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We study existence and uniqueness of weak solutions to (F)

, where N ≥ 2, the operator (-∆) α is the fractional Laplacian with α ∈ (0, 1), ν is a bounded Radon measure and h : (0, ∞) × R → R is a continuous function satisfying a subcritical integrability condition.

In particular, if h(t, u) = t β u p with β > -1 and 0 < p < p * β := 1 + 2α(1+β) N , we prove that there exists a unique weak solution u k to (F) with ν = kδ 0 , where δ 0 is the Dirac mass at the origin. We obtain that u k → ∞ in (0, ∞) × R N as k → ∞ for p ∈ (0, 1] and the limit of u k exists as k → ∞ when 1 < p < p * β , we denote it by u ∞ . When 1 + 2α(1+β)

N +2α := p * * β < p < p * β , u ∞ is the minimal self-similar solution of (F ) ∞ ∂ t u + (-∆) α u + t β u p = 0 in (0, ∞) × R N with the initial condition u(0, •) = 0 in R N \ {0} and it satisfies u ∞ (0, x) = 0 for x = 0. While if 1 < p < p * * β , then u ∞ ≡ U p , where U p is the maximal solution of the differential equation y ′ + t β y p = 0 on R + .

Introduction

Let h : (0, ∞) × R → R be a continuous function and Q ∞ = (0, ∞) × R N with N ≥ 2. The first object of this paper is to consider existence and uniqueness of weak solutions to fractional heat equations

∂ t u + (-∆) α u + h(t, u) = 0 in Q ∞ , u(0, •) = ν in R N , (1.1) 
where ν belongs to the space M b (R N ) of bounded Radon measures in R N and (-∆) α (0 < α < 1) is the fractional Laplacian defined by (-∆) α u(t, x) = lim ǫ→0 + (-∆) α ǫ u(t, x),

where, for ǫ > 0,

(-∆) α ǫ u(t, x) = R N u(t, x) -u(t, z) |z -x| N +2α χ ǫ (|x -z|)dz and χ ǫ (r) = 0 if r ∈ [0, ǫ], 1 if r > ǫ.
In a pioneering work, Brezis and Friedman [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] have studied the semilinear heat equation with measure as initial data

∂ t u -∆u + u p = 0 in Q ∞ , u(0, •) = kδ 0 in R N , (1.2) 
where k > 0 and δ 0 is the Dirac mass at the origin. They proved that if 1 < p < (N + 2)/N , then for every k > 0 there exists a unique solution u k to (1.2). When p ≥ (N + 2)/N , problem (1.2) has no solution and even more, they proved that no nontrivial solution of the above equation vanishing on R N \{0} at t = 0 exists. When 1 < p < 1 + 2 N , Brezis, Peletier and Terman used a dynamical system technique in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] to prove the existence of a very singular solution u s to

∂ t u -∆u + u p = 0 in Q ∞ , (1.3) 
vanishing at t = 0 on R N \ {0}. This function u s is self-similar, i.e. expressed under the form

u s (t, x) = t -1 p-1 f |x| √ t , (1.4) 
and f is uniquely determined by the following conditions

f ′′ + N -1 η + 1 2 η f ′ + 1 p-1 f -f p = 0 on R + f > 0 and f is smooth on R + f ′ (0) = 0 and lim η→∞ η 2 p-1 f (η) = 0.
(1.5) Furthermore, it satisfies

f (η) = c 1 e -η 2 η 2 p-1 -N {1 -O(|x| -2 )} as η → ∞
for some c 1 > 0. Later on, Kamin and Peletier in [START_REF] Kamin | Singular solutions of the heat equation with absorption[END_REF] proved that the sequence of weak solutions u k converges to the very singular solution u s as k → ∞. After that, Marcus and Véron in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] studied the equation in the framework of the initial trace theory. They pointed out the role of the very singular solution of (1.3) in the study of the singular set of the initial trace, showing in particular that it is the unique positive solution of (1.3) satisfying lim t→0 Bǫ u(t, x)dx = ∞, ∀ǫ > 0, B ǫ = B ǫ (0), (1.6) and lim t→0 K u(t, x)dx = 0 , ∀K ⊂ R N \ {0}, K compact.

(1.7)

If one replaces u p by t β u p with p ∈ (1, 1 + 2(1+β) N ), these results were extended by Marcus and Véron (β ≥ 0) in [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] and then Al Sayed and Véron (β > -1) in [START_REF] Wang | Initial trace of solutions of semilinear heat equations with absorption[END_REF]. The initial data problem with measure and general absorption term ∂ t u -∆u + h(t, x, u) = 0 in (0, T) × Ω, u = 0 in (0, T ) × ∂Ω, u(0, •) = ν in Ω, (1.8) in a bounded domain Ω of R N , has been studied by Marcus and Véron in [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] in the framework of the initial trace theory. They proved that the following general integrability condition on h 0 ≤| h(t, x, r) |≤ h(t)f (|r|)

, ∀(x, t, r)

∈ Ω × R + × R T 0 h(t)f (σt N 2 )t -N 2 dt < ∞ , ∀σ > 0
either h(t) = t α with α ≥ 0 or f is convex, (1.9) in order that the problem has a unique solution for any bounded measure. In the particular case with h(t, x, r) = t β |u| p-1 u, it is fulfilled if 1 < p < 1 + 2(1+β) N and β > -1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important links on the theory of Lévy process, semilinear fractional equations has been attracted much interest in last few years, (see e.g. [START_REF] Caffarelli | Regularity theory for nonlinear integral operators[END_REF][START_REF] Caffarelli | Regularity of solutions to the parabolic fractional obstacle problem[END_REF][START_REF] Lara | Regularity for solutions of non local parabolic equations[END_REF][START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF][START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF][START_REF] Chen | Global heat kernel estimates for fractional laplacians in unbounded open sets[END_REF][START_REF] Droniou | Fractal first-order partial differential equations[END_REF][START_REF] Felmer | Radial symmetry of positive solutions to equations involving the fractional laplacian[END_REF]). Recently, in [START_REF] Chen | Semilinear fractional elliptic equations with gradient nonlinearity involving measures[END_REF] we obtained the existence and uniqueness of a weak solution to semilinear fractional elliptic equation

(-∆) α u + f (u) = ν in Ω, u = 0 in Ω c , (1.10) 
when ν is a Radon measure and f satisfies a subcritical integrability condition. In [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF] we studied the the different types of isolated singularities when f (u) = u p where 1 < p < N N -2α . In particular, assuming that 0 ∈ Ω, we proved that the sequence of solutions {u k } (k ∈ N) of (1.10), with ν = kδ 0 converges to infinity when k → ∞, if p ∈ (0, 1 + 2α N ) and it converges to a solution with a strong singularity at 0 if p ∈ (1 + 2α N , N N -2α ). One purpose of this paper is to study the existence and uniqueness of weak solutions to semilinear fractional heat equation (1.1) in a measure framework. We first make precise the notion of weak solution of (1.1) that we will use in this note. Definition 1.1 We say that u is a weak solution of (1.1), if for any T > 0, u ∈ L 1 (Q T ), h(t, u) ∈ L 1 (Q T ) and

Q T (u(t, x)[-∂ t ξ(t, x) + (-∆) α ξ(t, x)] + h(t, u)ξ(t, x)) dxdt = R N ξ(0, x)dν - R N ξ(T, x)u(T, x)dx ∀ξ ∈ Y α,T , (1.11) 
where Q T = (0, T ) × R N and Y α,T is a space of functions ξ : [0, T ] × R N → R satisfying

(i) ξ L 1 (Q T ) + ξ L ∞ (Q T ) + ∂ t ξ L ∞ (Q T ) + (-∆) α ξ L ∞ (Q T ) < +∞;
(ii) for t ∈ (0, T ), there exist M > 0 and ǫ 0 > 0 such that for all ǫ ∈ (0,

ǫ 0 ], (-∆) α ǫ ξ(t, •) L ∞ (R N ) ≤ M.
Before stating our main theorems, we introduce the subcritical integrability condition for the nonlinearity h, that is,

(H) (i) The function h : (0, ∞) × R → R is continuous and for any t ∈ (0, ∞), h(t, 0) = 0 and h(t, r 1 ) ≥ h(t, r 2 ) if r 1 ≥ r 2 .
(ii) There exist β > -1 and a continuous, nondecreasing function g :

R + → R + such that |h(t, r)| ≤ t β g(|r|) ∀(t, r) ∈ (0, ∞) × R and +∞ 1 g(s)s -1-p * β ds < +∞, (1.12) 
where

p * β = 1 + 2α(1 + β) N . (1.13) 
We denote by

H α : (0, ∞) × R N × R N → R + the heat kernel for (-∆) α in (0, ∞) × R N , by H α [ν] the associated heat potential of ν ∈ M b (R N ), defined by H α [ν](t, x) = R N H α (t, x, y)dν(y)
and by H α [µ] the Duhamel operator defined for (t, x) ∈ Q T and any µ ∈ L 1 (Q T ) by

H α [µ](t, x) = t 0 H α [µ(s, .)](t -s, x)ds = t 0 R N H α (t -s, x, y)µ(s, y)dyds.
Now we state our first theorem as follows.

Theorem 1.1 Assume that ν ∈ M b (R N ) and the function h satisfies (H). Then problem (1.1) admits a unique weak solution u ν such that

H α [ν] -H α [h(., H α [ν + ])] ≤ u ν ≤ H α [ν] -H α [h(., -H α [ν -])] in Q ∞ , (1.14) 
where ν + and ν -are respectively the positive and negative part in the Jordan decomposition of ν. Furthermore,

(i) if ν is nonnegative, so is u ν ;
(ii) the mapping: ν → u ν is increasing and stable in the sense that if {ν n } is a sequence of positive bounded Radon measures converging to ν in the weak sense of measures, then {u νn } converges to u ν locally uniformly in Q ∞ .

According to Theorem 1.1, there exists a unique positive weak solution u k to

∂ t u + (-∆) α u + t β u p = 0 in Q ∞ , u(0, •) = kδ 0 in R N , (1.15) 
where β > -1, k > 0 and p ∈ (0, p * β ). We observe that u k → ∞ in (0, ∞) × R N as k → ∞ for p ∈ (0, 1], see Proposition 4.2 for details. Our next interest in this paper is to study the limit of u k as k → ∞ for p ∈ (1, p * β ), which exists since {u k } k is an increasing sequence of functions, bounded by 1+β p-1

1 p-1 t -1+β
p-1 , and we set

u ∞ = lim k→∞ u k in Q ∞ . (1.16)
Actually, u ∞ and {u k } k are classical solutions to equation

∂ t u + (-∆) α u + t β u p = 0 in Q ∞ , (1.17) 
see Proposition 4.3 for details.

Definition 1.2 (i) A solution u of (1.17) is called a self-similar solution if u(t, x) = t -1+β p-1 u(1, t -1 2α x) (t, x) ∈ Q ∞ .
(ii) A solution u of (1.17) is called a very singular solution if it vanishes on R N \{0} at t = 0 and

lim t→0 + u(t, 0) Γ α (t, 0) = +∞,
where

Γ α := H α [δ 0 ] is the fundamental solution of ∂ t u + (-∆) α u = 0 in Q ∞ , u(0, •) = δ 0 in R N . (1.18)
We remark that for p ∈ (1, p * β ), a self-similar solution u of (1.17) is also a very singular solution, since lim

t→0 + Γ α (t, 0)t N 2α = c 2 , (1.19) 
for some c 2 > 0. For any self-similar solution u of (1.17

), v(η) := u(1, t -1 2α x) with η = t -1 2α
x is a solution of the self-similar equation

(-∆) α v - 1 2α ∇v • η - 1 + β p -1 v + v p = 0 in R N . (1.20) Since 1+β p-1 1 
p-1 is a constant nonzero solution of (1.20), the function

U p (t) := 1 + β p -1 1 p-1 t -1+β p-1 t > 0 (1.21)
is a flat self-similar solution of (1.17). It is actually the maximal solution of the ODE y ′ + t β y p = 0 defined on R + . Our next goal in this paper is to study non-flat self-similar solutions of (1.17).

Theorem 1.2 Assume that β > -1, u ∞ is defined by (1.16) and

p * * β < p < p * β ,
where

p * * β = 1 + 2α(1+β) N +2α
. Then u ∞ is a very singular self-similar solution of (1.17) in Q ∞ . Moreover, there exists c 3 > 1 such that

c -1 3 1 + |x| N +2α ≤ u ∞ (1, x) ≤ c 3 ln(2 + |x|) 1 + |x| N +2α x ∈ R N . (1.22)
When p * * β < p < p * β with β > -1, we observe that u ∞ and U p are self-similar solutions of (1.17) and u ∞ is non-flat. Now we are ready to consider the uniqueness of non-flat self-similar solution of (1.17) with decay at infinity, precisely, we study the uniqueness of self-similar solution to

∂ t u + (-∆) α u + t β u p = 0 in Q ∞ , lim |x|→∞ u(1, x) = 0.
(1.23)

We remark that if u is self-similar, then the assumption lim |x|→∞ u(1, x) = 0 is equivalent to lim |x|→∞ u(t, x) = 0 for any t > 0. Finally, we state the properties of u ∞ when 1 < p ≤ p * * β as follows.

Theorem 1.3 (i) Assume 1 < p < p * * β and u ∞ is defined by (1.16). Then u ∞ = U p , where U p is given by (1.21).

(ii) Assume p = p * * β and u ∞ is defined by (1.16). Then u ∞ is a self-similar solution of (1.17) such that

u ∞ (t, x) ≥ c 4 t -N+2α 2α 1 + |t -1 2α x| N +2α (t, x) ∈ (0, 1) × R N , (1.24) 
for some c 4 > 0.

We note that Theorem 1.3 indicates that there exists no self-similar solution of (1.17) with an initial data u(0,

•) vanishing in R N \ {0} if p ∈ (1, p * * β )
, since u ∞ is the least self-similar solution. In Theorem 1.3 part (ii), we do not know if the self-similar solution is flat or not. From the above theorems, we have the following result. (1.25)

Furthermore, It is worth comparing the above theorems with the results obtained by Nguyen and Véron [START_REF] Nguyen-Phuoc | Local and global properties of solutions of heat equation with superlinear absorption[END_REF] concerning the limit, when k → ∞ of the solutions u = u k of

c -1 3 1 + |η| N +2α ≤ v ∞ (η) ≤ c 3 ln(2 + |η|) 1 + |η| N +2α ∀η ∈ R N (1.26) ( 
∂ t u -∆u + u(ln(u + 1))) α = 0 in Q ∞ , u(0, .) = kδ 0 in R N , (1.27) 
where α > 0. Note that u k > 0 and the sequence {u k } is increasing. In this problem, they proved that the diffusion is dominating if 0 < α ≤ 1 and the limit of the u k is infinite. If 1 < α ≤ 2 the absorption dominates, but the limit of the u k is the maximal solution of the associated ODE, y ′ + y(ln(y + 1))) α = 0 on R + . Finally, if α > 2 the limit of the u k is a solution with a strong isolated singularity at (0, 0), which could be called a very singular solution, although it is not self-similar.

This paper is organized as follows. In Section 2 we introduce some properties of Marcinkiewicz spaces and Kato's type inequality for non-homogeneous problems. In Section 3 we prove Theorem 1.1. Section 4 is devoted to investigate the properties of solutions to (1.15). In Section 5 we give the proof of Theorem 1.2 and Theorem 1.3. Finally, we prove Theorem 1.4.

Linear estimates 2.1 The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces. Definition 2.1 Let Θ ⊂ R N +1 be an open domain and µ be a positive Borel measure in Θ. For κ > 1, κ ′ = κ/(κ -1) and u ∈ L 1 loc (Θ, dµ), we set

u M κ (Θ,dµ) = inf c ∈ [0, ∞] : E |u|dµ ≤ c E dµ 1 κ ′ , ∀E ⊂ Θ, E Borel set (2.1) and M κ (Θ, dµ) = {u ∈ L 1 loc (Θ, dµ) : u M κ (Θ,dµ) < ∞}. (2.2) 
M κ (Θ, dµ) is called the Marcinkiewicz space of exponent κ or weak L κ space and . M κ (Θ,dµ) is a quasi-norm. The following property holds.

Proposition 2.1 [START_REF] Ph | A semilinear elliptic equation in L 1 (R N )[END_REF][START_REF] Chen | Semilinear fractional elliptic equations with gradient nonlinearity involving measures[END_REF] Assume that 1 ≤ q < κ < ∞ and u ∈ L 1 loc (Θ, dµ). Then there exists c 5 > 0 dependent of q, κ such that

E |u| q dµ ≤ c 5 u M κ (Θ,dµ) E dµ 1-q/κ , for any Borel set E of Θ. Remark 2.1 If Ω is a smooth domain of R N , we denote by H Ω α : (0, ∞) × Ω × Ω → R + the heat kernel for (-∆) α and, if ν ∈ M b (Ω), by H Ω α [ν]
the corresponding heat potential of ν defined by

H Ω α [ν](t, x) = Ω H Ω α (t, x, y)dν(y).
When Ω = R N , by Fourier transform, it is clear that

H α (t, x, y) = 1 (2π) N/2 R N e i(x-y)•ζ-t|ζ| 2α dζ = H α (t, x -y, 0).
Furthermore, H α (t, ., 0) L 1 is independent of t. This implies

H Ω α [ν](t, .) L p ≤ ν L p , ∀1 ≤ p ≤ ∞ , ∀ν ∈ L p (R N ). (2.3) Since H Ω α [ν](t + s, .) = H Ω α [H Ω α [ν](s, .)](t, .
) for all t, s > 0 (semigroup property) and

ν ≥ 0 =⇒ H Ω α [ν](t, .) ≥ 0 the semigroup {H Ω α [.](t, .
)} t≥0 is sub-Markovian. Furthermore, since the operator (-∆) α is symmetric in L 2 (R N ), the above semigroup is analytic in L p (R N ) for all 1 ≤ p < ∞: if 1 < p < ∞ it follows from a general result of Stein [START_REF] Stein | Harmonic Analysis: Real-variable methods, orthogonality and oscillatory integrals[END_REF]) and for p = 1 it is a consequence of regularity result from fractional powers of operators theory (see e.g. [START_REF] Komatsu | Fractional powers of operaors[END_REF]). For 1 ≤ p < ∞ the generator A p of the semigroup in L p (R N ) is the operator -(-∆) α with domain

D(A p ) := {ν ∈ L p (R N ) : (-∆) α ν ∈ L p (R N )}.
(2.4) and D(A p ) is dense since it contains C ∞ 0 (R N ). If p = ∞, the natural space is the space C 0 (R N ) of continuous functions in R N tending to 0 at infinity. The domain of the corresponding operator A c 0 is

D(A c 0 ) := {ν ∈ C 0 (R N ) : (-∆) α ν ∈ C 0 (R N )}. (2.5)
This operator is densely defined in C 0 (R N ). In order to avoid confusion,

C c (R N ) (resp. C ∞ c (R N )) denotes the space of continuous (resp. C ∞ ) functions in R N with compact support. It is a dense subset of C 0 (R N ).
The following regularizing effect L p (R N ) → L q (R N ) (1 ≤ p ≤ q ≤ ∞) is valid for any submarkovian semigroup of contractions in all L p (R N )-spaces which has a self-adjoint generator in L 2 (R N ) (see e.g. [START_REF] Stein | Topics in Harmonic Analysis Related to the Littlewood-Paley Theory[END_REF]).

Proposition 2.2 Assume 1 ≤ p ≤ q ≤ ∞, p = ∞. Then for any ν ∈ L p (R N ), H α [ν](t, .) ∈ L q (R N )∩D(A q
) for all t > 0 and there holds, for some positive constant c = c(α, N, p, q),

H α [ν](t, .) L q (R N ) ≤ c t N 2α ( 1 p -1 q ) ν L q (R N ) . (2.6) 
Note also that the function

(t, x) → H α [ν](t, x) is C ∞ in Q ∞ as a result of the analyticity on the semigroup {H α [.](t)} t>0 .
Proposition 2.3 For any β > -1 and T > 0, there exists c 6 > 0 dependent of N, α, β such that for ν ∈ M b (Ω),

H Ω α [|ν|] M p * β (Q Ω T ,t β dxdt) ≤ c 6 ν M b (Ω) , (2.7) 
where p * β is defined by (1.13) and

Q Ω T = (0, T ) × Ω.
In order to prove this proposition, we introduce some notations. For λ > 0 and y ∈ Ω, let us denote

A Ω λ (y) = {(t, x) ∈ Q Ω T : H Ω α (t, x, y) > λ} and m Ω λ (y) = A Ω λ (y) t β dxdt. We also set A R N λ = A λ and m R N λ = m λ .
Lemma 2.1 There exists c 7 > 0 such that for any λ > 1,

A λ (y) ⊂ (0, c 7 λ -2α N ] × B c 7 λ -1 N (y), (2.8) 
where B r (y) is the ball with radius r and center y in R N .

Proof. We observe that

H α (t, x, y) = t -N 2α Γ α (1, (x -y)t -1 2α
), where Γ α is the fundamental solution of (1.18). From [START_REF] Blumenthal | Some theorems on stable processes[END_REF] (see also [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF] for an analytic proof), there exists

c 8 > 0 such that Γ α (1, z) ≤ c 8 1 + |z| N +2α .
This implies in particular

H α (t, x, y) ≤ c 8 t -N 2α 1 + t -1 2α |x -y| N +2α .
(2.9)

On the one hand, for (t, x) ∈ A λ (y), we have that

t -N 2α Γ α (1, 0) ≥ t -N 2α Γ α (1, (x -y)t -1 2α ) > λ, which implies t < Γ 2α N α (1, 0)λ -2α N . (2.10) 
On the other hand, letting r = |x -y|,

c 8 t t 1+ N 2α + r N +2α ≥ t -N 2α Γ α (1, (x -y)t -1 2α ) > λ, then r ≤ (c 8 tλ -1 ) 1 N+2α , (2.11) 
which, together with (2.10), implies

r ≤ c 9 λ -1 N ,
for some c 9 > 0.

Proof of Proposition 2.3. By Lemma 2.1, there exists c 10 > 0 such that

m λ (y) ≤ c 10 λ -1-2α(1+β) N . Clearly H Ω α (t, x, y) ≤ H α (t, x, y), (2.12) 
then for any Borel set E ⊂ Q Ω T and y ∈ Ω, we have that

E H Ω α (t, x, y)t β dxdt ≤ λ E t β dxdt + A λ (y) H α (t, x, y)t β dxdt and A λ (y) H α (t, x, y)t β dxdt = - +∞ λ sdm s (y) = λm λ (y) + +∞ λ m s (y)ds ≤ c 10 λ -2α(1+β) N + c 10 +∞ λ s -1-2α(1+β) N ds ≤ c 11 λ -2α(1+β) N ,
where

c 11 = c 10 1 + N 2α(1+β) . As a consequence, it follows E H Ω α (t, x, y)t β dxdt ≤ λ E t β dxdt + c 11 λ -2α(1+β) N . Taking λ = ( E t β dxdt) - N N+2α(1+β) , we obtain that E H Ω α (t, x, y)t β dxdt ≤ (c 11 + 1)( E t β dxdt) 2α(1+β) N+2α(1+β) . (2.13) 
Since, by Fubini's theorem,

E H Ω α [|ν|](t, x)t β dxdt = E Ω H Ω α (t, x, y)d|ν(y)|t β dxdt = Ω E H Ω α (t, x, y)t β dxdtd|ν(y)|,
together with (2.13), it yields

E H Ω α [|ν|](t, x)t β dxdt ≤ (c 11 + 1) ν M b (Ω) E t β dxdt 2α(1+β) N+2α(1+β) .
Thus,

H Ω α [|ν|] M 1+ 2α(1+β) N (Q Ω T ,t β dxdt) ≤ (c 11 + 1) ν M b (Ω) ,
which ends the proof.

The non-homogeneous problem

In this section we consider the linear non-homogeneous problem

∂ t u + (-∆) α u = µ in Q T , u(0, •) = ν in R N . (2.14) If µ ∈ L 1 (Q T ) and ν ∈ L 1 (R N ) a function u defined in Q T is an integral solution of (2.14) in Q T if it is expressed by Duhamel's formula, that is u(t, x) = H α [ν](t, x) + H α [µ](t, x) a.e. in Q T . (2.15)
where, we denote by H α the operator of L 1 (Q T ) defined for all (x, t) ∈ Q T by

H α [µ](x, t) = t 0 H α [µ(., s)](x, t -s)ds = t 0 R N H α (t -s, x, y)µ(s, y)dyds. (2.16)
Notice that, by Duhamel's formula, there holds

u(t, •) L 1 (R N ) ≤ µ L 1 (Q T ) + ν L 1 (R N ) , ∀t ∈ (0, T ), (2.17) 
and

u L 1 (Q T ) ≤ T ( µ L 1 (Q T ) + ν L 1 (R N ) ). (2.18) 
The advantage of this notion of solution is that Duhamel's formula has a meaning as soon as µ and ν are integrable in their respective domains of definition. As for any continuous semigroup of bounded linear operators, a strong solution is an integral solution.

The following proposition is the Kato's type estimate which is essential tool to prove the uniqueness of solutions to (1.1). For T > 0, we denote

Q T = (0, T ) × R N . Proposition 2.4 Assume µ ∈ L 1 (Q T ) and ν ∈ L 1 (R N ).
Then there exists a unique weak solution u ∈ L 1 (Q T ) to the problem (2.14) and there exists c 12 > 0 such that

Q T |u|dxdt ≤ c 12 Q T |µ|dxdt + c 12 R N |ν|dx. (2.19)
Moreover, for any ξ ∈ Y α,T , ξ ≥ 0, we have that

Q T |u|(-∂ t ξ + (-∆) α ξ)dxdt + R N |u(T, x)|ξ(T, x)dx ≤ Q T ξsign(u)µdxdt + R N ξ(0, x)|ν|dx (2.20)
and

Q T u + (-∂ t ξ + (-∆) α ξ)dxdt + R N u + (T, x)ξ(T, x)dx ≤ Q T ξsign + (u)µdxdt + R N ξ(0, x)ν + dx.
(2.21)

In order to prove Proposition 2.4, we introduce the following notations. We say that u :

Q T → R is in C σ,σ ′ t,x (Q T ) for σ, σ ′ ∈ (0, 1) if u C σ,σ ′ t,x (Q T ) := u L ∞ (Q T ) + sup Q T |u(t, x) -u(s, y)| |t -s| σ + |x -y| σ ′ < +∞ and u ∈ C 1+σ,2α+σ ′ t,x (Q T ) if u C 1+σ,2α+σ ′ t,x (Q T ) := u L ∞ (Q T ) + ∂ t u C σ,σ ′ t,x (Q T ) + (-∆) α u C σ,σ ′ t,x (Q T ) < +∞. Lemma 2.2 Let µ ∈ C 1 (Q T ) ∩ L ∞ (Q T ), ν ∈ L ∞ (R N )
and u be an integral solution of problem (2.14), then there exists σ ∈ (0, 1)

such that u ∈ C 1+σ,2α+σ t,x in (ǫ, T )× R N for any ǫ ∈ (0, T ). In particular, if D 2 ν L ∞ (R N ) + (-∆) α ν C 1-α x (R N ) < ∞, then u ∈ C 1+σ,2α+σ t,x (Q T ). Proof. Step 1. When D 2 ν L ∞ (R N ) + (-∆) α ν C 1-α x (R N ) < ∞, it follows directly by [9, (A.1)] that u ∈ C 1+σ,2α+σ t,x (Q T ).
Step 2. When ν ∈ L ∞ (R N ), we use [10, Theorem 6.1] to obtain that u ∈ C σ 2α ,σ t,x (Q T ) for some σ > 0. For any ǫ ∈ (0, T ), let η : [0, T ] → [0, 1] be a C 2 function such that η = 0 in [0, ǫ 4 ] and η = 1 in [ǫ, T ] and v = ηu in Q T . Since η does not depend on x, we obtain that v satifies,

∂ t v + (-∆) α v = ηµ + η ′ (t)u, ∀(t, x) ∈ Q T , where ηµ+η ′ (t)u ∈ C σ 2α ,σ t,x (Q T ) and v(0, •) = 0 in R N , Then we apply the argument in Step 1 to obtain that v ∈ C 1+σ,2α+σ t,x (Q T ). Therefore, u is C 1+σ,2α+σ t,x in (ǫ, T ) × R N . The proof is complete. Lemma 2.3 (i) Let µ ∈ C 1 (Q T ) ∩ L ∞ (Q T ) and ν ∈ C 1 (R N ) ∩ L ∞ (R N ), then problem (2.14) admits a unique classical solution u. (ii) Let µ ∈ C 1 (Q T ) ∩ L ∞ (Q T ) ∩ L 1 (Q T ), ν ∈ C 2 (R N ) ∩ L ∞ (R N ) ∩ L 1 (R N ) and u be the classical solution of (2.14), then u is C 1+σ,2α+σ t,x in (ǫ, T ) × R N for any ǫ ∈ (0, T ) and for any ξ ∈ Y α,T , Q T u(t, x)[-∂ t ξ(t, x) + (-∆) α ξ(t, x)]dxdt = Q T µ(t, x)ξ(t, x)dxdt + R N ξ(0, x)νdx - R N ξ(T, x)u(T, x)dx. (2.22)
Thus u is a weak solution and it belongs to Y α,T .

(iii) Let μ ∈ C 1 (Q T ) ∩ L ∞ (Q T ) and ν ∈ C 1 (R N ) ∩ L ∞ (R N ), then problem -∂ t w + (-∆) α w = μ in Q T , w(T, •) = ν in R N (2.23) admits a unique classical solution w ∈ C 1+σ,2α+σ t,x (Q T ) for some σ ∈ (0, 1). More- over, if µ ∈ C 1 (Q T ) ∩ L ∞ (Q T ) ∩ L 1 (Q T ) and ν ∈ C 2 (R N ) ∩ L ∞ (R N ) ∩ L 1 (R N ), then
ξ is a weak solution and it belongs to Y α,T .

Proof. (i) By [10, Theorem 3.3, Theorem 6.1], if µ and ν are continuous and bounded, there exists a unique viscosity solution u ∈ C(Q T ). The higher regularity is provided by [10, Theorem 6.1] which asserts that there exist σ > 0 and a positive constant c depending on N , τ ∈ (0, T ) and α such that for all (t, x) and (s, y) belonging to

Q B 1 T -τ , there holds | u(t, x) -u(s, y) | (|x -y| + |t -s| 1 2α ) σ ≤ c u L ∞ (Q B 2 T ) + sup 0≤t≤T u(t, .) L 1 (R N + µ L ∞ (Q T ) (2.24)
where

Q Ω T = (0, T ) × Ω. Thus u ∈ C σ 2α ,σ t,x (Q T ). By Lemma 2.2 the integral solution u belongs to C 1+σ ′ ,2α+σ ′ t,x
in (ǫ, T )×R N for any ǫ ∈ (0, T ) and some σ ′ ∈ (0, min{ σ 2α , σ}). Then u is a classical solution of (2.14) and thus a viscosity solution.

(ii) By the definition of (-∆) α u, u(t, •) ∈ L 1 (R N ) for all t ∈ (0, T ). As in [9, Appendix A.2] we have Duhamel formula, thus u ∈ L 1 (Q T ) and it is an integral solution.

We claim that

(-∆) α ǫ u(t, •) L ∞ (R N ) is uniformly bounded with respect to ǫ ∈ (0, ǫ 0 ). Since u(t, •) ∈ C 2α+σ x (R N ) for some σ ∈ (0, min{2 -2α, 1}), then for x ∈ R N and y ∈ B 1 (0), |u(x + y) + u(x -y) -2u(x)| ≤ u(t, •) C 2α+σ x (R N ) |y| 2α+σ . Thus, |(-∆) α ǫ u(t, •)| L ∞ (R N ) ≤ sup x∈R N R N \B 1 (0) |u(x + y) -u(x)| |y| N +2α dy + 1 2 B 1 (0)\Bǫ(0) |u(x + y) + u(x -y) -2u(x)| |y| N +2α dy ≤ 2 u L 1 (R N ) + B 1 (0) |y| σ-N dy u(t, •) C 2α+σ x (R N ) .
Next we claim that

Q T ξ(-∆) α ǫ udxdt = Q T u(-∆) α ǫ ξdxdt ∀ξ ∈ Y α,T . (2.25)
Indeed, using the fact that for any t > 0 there holds

R N R N [u(t, z) -u(t, x)]ξ(t, x) |z -x| N +2α χ ǫ (|x -z|)dzdx = R N R N [u(t, x) -u(t, z)]ξ(t, z) |z -x| N +2α χ ǫ (|x -z|)dzdx, then we have R N ξ(t, x)(-∆) α ǫ u(t, x)dx = - 1 2 R N R N (u(t, z) -u(t, x))ξ(t, x) |z -x| N +2α + (u(t, x) -u(t, z))ξ(t, z) |z -x| N +2α χ ǫ (|x -z|)dzdx = 1 2 R N R N [u(t, z) -u(t, x)][ξ(t, z) -ξ(t, x)] |z -x| N +2α χ ǫ (|x -z|)dzdx.
Similarly,

R N u(t, x)(-∆) α ǫ ξ(t, x)dx = 1 2 R N R N [u(t, z) -u(t, x)][ξ(t, z) -ξ(t, x)] |z -x| N +2α χ ǫ (|x -z|)dzdx. Then (2.25) holds. Since u is C 1+σ,2α+σ t,x in (ǫ, T ) × R N for any ǫ ∈ (0, T ) and ξ belongs to Y α,T , (-∆) α ǫ ξ(t, •) → (-∆) α ξ(t, •) and (-∆) α ǫ u(t, •) → (-∆) α u(t, •) as ǫ → 0 in R N and (-∆) α ǫ ξ(t, •), (-∆) α ǫ u(t, •) ∈ L ∞ (R N ) and ξ(t, •), u(t, •) ∈ L 1 (R N ), then it follows by the Dominated Convergence Theorem that lim ǫ→0 + R N ξ(t, x)(-∆) α ǫ u(t, x)dx = R N ξ(t, x)(-∆) α u(t, x)dx and lim ǫ→0 + R N (-∆) α ǫ ξ(t, x)u(t, x)dx = R N (-∆) α ξ(t, x)u(t, x)dx.
Combining this with (2.25), and letting ǫ → 0 + , we have that

R N ξ(t, x)(-∆) α u(t, x)dx = R N (-∆) α ξ(t, x)u(t, x)dx,
integrating over [0, T ] and by (2.14), we conclude that (2.22) holds.

(iii) End of the proof. Let u be the weak solution of problem (2.14) obtained from (ii) with μ(T -t, .) = µ(t, .) and

w(t, x) = u(T -t, x) (t, x) ∈ [0, T ] × R N .
Then w is a solution of (2.23) and for some σ ∈ (0, 1),

w is C 1+σ,2α+σ t,x (Q T ). On the contrary, if w is a solution of (2.23), then u(t, x) = w(T -t, x) for (t, x) ∈ [0, T ] × R N
is a solution of (2.14), then the uniqueness holds since the solution of (2.14) is unique.

Since u ∈ C 1+σ,2α+σ t,x (Q T ), then (-∆) α u(t, •) ∈ C σ x and then (-∆) α ǫ u(t, •) is bounded, which implies u ∈ Y α,T . Proof of Proposition 2.4. Uniqueness. Let v ∈ L 1 (Q T ) be a weak solution of ∂ t v + (-∆) α v = 0 in Q T , v(0, •) = 0 in R N . (2.26) 
We claim that v = 0 a.e. in Q T .

In fact, let ω be a Borel subset of Q T and η ω,n be the solution of

-∂ t u + (-∆) α u = ζ n in Q T , u(T, •) = 0 in R N , (2.27) 
where

ζ n : QT → [0, 1] is a function C 1 c (Q T ) such that ζ n → χ ω in L ∞ ( QT ) as n → ∞.
Then η ω,n ∈ Y α,T by Lemma 2.3, and

Q T vζ n dxdt = 0.
Passing to the limit when n → ∞, we derive

ω vdxdt = 0.
This implies v = 0 a.e. in Q T .

Existence and estimate (2.20). For δ > 0, we define an even convex function φ δ by

φ δ (t) = |t| -δ 2 if |t| ≥ δ, t 2 2δ if |t| < δ/2.
(2.28)

Then for any t, s ∈ R, |φ ′ δ (t)| ≤ 1, φ δ (t) → |t| and φ ′ δ (t) → sign(t) when δ → 0 + . Moreover, φ δ (s) -φ δ (t) ≥ φ ′ δ (t)(s -t). (2.29) Let {µ n }, {ν n } be two sequences of functions in C 2 0 (Q T ), C 2 0 (R N ), respectively, such that lim n→∞ Q T |µ n -µ|dxdt = 0, lim n→∞ R N |ν n -ν|dx = 0.
We denote by u n the corresponding solution to (2.14) where µ, ν are replaced by µ n , ν n , respectively. By Lemma 2.2 and Lemma 2.

3(ii), u n ∈ C 1+σ,2α+σ t,x (Q T ) ∩ L 1 (Q T )
and then we use Lemma 2.3 in [START_REF] Chen | Semilinear fractional elliptic equations with gradient nonlinearity involving measures[END_REF] and Lemma 2.3 (ii) to obtain that for any δ > 0 and ξ ∈ Y α,T , ξ ≥ 0,

Q T φ δ (u n )[-∂ t ξ + (-∆) α ξ]dxdt + R N ξ(T, x)φ δ (u n (T, x))dx = Q T ξ[∂ t φ δ (u n ) + (-∆) α φ δ (u n )]dxdt + R N ξ(0, x)φ δ (ν n )dx ≤ Q T ξφ ′ δ (u n )[∂ t u n + (-∆) α u n ]dxdt + R N ξ(0, x)φ δ (ν n )dx = Q T ξφ ′ δ (u n )µ n dxdt + R N ξ(0, x)φ δ (ν n )dx.
Letting δ → 0 + , we obtain

Q T |u n |[-∂ t ξ + (-∆) α ξ]dxdt + R N ξ(T, x)|u n (T, x)|dx ≤ Q T ξsign(u n )µ n dxdt + R N ξ(0, x)|ν n |dx.
(2.30)

Let η k be the solution of

-∂ t u + (-∆) α u = ς k in Q T , u(T, •) = 0 in R N , (2.31) 
where

ς k : Q T → [0, 1] is a C 2 0 function such that ς k = 1 in (0, T ) × B k (0). From the proof of Lemma 2.3, ηk (t, x) := η k (T -t, x) satisfies with ςk (t, x) = ς k (T -t, x) ∂ t u + (-∆) α u = ςk in Q T , u(0, •) = 0 in R N . By Lemma 2.2, ηk ∈ C 1+σ,2α+σ t,x
(Q T ) with some σ ∈ (0, 1) and

0 ≤ ηk (t, x) ≤ c 8 T t R N (s -t) -N 2α 1 + |(s -t) -1 2α (y -x)| N +2α dyds ≤ c 8 T t R N dz 1 + |z| N +2α ds = c 13 (T -t).
Taking ξ = η k in (2.30), we derive that

Q T |u n |χ (0,T )×B k (0) dxdt ≤ c 13 T Q T |µ n |dxdt + c 13 T R N |ν n |dx.
Then, letting k → ∞, we have

Q T |u n |dxdt ≤ c 13 T Q T |µ n |dxdt + c 13 T R N |ν n |dx.
(2.32)

Similarly, Remark 2.2 Other classes of uniqueness of solutions of the fractional heat equations exist. In [START_REF] Barrios | A Widders Type Theorem for the Heat Equation with Nonlocal Diffusion[END_REF] it is proved that any positive strong solution u ∈ C([0, T ) × R N ) can be represented by the convolution integral defined by

Q T |u n -u m |dx ≤ c 13 T Q T |µ n -µ m |dxdt + c 13 T R N |ν n -ν m |dx. ( 2 
u(t, x) = R N P t (y)u(0, y)dy where P t (x) = 1 t N 2α e it -1 2α x.ξ-|ξ| 2α .
However the fact that u ∈ L 1 (Q T ) is a part of the definition of strong solution therein. Furthermore, the notion of weak solution used in this paper differs from ours.

3 Proof of Theorem 1.1

If h(t, .) is monotone nondecreasing, for any λ > 0, I + λh(t, .) is an homeorphism of R and the inverse function J λ (t, .) = (I + λh(t, .)) -1 is a contraction. We define the Yosida approximation by

h λ (t, .) = I -J λ (t, .) λ . (3.1) 
The function h λ (t, .) is monotone nondecreasing, vanishes at 0 as h does it and it is 

1 λ -Lipschitz continuous. Furthermore rh λ (t, r) ↑ rh(t, r) as λ → 0, ∀r ∈ R, (3.2 
∂ t u + (-∆) α u + h λ • u = 0 in Q ∞ , u(0, •) = φ in R N . (3.3) 
Moreover,

H α [φ] -H α [h λ • H α [φ + ])] ≤ u φ ≤ H α [φ] -H α [h λ • (-H α [φ -])] in Q T , (3.4) 
where φ ± = max{0, ±φ} and

u φ (t, .) -u ψ (t, .) L 1 ≤ φ -ψ L 1 , ∀1 ≤ p ≤ ∞. (3.5) (i) u φ ≥ 0 if φ ≥ 0 in Ω;
(ii) the mapping φ → u φ is increasing.

Proof. Existence is a consequence of the Cauchy-Lipschitz-Picard theorem (see [START_REF] Th | An introduction to semilinear evolution equations[END_REF]Chap 4]): we write (3.3) under the integral form u

= T [u] = H α [φ] -H α [h λ • u], i.e. T [u](t, .) = H α [φ](t, .) - t 0 H α [h λ • u](t -s, .)ds. (3.6) 
The space C([0, ∞); L 1 (R N )) endowed with the norm

w C-L 1 = sup e -kt w(t, .) L 1 : t ≥ 0 , (k > λ -1
), is a Banach space. Since u → h λ (t, u) is 1 λ -Lipschitz continuous, the mapping T is 1 λk -Lipschitz continuous in X p . Thus it admits a unique fixed point u φ which is an integral solution of (3.3).

u φ (t, .) = H α [φ](t, .) - t 0 H α [h λ • u φ ](t -s, .)ds.
(3.7)

The semigroup {H α [.](t, .)} t≥0 is analytic in L 1 (R N ) since it is generated by the fractional power of a closed operator. It follows from the classical regularity theory for analytic semigroups as exposed in [START_REF] Grisvard | Équations différentielles abstraites[END_REF]Sec 6] that u φ is a strong solution of (3.3). Since it is continuous, it is also a weak solution in the sense that

Q T (u φ [-∂ t ξ + (-∆) α ξ] + ξh λ • u φ ) dxdt = R N ξ(0, x)φ(x)dx - R N ξ(T, x)u φ (T, x)dx ∀ξ ∈ Y α,T . (3.8) If φ 1 , φ 2 ∈ L 1 (R N
) and u φ j are the corresponding solutions of (3.3), it follows from the positivity of H α that

(u φ 2 -u φ 1 ) + ≤ (H α [h λ • u φ 2 -h λ • u φ 1 ]) + ≤ 1 λ H α [(u φ 2 -u φ 1 ) + ].
Therefore, (u φ 2 (t, .) -u φ 1 (t, .))

+ L p ≤ 1 λ t 0 (u φ 2 (t -s) -u φ 1 (t -s)) + L p ds,
and by Gronwall inequality

(u φ 2 (t) -u φ 1 (t)) + L p ≤ e t λ (φ 2 -φ 1 ) + L p .
This implies (i) and (ii). As a consequence,

-H α [φ -] ≤ -u φ -≤ u φ ≤ u φ + ≤ H α [φ + ]
and thus

h λ • (-H α [φ -]) ≤ h λ • (-u φ -) ≤ h λ • u φ ≤ h λ • u φ + ≤ h λ • H α [φ + ].
Jointly with (3.7) it yields (3.4).

Notation. In the sequel, if η ∈ L 1 (Q τ ) and τ ≥ T , we denote by ξ η,τ the solution of

-∂ t ξ η + (-∆) α ξ η = η in Q τ , ξ η (τ, .) = 0. (3.9) If η ≥ 0, then ξ η,τ ≥ 0; if η ∈ C ∞ 0 (R N +1 ), then η ∈ Y α,τ ; if η n = η( . n ), where n ∈ N * and η ∈ C ∞ 0 (R N +1
) is nonnegative, 0 ≤ η ≤ 1, with value 1 on B 1 and 0 on B c 2 , then ξ ηn,τ ↑ τ -t as n → ∞.

In the next lemma we prove that we can replace h λ by h. Lemma 3.2 Assume that h satisfies (H)-(i) and φ ∈ L 1 (R N ). Then there exists a unique solution

u φ ∈ C([0, ∞); L 1 (R N ) of ∂ t u + (-∆) α u + h • u = 0 in Q ∞ , u(0, •) = φ in R N .
(3.10)

Moreover inequality (3.5) and statements (i) and (ii) in Lemma 3.1 hold.

Proof. We denote by u λ,φ the solution of (3.3).

Step 1-A priori estimate. Let φ ≥ 0. If we take ξ = ξ ηn,τ in (3.8) and let n → ∞, we derive

Q T (u λ,φ + (τ -t)h λ • u λ,φ ) dxdt + (τ -T ) R N u λ,φ (T, x)dx = τ R N φ(x)dx. (3.11) For 0 < λ < λ ′ we set w = u λ,φ -u λ ′ ,φ . It follows from (2.

21) and inequality

h λ ′ • u λ,φ ≤ h λ • u λ,φ , that for any nonnegative ξ in Y α,T , Q T w + [-∂ t ξ + (-∆) α ξ] + ξ h λ • u λ,φ -h λ • u λ ′ ,φ sign + (w) dxdt ≤ Q T w + h λ ′ • u λ ′ ,φ -h λ • u λ ′ ,φ dxdt - R N ξ(T, x)w + (T, x)dx, Since h λ (t, .
) is nondecreasing, we derive

Q T w + [-∂ t ξ + (-∆) α ξ]dxdt ≤ 0 ∀ξ ∈ Y α,T , ξ ≥ 0. If η ∈ C ∞ 0 (R N +1 ) is nonnegative, then ξ η ∈ Y α,T , ξ η ≥ 0 and Q T w + ηdxdt = 0.
This implies u λ,φ ≤ u λ ′ ,φ .

Step 2-Truncation. We replace φ by φ n = inf{φ, n} for n ∈ N * and denote by u λ,φn the corresponding solution of (3.3). By Step 1, the sequence {u λ,φn } λ>0 is decreasing and it converges to some nonnegative u φn when λ ↓ 0. Therefore h λ •u λ,φn → h•u φn a.e. in Q T . It follows from (3.11) and Fatou's lemma that

Q T (u φn + (τ -t)h • u φn ) dxdt + (τ -T ) R N u φn (., T )dx = τ R N φ n (x)dx. (3.12) Since 0 ≤ u λ,φn ≤ n, then 0 ≤ h λ • u λ,φn ≤ h • u λ,φn ≤ h(n) by (3.5). If E ⊂ Q T is a Borel set, E h λ • u λ,φn dxdt ≤ h(n)|E|. By Vitali convergence theorem h λ • u λ,φn → h • u φn in L 1 (Q T )
. Therefore, we can let λ → 0 in identity (3.8) and conclude that u φn is a weak solution of (3.10) with initial data φ n .

Step 3-Existence with φ bounded.

If φ = φ + -φ -∈ L 1 (R N ), set φ +,n = inf{φ + , n}
and φ -,n = inf{φ -, n}. We denote by u λ,φ +,n , u φ +,n , u λ,-φ -,n and u -φ -,n the corresponding solutions of (3.3) and (3.10). Then

u λ,-φ -,n ≤ u λ,φ +,n -φ -,n ≤ u λ,φ +,n which implies h λ • u λ,-φ -,n ≤ h λ • u λ,φ +,n -φ -,n ≤ h λ • u λ,φ +,n . (3.13) Estimate (3.11) is valid under the form Q T u λ,φ +,n + (τ -t)h λ • u λ,φ +,n dxdt + (τ -T ) R N u λ,φ +,n (., T )dx = τ R N φ +,n (x)dx. (3.14) and Q T u λ,-φ -,n + (τ -t)h λ • u λ,-φ -,n dxdt + (τ -T ) R N u λ,-φ -,n (., T )dx = -τ R N φ -,n (x)dx. (3.15) Since h λ • u λ,φ +,n and h λ • u λ,-φ -,n are bounded in L 1 (Q T ) independently of λ and n, h λ • u λ,φ +,n -φ -,n inherits the same property. Since u λ,φ +,n -φ -,n = H α [φ +,n -φ -,n ] -H α [h λ • u λ,φ +,n -φ -,n ],
it follows from [20, Sec 6] that u λ,φ +,n -φ -,n remains bounded in the interpolation space

Y 1 := L 1 ([0, T ]; D(A 1 )(R N )) ∩ W s,1 ([0, T ]; L 1 (R N )
), for any s ∈ (0, 1), where D(A 1 ) is defined in (2.4). Although a bounded subset K of Y 1 is not a relatively compact subset of L 1 (Q T ), for any ball B ⊂ R N , the set of restrictions to B of functions belonging to K is relatively compact in L 1 ((0, T ) × B). Thus, there exists a subsequence {λ k } such that {u λ k ,φ +,n -φ -,n } converges a.e. to some function

U n . Furthermore {h λ k • u λ k ,φ +,n -φ -,n } converges a.e. to h • U n . Since the sequences {u λ k ,-φ -,n } λ k , {u λ k ,φ +,n } λ k , {h λ k •u λ k ,-φ -,n } λ k and {h λ k •u λ k ,φ +,n } λ k are convergent in L 1 (Q T )
they are uniformly integrable. Because of (3.13) the same property is shared by the two sequences

{u λ k ,φ +,n -φ -,n } λ k and {h λ k • u λ k ,φ +,n -φ -,n } λ k . Letting λ k to 0 in the identity u λ k ,φ +,n -φ -,n (t, .) = H α [φ +,n -φ -,n ](t, .) - t 0 H α [h λ k • u λ k ,φ +,n -φ -,n ](t -s, .)ds (3.16) yields U n (t, .) = H α [φ +,n -φ -,n ](t, .) - t 0 H α [h • U n ](t -s, .)ds.
(3.17)

This implies that U n is an integral solution, thus a weak solution of (3.10) with initial data φ +,n -φ -,n = sgn(φ) inf{n, |φ|} and then U n = u φn .

Step 4-Existence with φ ∈ L 1 (R N ). By Kato's inequality (2.20), we obtain that

Q T (|u φ k -u φm |(-∂ t ξ + (-∆) α ξ) + ξ|h • u φ k -h • u φm |) dxdt + R N |u φ k (T, x) -u φm (T, x)|ξ(T, x)dx ≤ R N ξ(0, x)|φ k -φ m |dx,
for m, k ∈ N * and ξ ∈ Y α,T , ξ > 0. Taking ξ = ξ ηn,τ as in (3.9) and letting n → ∞ yields

Q T (|u φ k -u φm | + (τ -t)|h • u φ k -h • u φm |) dxdt + (τ -T ) R N |u φ k (T, .) -u φm (T, .)|dx ≤ τ R N |φ k -φ m |dx. (3.18) Since {φ m } is a Cauchy sequence in L 1 (R N ), {u φm } and {h • u φm } are also Cauchy sequences in C(0, T ; L 1 (R N )) and L 1 (Q T ) respectively. Set U = lim m→∞ u φm , then it satisfies Q T (U [-∂ t ξ + (-∆) α ξ] + ξh • U ) dxdt = R N ξ(0, x)φ(x)dx - R N ξ(T, x)U (T, x)dx ∀ξ ∈ Y α,T , (3.19) 
and it is also an integral solution of (3.10). Thus

u φ ∈ C([0, ∞); L 1 (R N )).
Finally, we end the proof of uniqueness which is a consequence of the inequality below

Q T (|U -U ′ | + (τ -t)|h • U -h • U ′ |) dxdt + (τ -T ) R N |U (T, .) -U ′ (T, .)|dx ≤ τ R N |φ -φ ′ |dx, (3.20)
valid for two solutions U and U ′ of problem (3.10) with respective initial data φ and φ ′ , the proof of which is the same as the one of (3.18). Notice also that statement (i) and (ii) as well as inequality (3.5) follows by the above approximations.

Remark 3.1 By the same method it can be proved that for any p ∈ (1, ∞) and φ ∈ (3.10). Furthermore (3.5) holds.

L p (R N ) (resp. φ ∈ C 0 (R N )) there exists a unique solution u φ ∈ C([0, ∞); L p (R N )) (resp. u φ ∈ C([0, ∞); C 0 (R N ))) solution of
Proof of Theorem 1.1. Existence for ν ≥ 0. We consider a sequence of nonnegative functions

{ν n } n ⊂ C 2 0 (R N ) such that ν n → ν as n → ∞ in the weak sense of bounded measures, i.e. lim n→∞ R N ζν n dx = R N ζdν ∀ζ ∈ C(R N ) ∩ L ∞ (R N ). (3.21)
It follows from the Banach-Steinhaus theorem that ν n M b (R N ) is bounded independently of n and we assume that

ν n M b (R N ) ≤ 2 ν M b (R N )
. By Lemma 3.1, we denote by u νn the corresponding solution of (3.10) with initial data ν n . Then u n is nonnegative and satisfies that

0 ≤ u νn = H α [ν n ] -H α [h • u νn ] ≤ H α [ν n ] in Q T . (3.22)
Jointly with (2.7) it implies

u νn M p * β (Q T ,t β dxdt) ≤ c 5 ν M b (R N ) . (3.23)
We have also the following estimates from (2.9) and (3.12)

u νn (t, x) ≤ H α [ν n ](t, x) ≤ 2c 8 t -N 2α ν M b (R N ) , ∀(t, x) ∈ Q T (3.24)
and

Q T (u νn + (τ -t)h • u νn ) dxdt + (τ -T ) R N u νn (., T )dx = τ R N ν n (x)dx ≤ 2τ ν M b (R N ) . (3.25)
As in the proof of Lemma 3.2-Step 3, using the regularizing properties of the semigroup H α [.](t) (see [START_REF] Grisvard | Équations différentielles abstraites[END_REF]Sec 6]) we infer that there exists a subsequence {u νn k } which converges a.e. in Q T to some function U and {h • u νn k } converges a.e. to h • U .

For κ > 0, we denote

S κ = {(t, x) ∈ Q T : |u n k (t, x)| > κ} and ω(κ) = Sκ t β dxdt. Then for any Borel set E ⊂ Q T E h • u νn k dxdt ≤ E∩{uν n k ≤κ} h • u νn k dxdt + E∩Sκ h • u νn k dxdt ≤ g(κ) E t β dxdt + {Sκ t β g(u νn k )dxdt ≤ g(κ) E t β dxdt - ∞ κ g(s)dω(s),
where

∞ κ g(s)dω(s) = lim M →∞ M κ g(s)dω(s).
By (2.1) and (3.23), ω(s) ≤ c 14 s -p * β , thus

- M κ g(s)dω(s) = -g(s)ω(s) s=M s=κ + M κ ω(s)dg(s) ≤ g(κ)ω(κ) -g(M )ω(M ) + c 14 M κ s -p * β dg(s) ≤ g(κ)ω(κ) -g(M )ω(M ) + c 14 M -p * β g(M ) -κ -p * β g(κ) + c 14 p * β + 1 M κ s -1-p * β g(s)ds.
Since lim M →∞ M -p * β g(M ) = 0 by (1.12) and [15, Lemma 4.1] and ω(s) ≤ c 14 s -p * β , we derive g(κ)ω(κ) ≤ c 14 κ -p * β g(κ) and then

- ∞ κ g(s)dω(s) ≤ c 14 p * β + 1 ∞ κ s -1-p * β g(s)ds.
The above quantity on the right-hand side tends to 0 when κ → ∞. The conclusion follows: for any ǫ > 0 there exists κ > 0 such that

c 14 p * β + 1 ∞ κ s -1-p * β g(s)ds ≤ ǫ 2
and there exists δ > 0 such that

E t β dxdt ≤ δ =⇒ g(κ) E t β dxdt ≤ ǫ 2 .

This means that {h

n k • u νn k } is uniformly integrable in L 1 (Q T ) and by Vitali con- vergence theorem h n k • u νn k → h • U in L 1 (Q T ) . Letting n k → ∞ in the identity u νn k (t, .) = H α [ν n k ](t, .) - t 0 H α [h • u νn k (s, .)](t -s, .
)ds for some t > 0 such that u νn k (t, .) → U (t, .) a.e. in R N yields

U (t, .) = H α [ν](t, .) - t 0 H α [h • U (s, .)](t -s, .)ds.
This is valid for almost all t > 0 and implies that U ∈ C([0, T ]; L 1 (R N )), up to a modification on a set of t > 0 with zero measure. Moreover

Q T u νn k (-∂ t ξ + (-∆) α ξ) + ξh • u νn k dxdt = R N ξ(0, x)ν n k dx - R N u νn k (T, x)ξ(T, x)dx.
where ξ ∈ Y α,T is arbitrary. Thus, using the continuity of t → U (t, .) in L 1 (R N ), we derive

Q T (U (-∂ t ξ + (-∆) α ξ) + ξh • U ) dxdt = R N ξ(0, x)dν(x) - R N U (T, x)ξ(T, x)dx.
From this we infer that U is a weak solution of (1.1).

Existence for general ν. For ν ∈ M b (R N ), a sequence {ν n } in C 2 0 (R N ) converge to ν in the weak sense of bounded measures. Because of the monotonicity of h(t, •),

-H α [|ν n |] ≤ u -|νn| ≤ u νn ≤ u |νn| ≤ H α [|ν n |].
Then by above analysis, the sequence {h • u -|νn| )} and {h • u |νn| )} are relatively compact in L 1 (Q B T ) for any T > 0 and ball B and (3.23) holds for {u νn }. Therefore {u νn } is relatively locally compact in L 1 (Q B T ) and there exist some subsequence

{u νn k } and U ∈ L 1 (Q T ) such that u νn k → U =⇒ h • u νn k → h • U as k → ∞ a.e. in Q T .
As in the previous case it implies that U is a weak solution of (1.1) and also an integral solution.

Uniqueness. Let u 1 , u 2 be two weak solutions of (1.1) with the same initial ν and w = u 1 -u 2 . Then (2.20), for ξ ∈ Y α,T , ξ ≥ 0, we have that

∂ t w + (-∆) α w = h • u 2 -h • u 1 in Q T . Since h • u 2 -h • u 1 ∈ L 1 (Q T ), then by
Q T |w|[-∂ t ξ + (-∆) α ξ]dxdt + R N |w(T, x)|ξ(T, x)dxdt + Q T (h • u 2 -h • u 1 )sign(w)ξdxdt ≤ 0.
This implies w = 0 by monotonicity.

Statements (i) and (ii) and inequality (1.14) follows from the fact that the same relation holds for u νn by Lemma 3.2.

Stability is proved by the same approach that existence. If {ν n } converges to ν in the weak sense of measures, then ν n M b is bounded independently of n. Since the distribution function of h • u νn depends only on the supremum of ν n M b , this set of functions is uniformly integrable in Q T . This, combined with local compactness of the set {u νn } in L 1 (Q T ), implies the convergence of a subsequence (u νn k , h • u νn k ) to (u ν , h • u ν ) where u ν is the solution of (1.1). Because of uniqueness, all converging subsequences have the same limit, which imply the convergence of the whole sequence and stability.

Dirac mass as initial data

In this section, we study the properties of solutions to (1.1) when h(t, r) = t β r p with β > -1 and 0 < p < p * β and the initial data is ν = kδ 0 with k > 0.

Proposition 4.1 Assume 0 < p < p * β and that u k is the solution of (1.15), then there exists c 15 > 0 such that

lim t→0 + t N 2α u k (t, 0) = c 15 k. (4.1) 
Proof. By (1.14) it follows that

u k (t, 0) ≤ kH α [δ 0 ](t, 0) = kΓ α (t, 0), t > 0. (4.2) 
We claim that there exists c 16 > 0 independent of k such that

u k (t, 0) ≥ kΓ α (t, 0) -c 16 k p t -N 2α p+1+β , t ∈ (0, 1/2). (4.3) 
Indeed, from (1.14), it is infered that

u k (t, 0) ≥ kΓ α (t, 0) -k p W (t, 0), t ∈ (0, 1/2),
where

W (t, x) = t 0 H α [s β (H p α [δ 0 ]](t -s, x)ds, (t, x) ∈ Q ∞ .
For t ∈ (0, 1/4), there exists c 17 , c 18 > 0 such that

W (t, 0) ≤ c 17 t 0 R N (t -s) -N 2α s β 1 + ((t -s) -1 2α |y|) N +2α s -N 2α 1 + (s -1 2α |y|) N +2α p dyds ≤ c 17 t 0 R N s β-N 2α p dzds 1 + ( t-s s ) 1 2α |z| (N +2α)p (1 + |z| N +2α ) ≤ c 17 t β+1-Np 2α 1 0 R N dτ dZ 1 + 1-τ τ (N+2α)p 2α |Z| (N +2α)p (1 + |Z| N +2α ) ≤ c 18 t β+1-Np 2α .
Combining (1.19) and

-N 2α p + 1 + β > -N 2α , we obtain that lim t→0 + t N 2α W (t, 0) = 0.
Therefore, (

In what follows we consider the limit of the solution {u k } of (1.15) as k → ∞ for p ∈ (0, 1]. Proposition 4.2 Assume 0 < p ≤ 1 and that u k is the solution of (1.15), then (1.14), for p ∈ (0, 1) and (t, x) ∈ (0, ∞) × R N , we have that

lim k→∞ u k = ∞ in Q ∞ , locally uniformly in Q ∞ . Proof. We observe that H α [δ 0 ] and H α [t β (H α [δ 0 ]) p ] are positive in (0, ∞) × R N . By
u k ≥ kH α [δ 0 ] -k p W =⇒ lim k→∞ u k = ∞. For p = 1, it is obvious that u k = ku 1 and u 1 > 0 in (0, ∞) × R N , then lim k→∞ u k = ∞ in Q ∞ .
The proof is complete. Now we deal with the range p ∈ (1, p * β ).

Lemma 4.1 Assume 1 < p < p * β and that u k is the solution of (1.15). Then for any k > 0, 0

≤ u k ≤ U p in Q ∞ , (4.4) 
where U p is given by (1.21).

Proof. Let {f n,k } be a sequence of nonnegative functions in C 1 c (R N ) which converges to kδ 0 in the weak sense of measures as n → ∞. We denote by u n,k the corresponding solution of (1.17) with initial data by f n,k . We claim that

u n,k ≤ U p in Q ∞ , (4.5) 
where, we recall it, U p is the maximal solution of the ODE y ′ + t β y p = 0 on R + . Indeed this implies (4.4).

Step 1. We claim that

lim |x|→∞ u n,k (t, x) = 0, ∀t > 0. (4.6)
From [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF][START_REF] Chen | Global heat kernel estimates for fractional laplacians in unbounded open sets[END_REF], there exists c 8 > 0 such that for any x, y ∈ R N and t ∈ (0, ∞),

0 < Γ α (t, x -y) ≤ c 8 t -N 2α 1 + (|x -y|t -1 2α ) N +2α
.

Then for |x| > 1, 0 ≤ H α [f n,k ](t, x) ≤ c 8 t -N 2α R N f n,k (y) 1 + (|x -y|t -1 2α ) N +2α dy = c 8 R N f n,k (x -zt 1 2α ) 1 + |z| N +2α dz = c 8 R N \B R f n,k (x -zt 1 2α ) 1 + |z| N +2α dz + B R f n,k (x -zt 1 2α ) 1 + |z| N +2α dz , where R = 1 2 |x|t -1 2α and B R = {z ∈ R N : |z| < R}. It is obvious that |x -zt 1 2α | ≥ |x| -|z|t 1 2α ≥ |x|/2 for all z ∈ B R . Then B R f n,k (x -zt 1 2α ) 1 + |z| N +2α dz ≤ sup |y|≥ |x| 2 f n,k (y) B R 1 1 + |z| N +2α dz ≤ sup |y|≥ |x| 2 f n,k (y) R N 1 1 + |z| N +2α dz = c 16 sup |y|≥ |x| 2 f n,k (y) and R N \B R f n,k (x -zt 1 2α ) 1 + |z| N +2α dz ≤ R N \B R f n,k L ∞ (R N ) 1 + |z| N +2α dz ≤ c 18 R -2α = c 18 t |x| 2α ,
for some c 18 > 0 independent of x, t and R. Since f n,k ∈ C 1 0 (R N ), we have that lim

|x|→∞ sup |y|≥ |x| 2
f n,k (y) = 0 and then for any t > 0, 0

≤ u n,k (t, x) ≤ H α [f n,k ](t, x) → 0 as |x| → ∞.
Step 2. We claim that (4.5) holds. By contradiction, if (4.5) is not verified, there exists (t 0 , x 0 ) ∈ (0, ∞) × R N such that

(U p -u n,k )(t 0 , x 0 ) = min (t,x)∈(0,∞)×R N (U p -u n,k )(t, x) < 0, since U p (t) > 0 = lim |x|→∞ u n,k (t, x) for any t ∈ (0, ∞), U p (0) = ∞ > f n,k (x) = u n,k (0, x) for x ∈ R N and lim t→∞ U p (t) = lim t→∞ u n,k (t, x) = 0 for x ∈ R N . Then ∂ t (U p -u n,k )(t 0 , x 0 ) = 0. Moreover, (U p -u n,k )(t 0 , x 0 ) = min{U p (t 0 ) -u n,k (t 0 , x) : x ∈ R N } = U p (t 0 ) -max{u n,k (t 0 , x) : x ∈ R N } and u n,k (t 0 , x 0 ) = max{u n,k (t 0 , x) : x ∈ R N } =⇒ (-∆) α u n,k (t 0 , x 0 ) ≥ 0. Then 0 = ∂ t (U p -u n,k )(t 0 , x 0 ) -(-∆) α u n,k (t 0 , x 0 ) + t β 0 U p p (t 0 ) -t β 0 u p n,k (t 0 , x 0 ) < 0,
which is impossible. Thus (4.5) holds. Proposition 4.3 (i) Assume 0 < p < p * β and that u k is the solution of (1.15). Then u k is a classical solution of (1.17).

(ii) Assume 1 < p < p * β and that u ∞ is defined by (1.16). Then u ∞ is a classical solution of (1.17).

Proof. (i) Since

u k ≤ kH α [δ 0 ], it is infered that u k is bounded in (ǫ, ∞) × R N for ǫ > 0.
Let {g n,k } be a sequence of nonnegative functions in C 1 0 (R N ) which converges to kδ 0 as n → ∞ and u n,k the corresponding solution of (1.17) with initial data g n,k .

Then H α [g n,k ] → kH α [δ 0 ] as n → ∞ uniformly in [ǫ, ∞) × R N for any ǫ > 0 and by the Comparison Principle, there exists c 19 > 1 such that

0 ≤ u n,k (t, x) ≤ kH α [g n,k ] ≤ c 19 kH α [δ 0 ] in [ǫ, ∞) × R N ,
and there exists σ ∈ (0, 1) such that {u n,k } are uniformly bounded with respect to n in C σ 2α ,σ t,x ((ǫ, ∞)×R N ) with ǫ > 0. Therefore, by the Arzela-Ascoli theorem, u n,k converges to

u k in C σ ′ 2α ,σ ′ t,x
((ǫ, ∞)×R N ) with σ ′ ∈ (0, σ) and then u k is a viscosity solution of (1.17) in (ǫ, ∞) × R N . By estimate (A.1) in [START_REF] Caffarelli | Regularity of solutions to the parabolic fractional obstacle problem[END_REF],

u k is in C 1+σ ′ ,2α+σ ′ t,x ((ǫ, ∞) × R N ) and u k is a classical solution of (1.17) in (ǫ, ∞) × R N .
(ii) The proof is the same as part (i), just replacing u k ≤ kH α [δ 0 ] by u ∞ ≤ U p .

5 Self-similar and very singular solutions By Theorem 1.1 and (4.4), we see that {u k } is an increasing sequence of nonnegative functions bounded from above by U p . Then for p ∈ (1, p * β ), there exists u ∞ = lim k→∞ u k , which is a classical solution of (1.17) by Proposition 4.3 (ii) and satisfies

u ∞ ≤ U p in Q ∞ .
(5.1) Proposition 5.1 Assume 1 < p < p * β , then u ∞ is a self-similar solution of (1.17).

Proof. For λ > 0, we set

T λ [u](t, x) = λ 2α(1+β) p-1 u(λ 2α t, λx), (t, x) ∈ Q ∞ .
It is straightforward to verify that T λ [u k ] is the solution of

∂ t u + (-∆) α u + t β u p = 0 in Q ∞ , u(0, .) = λ 2α(1+β) p-1 -N kδ 0 in R N . (5.2) Because of uniqueness, T λ [u k ] = u kλ 2α (1+β) 
p-1 -N . Letting k → ∞ and using the continuity of u → T λ [u], we have that

lim k→∞ T λ [u k ] = T λ [u ∞ ] = u ∞ , which implies that u ∞ is a self-similar solution (1.17). Let us denote U ∞ (z) = u ∞ (1, z), z ∈ R N , then U ∞ is a classical solution of (1.20). It is clear that the constant ( 1+β p-1 ) 1 
p-1 is a constant positive solution of the self-similar equation (1.20). We observe that N < 2α(1+β)

p-1 < N + 2α when 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β)
N . We prove below this fundamental result that u ∞ is the minimal self similar solution.

Proposition 5.2 Assume that 1 < p < 1 + 2α(1+β) N and ũ is a positive self-similar solution of (1.23). Then u ∞ ≤ ũ.

Proof. For any r > 0, we have that

Br(0) ũ(t, x)dx = t -1+β p-1 Br(0) ũ(1, t -1 2α x)dx = t -1+β p-1 + N 2α B t -1 2α r (0) ũ(1, z)dz ≥ t -1+β p-1 + N 2α B 1 (0) ũ(1, z)dz → +∞ as t → 0 + ,
where last inequality holds for t ∈ (0, r 2α ]. Let {ǫ n } be a sequence positive decreasing numbers converging to 0 as n → ∞. For ǫ n and k > 0, there exists t n,k > 0 such that

Bǫ n (0) ũ(t n,k , x)dx = k.
We observe that for any fixed k, t n,k → 0 as n → ∞ since lim n→∞ ǫ n = 0. Let η 0 : R N → [0, 1] be a C 2 function such that supp η 0 ⊂ B2 (0), η 0 = 1 in B 1 (0) and

η n (x) = η 0 (ǫ -1 n x) for x ∈ R N . Choosing {f n,k } be a sequence of C 2 functions such that 0 ≤ f n,k (x) ≤ η n (x)ũ(t n,k , x), ∀x ∈ R N and f n,k → kδ 0 as n → ∞.
Let u n,k be the solution of (1.1) with initial data f n,k , then

u n,k (t, x) ≤ u(t n,k + t, x), ∀(t, x) ∈ Q ∞
and by uniqueness of u k , lim n→∞ u n,k = u k , where u k is the solution of (1.1) with initial data kδ 0 . Then for any k, we have

u k ≤ ũ in Q ∞ , which implies that u ∞ ≤ ũ in Q ∞ .
5.1 The case 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β)

N

We define the function w λ by

w λ (t, x) = λt -1+β p-1 w(t -1 2α |x|), (t, x) ∈ Q ∞ , (5.3) 
where w(s) = ln(e+s 2 ) 1+s N+2α .

Lemma 5.1 Assume 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β) N , then there exists Λ 0 > 0 such that for λ ≥ Λ 0 , ∂ t w λ (t, x) + (-∆) α w λ (t, x) + t β w p λ (t, x) ≥ 0, ∀(t, x) ∈ Q ∞ . (5.4) 
Proof. By direct computation, we have

∂ t w λ (t, x) = - λ(1 + β) p -1 t -1+β p-1 -1 w(t -1 2α |x|) - λ 2α t -1+β p-1 -1 2α -1 |x|w ′ (t -1 2α |x|) and (-∆) α w λ (t, x) = λt -1+β p-1 -1 (-∆) α w(t -1 2α |x|), which implies ∂ t w λ (t, x) + (-∆) α w λ (t, x) + t β w p λ (t, x) = λt -1+β p-1 -1 (-∆) α w(s) - 1 2α w ′ (s)s - 1 + β p -1 w(s) + λ p-1 w p (s) , (5.5) 
where s = |z| with z = t -1 2α x. Next, for s > 0, we have

- 1 2α w ′ (s)s - 1 + β p -1 w(s) = N + 2α 2α s N +2α 1 + s N +2α - 1 + β p -1 - s 2 (e + s 2 ) -1 α ln(e + s 2 ) w(s). Since N +2α 2α > 1+β p-1 , lim s→∞ s N+2α
1+s N+2α = 1 and lim s→∞ 1 ln(e+s 2 ) = 0, there exists R 0 > 0 and σ 0 > 0 such that

- 1 2α w ′ (s)s - 1 + β p -1 w(s) ≥ σ 0 w(s), ∀s ≥ R 0 . (5.6) 
For |z| > 2, and using the definition of the fractional Laplacian, we have

-(-∆) α w(|z|) = 1 2 R N ln(e + |z + ỹ| 2 ) 1 + |z + ỹ| N +2α + ln(e + |z -ỹ| 2 ) 1 + |z -ỹ| N +2α - 2 ln(e + |z| 2 ) 1 + |z| N +2α dỹ |ỹ| N +2α = w(|z|) 2|z| 2α R N I z (y) |y| N +2α dy, (5.7) 
where We claim that there exists c 24 > 0 such that

I z (y) = 1 + |z| N +2α 1 + |z| N +2α |e z + y| N
I z (y) |y| N +2α dy ≤ ω N 1 2 0 1 + |z| N +2α 1 + (|z|r) N +2α ln(e + |z| 2 r 2 ) ln(e + |z| 2 ) r N -1 dr + c 22 ≤ ω N w(|z|)|z| N ∞ 0 t N -1 ln(e + t 2 ) 1 + t N +2α dt + c 22
B 1 2 (0) I z (y) |y| N +2α dy ≤ c 24 .
(5.9) Indeed, since the function

I z is C 2 in B 1 2 ( 
0), I z (0) = 0 and I z (y) = I z (-y), then ∇I z (0) = 0 and there exists c 34 > 0 such that

|D 2 I z (y)| ≤ c 25 ∀y ∈ B 1 2 (0).
Then we have

I z (y) ≤ c 25 |y| 2 ∀y ∈ B 1 2 (0), which implies B 1 2 (0) I z (y) |y| N +2α dy ≤ c 25 B 1 2 (0) |y| 2 |y| N +2α dy ≤ c 24 .
We claim that there exists c 26 > 0 such that

A I z (y) |y| N +2α dy ≤ c 26 , (5.10) 
where

A = R N \ (B 1 2 (0) ∪ B 1 2 (e z ) ∪ B 1 2 
(-e z )). In fact, for y ∈ A, we observe that there exists c 27 > 0 such that I z (y) ≤ c 27 and

A I z (y) |y| N +2α dy ≤ R N \B 1 2 (0) c 27 |y| N +2α ≤ c 28 ,
for some c 28 > 0. Therefore, by (5.5)-(5.10), there exists c 29 > 0 such that which, together with (5.5), implies that (5.4) holds.

(-∆) α w(|z|) ≥ - c 29 1 + |z| N +2α , |z| ≥ 2. 
Next we prove that u ∞ is not a trivial flat solution when 1 + 2α(1+β) N +2α < p < p * β .

Lemma 5.2 Assume 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β)

N

, that w Λ 0 is given in (5.3) and u ∞ is given in (1.16). Then u ∞ (t, x) ≤ w Λ 0 (t, x) ∀(t, x) ∈ Q ∞ .

(5.13)

Moreover, lim -N > 0. Let u n,k ñ be the solution of (1.17) with initial data f n,k ñ . By Lemma 5.1, w Λ 0 (• + t n , •) is a super-solution of (1.17) , ∀(t, x) ∈ (0, 1) × R N .

(5.16)

Proof. We divide the proof into two steps.

Step 1. Let σ 0 = 1 + β -N 2α (p -1) > 0, η(t) = 2 -t σ 0 for t > 0 and denote

v ǫ (t, x) = ǫη(t)Γ α (t, x),
where Γ α is the fundamental solution of (1.17). In this step we prove that there exists ǫ 0 > 0 such that

u k 0 ≥ v ǫ 0 in (0, 1) × R N , (5.17) 
where k 0 = 2ǫ 0 and u k 0 is the solution of (1.17) with initial data k 0 δ 0 . Indeed, ∂ t v ǫ (t, x) = ǫη ′ (t)Γ α (t, x) + ǫη(t)∂ t Γ α (t, x) and (-∆) α v ǫ (t, x) = ǫη(t)(-∆) α Γ α (t, x).

Let Γ 1 (t -1 2α x) = Γ α (1, t -1 2α x), then there exists ǫ 0 > 0 such that for any ǫ ≤ ǫ 0 and (t, x) ∈ (0, 1) × R N , we have that

∂ t v ǫ (t, x) + (-∆) α v ǫ (t, x) + t β v p ǫ (t, x) = ǫη ′ (t)t -N 2α Γ 1 (t -1 2α x) + ǫ p η p (t)t -N 2α p+β Γ p 1 (t -1 2α x) ≤ -ǫσ 0 t -N 2α -1+σ 0 Γ 1 (t -1 2α x) + 2 p ǫ p t -N 2α p+β Γ p 1 (t -1 2α x) ≤ 0,
the last inequality holds since -N 2α -1 + σ 0 = -N 2α p + β and Γ 1 is bounded. In particular, there holds ∂ t v ǫ 0 (t, x) + (-∆) α v ǫ 0 (t, x) + t β v p ǫ 0 (t, x) ≤ 0, ∀(t, x) ∈ (0, 1) × R N .

(5. (2 + |x 0 |) N +2α , ∀x ∈ B 1 (x 0 ), where t n = n -2α . Then there exists N 0 > 0 such that for any n ≥ N 0 , f n,k (x) ≤ v ǫ 0 (t n , x), ∀x ∈ B 1 (x 0 ).

Since n θN f 0 (n θ (x -x 0 )) → c 41 δ x 0 , as n → ∞ in weak sense of measures, for some c 41 > 0.

Let w n,k be the solution of (1.17) with initial data f n,k , then

w n,k (0, x) = f n,k (x) ≤ v ǫ 0 (t n , x) ≤ u ∞ (t n , x), ∀x ∈ R N .
Therefore, by the Comparison Principle

w n,k (t, x) ≤ u ∞ (t + t n , x), ∀(t, x) ∈ Q ∞ .
We observe that lim k→∞ [ lim n→∞ w n,k (t, x)] = u ∞ (t, x -x 0 ), ∀(t, x) ∈ Q ∞ .

Theorem 1 . 4

 14 (i) Assume p * * β < p < p * β . Then problem (1.20) admits a minimal positive solution v ∞ satisfying lim |η|→∞ |η| 2α(1+β) p-1 v ∞ (η) = 0.

  ii) Assume 1 < p < p * * β . Then problem (1.20) admits no positive solution satisfying (1.25). The question of uniqueness of the very singular solution in the case p * * β < p < p * β remains an open problem.

≤ c 23 w 1 2(

 231 (|z|)|z| N , where c 22 , c 23 > 0 and the last inequality holds since w(|z|)|z| N → 0 as |z| → ∞. Thus, I z (y) |y| N +2α dy = B -ez) I z (y) |y| N +2α dy ≤ c 23 w(|z|)|z| N .

(5. 11 )

 11 By(5.6) and(5.11), there existsR 1 ≥ R 0 + 2 such that for |z| > R 1 , (-∆) α w(|z|) -1 2α w ′ (|z|)|z| -1 + β p -1 w(|z|) ≥ σ 0 w(|z|) -c 29 1 + |z| N +2α = w(|z|) σ 0 -c 29 ln(e + |z| 2 ) ≥ 0. When |z| ≤ R 1 , it is clear that there exists c 30 > 0 such that (-∆) α w(|z|) -1 2α w ′ (|z|)|z| -1 + β p -1 w(|z|) ≥ -c 30 .Then there exists Λ 0 > 0 such that for λ ≥ Λ 0 ,(-∆) α w(|z|) -1 2α w ′ (|z|)|z| -1 + β p -1 w(|z|) + λ p-1 w p (|z|) ≥ 0, ∀z ∈ R N ,(5.12) 

t→0u∞ 1 . 1 -

 11 (t, •) = 0 uniformly on B c ǫ , ∀ǫ > 0.(5.14)Proof. Let us denotef 0 (r) = k 0 ln(e + r 2 ) 1 + r N +2α , ∀ r ≥ 0 and f n,k (x) = kn N f 0 (n|x|), ∀x ∈ R N ,wherek 0 = ω N ∞ 0 ln(e + r 2 ) 1 + r N +2α r N -1 dr -Then for any η ∈ C c (R N ), we have that lim n→∞ R N f n,k ηdx = k lim n→∞ R N f 0 (|x|)η x n dx = kη(0).Let t n = n -2α and thenw Λ 0 (t n , x) = Λ 0 t N n N f 0 (n|x|) = f n,k ñ (x),where ñ ≤ n andk ñ = Λ 0 ñ 2α(1+β) p-1 -N . We see that k ñ = Λ 0 ñ 2α(1+β) p-1 -N → ∞ as ñ → ∞, since 2α(1+β) p-1

18 ) 5 . 1 5 . 2 For 1 1 -

 18515211 Corollary Assume 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β) N . Then either ũ > u ∞ in Q ∞ (5.19) or ũ ≡ u ∞ in Q ∞ .(5.20) The case1 < p < 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β) N +2α , it follows from Lemma 5.3 that lim t→0 + u ∞ (t, x) = ∞, ∀x ∈ R N . (5.21) Proof of Theorem 1.3 (i). Let f 0 ∈ C c (R N ) be a nonnegative function such that suppf 0 ⊂ B 1 (0) and max x∈B 1 (0) f 0 = 1. Denote f n,k (x) = kn θN f 0 (n θ (x -x 0 )),wherek ≤ n τ with τ = 1 2 ( 2α(1+β) p-N -2α) > 0, θ = τ N and x 0 ∈ R N . Since f n,k (x) ≤ n τ for x ∈ B 1 (x 0 ), f n (x) = 0 for x ∈ B c 1 (x 0 ) and v ǫ 0 (t n , x) ≥ c 39 n 2α(1+β)p-1 -N -2α

  with initial data w Λ 0 (t n , •), that is, for (t, x) ∈ Q ∞ , ∂ t w λ (t + t n , x) + (-∆) α w λ (t + t n , x) + (t + t n ) β w p λ (t + t n , x) ≥ 0.By the Comparison Principle,u n,k ñ (t, x) ≤ w Λ 0 (t + t n , x), ∀(t, x) ∈ Q ∞ ,for any ñ ≤ n. Letting n → ∞ we inferu k ñ (t, x) ≤ w Λ 0 (t, x), ∀(t, x) ∈ Q ∞ ,(5.15)where u k ñ is the solution of (1.17) with k ñδ 0 initial data. Thus (5.13) is obtained by letting ñ → ∞. Finally(5.14) follows by the fact that Lemma 5.3 Assume 1 < p < p * β , then there exists c 31 > 0 such that u ∞ (t, x) ≥ c 31 t -1+β

	lim t→0 +	w Λ 0 (t, x) = 0,	∀x ∈ R N \ {0},
	which completes the proof.		
		p-1	
	1 + |t -1 2α x| N +2α	
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Let f n (x) = v ǫ 0 (t n , x) with t n = n -2α . Since lim t→0 + η(t) = 2, then we have that f n → 2ǫ 0 δ 0 as n → ∞ in the weak sense of measures. There exists N 0 > 0 such that t n ∈ (0, 1 8 ) for n ≥ N 0 . Let w n be the solution of (1.17) with initial data f n , then it infers that

Because u k 0 is uniquely defined, there holds

which imply (5.17).

Step 2. We claim that (5.16) holds. Since

p-1 -N , we observe that for any λ > 0,

which implies (5.16) and completes the proof. 

Then u ∞ (t, x -x 0 ) = u ∞ (t, x) for all (t, x) ∈ Q ∞ , which implies that u ∞ is independent of x. Combining (5.1) and (5.16), implies that

The proof is complete.

In the case of p = 1 + 2α(1+β) N +2α , it derive from Lemma 5.3 that

Proof of Theorem 1.3 (ii). We note that u ∞ is a self-similar solution of (1.17). Moreover, we derive (1.24) by (5.16), which ends the proof.

The self-similar equation

In this section we prove Theorem 1.4.

Proof of Theorem 1.4 (i). We set v ∞ (η) = t 1+β p-1 u ∞ (1, η). Then relations (1.25) and (1.26) hold from Lemmas 5.2 and 5.3. Assume ṽ is another positive solution of (1.20). Then (t, x) → t -1+β p-1 ṽ(t -1 2α x) is a positive self-similar solution of (1.23). By Proposition 5.2 it is larger than u ∞ . Thus v ∞ ≤ ṽ. Assume now that there exists η 0 ∈ R N such that v ∞ (η 0 ) = ṽ(η 0 ). and set w = ṽ -v ∞ . Then

Since ∇w(η 0 ) we reach a contradiction.

Proof of Theorem 1.4 (ii). It is a consequence of the equality

Open problem. We conjecture that in the case 1 + 2α(1+β) N +2α < p < 1 + 2α(1+β) N , v ∞ is the unique positive solution of the self-similar equation satisfying (1.25). One step could be to prove that any positive solution ṽ satisfying (1.25) satisfies, for some K > 1, ṽ ≤ Kv ∞ in R N .

(5.23)

We also conjecture that v ∞ satisfies the following asymptotic behavior v ∞ (η) = c N,p,α,β |η| -N -2α as |η| → ∞.

(5.24)

Thus if any positive solution ṽ inherits the same property, the conclusion (and the uniqueness) follows.