynamics of the converter although simple. A switched observer
of stored oxygen rate is derived from this reduced model, and
its convergence is proved. An estimation of the oxygen capacity
of TWC provides precious information for on-board diagnosis
or monitoring purpose.

First, a description of the TWC dynamics and its reduced
model will be described, then a discrete time switched observer
of the stored oxygen rate and the free site capacity estimation
by least squares method are presented.

I. INTRODUCTION

Incomplete fuel combustion in cylinder leads to
pollutants emissions. Nowadays, severe norms impose
car manufacturers strict pollutant emissions regulations.
As a result, exhaust gas after treatment systems need to
become more efficient. Manufacturers meet the constraints
by developing new technologies, but also through more
sophisticated engine control strategies. The present study
deals with the major after treatment system of Spark Ignition
(SI) engine : the Three Ways Catalyst (TWC) converter.

The distinctive feature of Three Ways Catalyst is its ability
to convert the three major regulated pollutants (CO, HC and
NOx). Pollutants optimum conversion require the fuel air
ratio to be at stoichiometry value. Above this value, mixture
is defined as rich (excess of fuel in mixture) whereas below,
the mixture is defined as lean (excess of oxygen). The fuel
air ratio, through the injected fuel quantity in the engine,
is controlled by Exhaust Gas Oxygen (EGO) sensor which
indicates the presence of oxygen in exhaust pipe. However,
catalyst system control strategy based on exhaust fuel air
ratio measurements, without taking account of its internal
dynamics, is not enough to meet futures restrictions. Over
the years, researches focused on TWC converter mathema-
tical models. However, modeling this system is a complex
task due to the numerous chemical reactions involved, as
presented in [15] [16].
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Many reduced models of TWC converter have been
developed to satisfy new engine management strategy
([3][4][5][11][17]). Reduced model from [5] is focused
on the oxygen storage and release rates, described by a
static function. Transport time delay was assumed to be
negligible. This model is very simple, however, dynamic
response to TWC transients is not taken into account.
As in [5], authors in [11] described a simplified model
dominated by the oxygen storage and release dynamics
modeled by a polynomial function which parameters are
identified from experimental data obtained at different
engine conditions. The presented model include the effects
of space velocity. These models are focused on the main
dynamic of TWC : the oxygen storage dynamics. They are
simple but have many parameters to adjust.

This paper aims to respond to model based needs to
meet future standards and present an application of switched
observer to chemical process.

A 0-D physical model based on simplified dynamics of
TWC from [1] is presented, also focused on oxygen storage
dynamics. This model has been validated on experimental
results. A switched linear observer has been designed for
oxygen storage rate monitoring, designed by solving multiple
Linear Matrix Inequality (LMI) and the obtained gains gua-
rantee the stability whatever switching sequence. Estimation
of oxygen free sites density is done using least squares
algorithm to take into account this parameter deviation in
observer. An application will illustrate the presented method.

Notations : (.)T stands for transpose matrix and (.) > 0
denotes a positive definite matrix.

II. MAIN DYNAMICS OF THREE WAYS CATALYST
CONVERTER

A. TWC dynamics focused on oxygen storage

Exhaust gas of a SI engine is mainly composed of unburnt
hydrocarbons (HC), carbon monoxides (CO), nitrogen
oxides (NOx), which are the major regulated pollutants,
and oxygen (O2), essential to convert pollutants. The TWC
is able to convert these three pollutants when gas flows
through it. Indeed, thanks to its internal structure covered by
precious metal (Palladium, Platinum, Rhodium), the TWC
promote HC/CO oxidation and NOx reduction reactions
and convert them into water, carbon oxide and nitrogen.

NOx reduction or HC/CO oxidation are realized accor-
ding to the exhaust gas composition characterized by the Fuel
Air Ratio, denoted R. When the gas is rich (R > 1), NOx



are eliminated by HC and CO present in excess, whereas,
during lean phase (R < 1), HC and CO are converted by
NOx present in excess this time. As illustrated by TWC
efficiency curves (Fig. 1), best conversion rate for both
reduction and oxidation reactions is located at stoichiometry
value (R = 1).
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Fig. 1. Conversion efficiency

However, keeping R at stoichiometry value is impossible
due to the high transients in driving conditions. To increase
the efficiency of TWC conversions, Ceria oxides (Ce2O3)
are added to fix oxygen. During lean phase, O2 and
NOx excess facilitate Ceria oxidation, once stored, they
can be released to convert pollutants when mixture is
rich. By varying the fuel air ratio around stoichiometry,
oxygen storage and release are stimulated and pollutants
conversion is possible for any air-fuel mixture if storage
management is optimum. Efficiency is then between 90%
and 100%, and also depends on TWC temperature and
gas flow rate. Indeed, heat activate the catalyst (chemical
kinetics) and flow rate, if too high, prevent gas to stay long
enough for being convert (mixture transport along converter).

TWC is affected by sulfur dioxides poisoning, but also by
heat damages (overheat during misfires) which decrease the
efficiency of conversions in time. As a result, the density
of free sites for oxygen storage decrease, less oxygen is
stored and pollutants at exhaust increase. Ageing of TWC
represented by density of free sites has to be taken into
account in the model and estimated.

B. Chemical reactions

As described in the previous section, five reactions mainly
describe TWC dynamics. Exhaust gas elements react with
each other according those main chemical reactions :

– NOx reduction : 1
xNOx + CO → CO2 + 1

2xN2

– HC oxidation : HC + 1
2O2 → 1

2H2O + CO2

– CO oxidation : CO + 1
2O2 → CO2

The oxygen storage dynamics is modeled by the following
reactions :

– Oxide adsorption when R < 1 :
1
2O2 + Ce2O3 → 2CeO2

– Oxide desorption and CO conversion when R ≥ 1 :
CO + 2CeO2 → CO2 + Ce2O3

C. Reduced model of Three Ways Catalyst

Previous reactions can be grouped to reduce the mo-
del : one involve reducers and the other, involve oxides.

HC/CO/H2 can be represented by an equivalent reducer,
denoted RED, and O2/NOx by equivalent oxide, denoted
OX. Indeed, in first approximation, CO and H2 have similar
behavior and quantities of HC and NOx are negligible
compare to other components of exhaust gas. The previous
chemical equations become :

– Oxygen adsorption : OX + 2Σ→ 2Σ∗

– Pollutants reduction : Σ∗ +RED → Σ + CO2/H2O

With :
Σ/Σ∗ : Free/occupied oxygen storage site
OX : Equivalent oxide
RED : Equivalent reducer

The exhaust fuel air ratio is expressed with concentrations
of equivalent reducer and oxide by :

Rout = 1 +K(
1

2
CoutRED − CoutOX) (1)

All these simplifications lead to the following reaction rate
equations :

– Oxygen rate dynamic :

θ̇ = 2kads C
out
OX (1− θ)− kred CoutRED θ

– Exhaust fuel air ratio dynamic :

Ṙout = vvh(Rin −Rout)

+
Kρ

2

(
2kads C

out
OX (1− θ)− kred CoutRED θ

)
With :
θ : Oxygen ratio stored in TWC
Rin, Rout : Inlet, resp. outlet fuel air ratio
vvh : Exhaust mass flow rate
T : Gas temperature in TWC
K : Concentration-FAR conversion coefficient
ρ : Density of free sites for oxygen storage
kads : Adsorption kinetic (kads = kads0 e

−Eads
rT )

kred : Reduction kinetic (kred = kred0 e
−Ered

rT )
r : Gas constant
Eads, Ered : Adsorption, resp. desorption activa-

tion energy
CoutOX , C

out
RED : Oxide, resp. reducer concentration

And parameters kads0, kred0, Eads, Ered are
constant.

Other assumptions can be considered : when mixture is
rich, it can be supposed that few oxides are present and
adsorption is negligible, so kads = 0 ; on the contrary, when
mixture is lean, kred = 0 since reduction reactions are
negligible.

Expressions of oxide and reducer concentration from (1)
can be reduced again and approximated by :

CoutOX = 1−Rout

K , if Rout < 1, 0 otherwise

CoutRED = 2(Rout−1)
K , if Rout ≥ 1, 0 otherwise



The model is composed of 3 inputs (u = [Rin, vvh, T ]),
2 states (x = [θ,Rout]) and measured output (y = Rout).

The non linear system is given by :

Rout < 1

 ẋ1 = 2
K kads(u3) (1− x1)(1− x2)

ẋ2 = u2(u1 − x2)
+kads(u3) ρ (1− x1)(1− x2)

Rout ≥ 1

 ẋ1 = 2
K kred(u3) x1(1− x2)

ẋ2 = u2(u1 − x2)
+kred(u3) ρ x1 (1− x2)

(2)
Simulation of the non linear model results against experi-

mental data is presented in the following figures :

Fig. 2. Oxygen rate model and Fuel air ratio from experimental measure-
ments (dashed) compared to the non linear model (solid)

Results of the non linear model simulation shows good fit
of the model to data (Fig.2). The reduced model behave as
expected : during rich phase, all stored oxygen have been
released and θ = 0, whereas during lean phase, θ = 1
meaning that all free oxygen sites are occupied. The oxygen
storage and release dynamics (TWC breathing) are also well
modeled : during rich to lean and lean to rich transitions,
Rout = 1. In the first case, TWC store all the oxygen present
in gas and since mixture is lean, no oxide and reducer are
present are TWC exhaust, so Rout = 1 during storage. In
the second case, stored oxygen is released and react with
reducer, as a result Rout = 1 during this process.

In order to apply a switched observer, this reduced model
is linearized.

III. SWITCHED LINEAR MODEL

The choice of switched system obtained by linearization
over other form of representation is due to the nature of
TWC’s operating range (rich or lean ranges). In addition,
the model is clearly non linear but dynamics are simple.

Let consider the following switched system : ẋ(t) =
n∑
i=1

µi(x2(t))(Aix(t) +Biu(t) + di)

y(t) = Cx(t)
(3)

With : Ai = ∂f(x,u)
∂x

∣∣∣
xi,ui

, Bi = ∂f(x,u)
∂u

∣∣∣
xi,ui

, Ci = C =

[0 1], di = f(xi, ui)−Aixi −Biui
And : ẋ(t) = f(x(t), u(t))

The linearized system is given by the following matrices
(Ai, Bi, di) :

– If Rout < 1 :

Ai =(
2
K kadsi(x2i−1) 2

K kadsi (x1i−1)
ρ kadsi(x2i−1) −u2i + ρ kadsi(x1i−1)

)
Bi =(

0 0 2
K
Eads

ru2
3i
kadsi(x1i−1)(x2i−1)

u2i u1i − x2i
Eads

ru2
3i
ρ kadsi(x1i−1)(x2i−1)

)

di = f(xi, ui)−Ai
(
x1i

x2i

)
−Bi

 u1i

u2i

u3i


– If Rout ≥ 1 :

Ai =(
2
K kredi(1− x2i) − 2

K kredix1i

ρ kredi(1−x2i) −u2i − ρ kredix1i

)
Bi =(

0 0 2
K
Ered

r u2
3i
kredix1i(1−x2i)

u2i u1i − x2i
Ered

r u2
3i
ρ kredix1i(1−x2i)

)

di = f(xi, ui)−Ai
(
x1i

x2i

)
−Bi

 u1i

u2i

u3i


Each model i represents an operating point and to switch

between the n models, measured x2 = y = Rout is chosen
as switching variable. µi is the switching signal and satisfies
the following convex properties :

n∑
i=1

µi(x(t)) = 1

0 ≤ µi(x(t)) ≤ 1

Here, µi is constant and equals to 0 or 1 according to
switching variable value so, if µi(x2(t)) = 1, (Ai, Bi, di)
are activated.

Four set of points are chosen to model the dynamics
(n=4), they represent lean and rich steady state phases and
fuel air ratio transitions. Operating points are obtained by
mathematical identification based on non linear model data.

The chosen points are given in the following table :

x1i x2i u1i u2i u3i

Rout < 1
i = 1 0.973 0.956 0.952 12.51 473
i = 2 0.989 0.998 0.999 11.61 400

Rout ≥ 1
i = 3 0.447 1.004 1.003 14.12 596
i = 4 0.024 1.038 1.041 11.05 569

TABLE I
SETS OF OPERATING POINTS FOR THE FOUR SUB MODELS



In the case where switching variable is not measurable,
this switched linear model can be extended to estimate
the switching variable. This approach is presented in [10],[9].

Validation is done from non linear model data obtained
by simulation with experimental data in input. Inlet FAR is
a step signal between the values of Rin = 0.92 and Rin =
1.05 with non constant sample time, temperature and mass
flow rate are constant. Model identification results are shown
in the following figures :

Fig. 3. Fuel air ratio and Oxygen fraction rate from non linear model
(solid) compared to the switched model (dashed)

Fig. 4. Switching sequence

Good results are obtained by this switched model although
simple : modelization error of FAR remains small in spite
of noise from switches. Whereas, model of oxygen rate
from switched model is equivalent to the one from non
linear model, and is not affected by switching sequence.
Noise from switches of FAR is not a problem since this
value is measurable. This model has been applied on data
different from the one used in identification process which
justify the validity of this switched model.

In the following sections, a discrete time switched observer
and a parameter estimation are presented for x1 = θ and ρ
monitoring. Parameter estimation is used as an input for the
observer in order to take into account the TWC ageing.

LS est im a t ionNon linear model

(sample t ime Te)

D iscr et e t ime
swit ched obser ver

u(t) y(t) ρest i m

x̂

ŷ

(sample time Ts<Te)

Fig. 5. Observation and estimation process scheme

IV. DISCRETE TIME SWITCHED OBSERVER :
APPLICATION TO OXYGEN STORAGE RATE θ

Optimization of the oxygen storage management can be
achieved by monitoring the stored oxygen fraction θ. Since
this value is not measurable, an observer has to be designed.
This section presents a discrete time switched observer
with multiple Lyapunov functions designed by solving LMIs
([2][12]).

A. Switched observer synthesis

The expression of the discrete time switched observer is
of the following form : x̂k+1 =

n=4∑
i=1

µi(x2k)(Adix̂k +Bdiuk + ddi + Li(yk−ŷk))

ŷk = Cdx̂k
(4)

Where Li is the observer gain of the current model i and
Adi, Bdi, ddi and Cd are the discrete matrix of Ai, Bi, di
and C, respectively (with a sample time of 10 ms).

These matrices depend on the known parameter ρ
estimated by least squares algorithm described in Section V.

From (3) and (4), the state estimation error dynamic is
given by :

ek+1 =

n=4∑
i=1

µi(x2k)(Ai − LiC)ek (5)

ek = xk − x̂k

Problem : Considering the switched model (3) and the
switched observer (4), find the gains Li such that the
estimation error dynamics (5) is globally asymptotically
stable.

Theorem 1 : Observer gain For i, j ∈ 1, 2, ..., n, where
i represent k and j, k+1, if the pair (Adi, C) is detectable for
all i, if there exist matrices Pi ∈ Rm×m, positive definite and
symmetric and, Ui ∈ Rm×p such that the following LMI is
verified for all (i, j) :[

−Pi ATdiP
T
i − CTd UTi

PiAdi − UiCd Pj − 2Pi

]
< 0

then, the discrete time switched observer (4) of system
(3) exist and the gains are given by Li = UiP

−1
i .

Sketch of proof : (steps similar to [7], [12])



To guarantee convergence toward 0 of the estimation error
(5), the following inequality should be satisfied :

V (k + 1, ek+1)− V (k, ek) < 0

for all k, where V (k, ek) = eTk Pkek > 0 is a candidate
Lyapunov function, with Pk = PTk and Pk > 0.

Let Pi = Pk and Pj = Pk+1, the difference V (k +
1, ek+1)− V (k, ek) along the solution of (5) becomes :

−Pi+(ATdiP
T
i −CTd LTi PTi )P−1

i PjP
−1
i (PiAdi−PiLiCd) < 0

By Schur’s complement, this inequality is equivalent to :[
−Pi (Adi − LiCd)TPTi

Pi(Adi − LiCd) −PiP−1
j Pi

]
< 0

With Ui = PiLi, and by noticing that PTi P
−1
j Pi ≥ 2Pi−Pj ,

the LMI to solve becomes :[
−Pi ATdiP

T
i − CTd UTi

PiAdi − UiCd Pj − 2Pi

]
< 0

B. Switched observer synthesis with pole assignment

A solution to improve the performances of the observer
is to add constraints on matrices Adi and Cd in the previous
LMI to force poles assignment in sub-region ([12],[14]).
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Fig. 6. Sub-region for pole location

Theorem 2 : Pole placement To place the poles of the
observer into a circle smaller than the unit circle, a simple
change of matrix in the previous LMI is used : Adi is
replaced by Adi−σI

r and Cd is replaced by Cd

r , where σ is
the small circle center coordinates and r is the small circle
radius.

The LMI to solve becomes :[
−Pi (Adi−σI

r )TPTi − (Cd

r )TUTi
Pi(

Aid−σI
r )− Ui(Cd

r ) Pj − 2Pi

]
< 0

C. Observer results

The switched observer has been validated against the
same data used previously in switched model validation
paragraph. Initial states values are different from data to see
observer performances. Pole placement application will not
be illustrated.

Figures show that observer converge and is not affected
by switches. Maximum value of error estimation for x̂1 and

Fig. 7. Fuel air ratio and Oxygen fraction rate from non linear model
(solid) compared to observer result (dashed)

x̂2 is 30%. Although this value is quite high, error converge
quickly to 0 such as the results are satisfactory.

The presented results prove that observer is efficient for
oxygen storage rate monitoring (Fig.7) which can be em-
ployed in advance control strategies including oxygen storage
management.

V. FREE SITES DENSITY ρ ESTIMATION BY LEAST
SQUARES ALGORITHM

Future standards will impose On Board Diagnosis
(OBD) of TWC. Catalytic converters are mostly affected
by sulfur poisoning or overheat which reduce the surface
available to convert pollutants. As a result, density of
free oxygen site ρ decrease, leading to efficiency loss of
TWC. By monitoring the parameter ρ, the TWC ageing
can be taken into account by the observer to adapt oxygen
storage management, and is a precious information for OBD.

To monitoring ρ, an estimation by least squares method is
chosen (see [13]). One can remark that an adaptive observer,
PI observer or addition of the parameter in the state vector
could have been used to estimate both states and parameter
as in [8] or [6].

However, two reasons explain this choice :
– The parameter ρ varies slowly (years), so online esti-

mation is not useful for observer.
– System with addition of ρ as a state and ρ(k+1) = ρ(k),

is not observable when x1i = θi = (0, 1) or x2i = 1
(eq.(2)).

As a result, decoupling the problem of observation and
estimation was preferable.

The recursive least squares estimation is done with the
values from the non linear model. The non linear model
presented in section II is of the form :

h(x) = ρf(x, u) + g(x, u)



With :

h(x) = ẋ2

g(x, u) = u2(u1 − x2){
f(x, u) = kads(u3)(1− x1)(1− x2) (if x2 < 1)
f(x, u) = kred(u3)x1(1− x2) (if x2 ≥ 1)

Since ẋ2 is used to estimate the parameter, the least square
algorithm is more advantageous : data from non linear model
are stored to run the algorithm afterward. Moreover, the
parameter ρ varies slowly, the sample time of estimation
process can be smaller than the observer one (see Fig. 5)
to provide known parameter to observer as online estimator.

The objective is to estimate the parameter ρ using least
squares criteria :

JΘ(N) =

N∑
i=0

(y(i)−ΘTΦ(i− 1))2

With :
y : Measured output
Φ : Vector composed of measured output and input
Θ : Vector of parameter to be estimated

Recursive least squares algorithm can be applied by wri-
ting :

y(x, u) = h(x)− g(x, u)
Φ(x, u) = f(x, u)
Θ = ρ

The following result is obtained by running estimation
algorithm with a sample time of Ts = 1e-4 s with an observer
running with a sample time of Te = 0.06 s.

Fig. 8. Free site density estimation (solid) - Parameter value (dashed)

The estimation converge to the parameter value even when
parameter real value changes, showing that this algorithm
used in a recursive way is fast and suitable for monitoring
application, especially the ageing of TWC.

VI. CONCLUSION

In this paper, a reduced model well suited for control
thanks to its simplicity in the form of ordinary differential
equations of small order, is developed based on oxygen
dynamics of the TWC.

A multiple model linearization representation permits
to design a discrete switched observer by solving mul-
tiple LMIs, considering all the possible cases. Structural
constraints can be added in observer synthesis to force its
poles to be in a specified circle. A parameter estimation based
on recursive least squares algorithm is provided, treated
separately from the observer problem.

Successful application of the oxygen fraction rate θ obser-
vation and estimation of the free site density ρ will improve
the oxygen storage management, needed for future standards.
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