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Abstract

We study existence and uniqueness of weak solutions to (F) dyu+ (—A)*u+
h(t,u) = 0 in (0,00) x RY  with initial condition u(0,-) = v in RY, where
N > 2, the operator (—A)® is the fractional Laplacian with o € (0,1), v is
a bounded Radon measure and % : (0,00) x R — R is a continuous function
satisfying a subcritical integrability condition.

In particular, if h(t,u) = t°uP with 3> —1 and 0 < p < ppi=1+ &Nﬂi),
we prove that there exists a unique weak solution uy to (F) with v = kdg, where
o is the Dirac mass at the origin. We obtain that u; — co in (0,00) x RY as
k — oo for p € (0,1] and the limit of uy exists as k — oo when 1 < p < pj,

we denote it by us. When 1 + % = pj" < p < Pj, Uoo is the minimal
self-similar solution of (F)s Gyu+ (—A)%u +tPuP = 0 in (0, 00) x RY with the
initial condition u(0,-) = 0 in RY \ {0} and it satisfies us.(0,2) = 0 for x # 0.
While if 1 < p < p§", then uss = Uy, where U, is the maximal solution of the

differential equation 3’ + t°y? =0 on R, .
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1 Introduction

Let h : (0,00) x R — R be a continuous function and Qs = (0,00) x RY with
N > 2. The first object of this paper is to consider existence and uniqueness of
weak solutions to fractional heat equations

Ou+ (—A)*u~+h(t,u) =0 in Qo

u(0,-) =v in RV, 1)

where v belongs to the space M’ (RY) of bounded Radon measures in RY and (—A)*
(0 < a < 1) is the fractional Laplacian defined by

(—A)%u(t,z) = lim (—A)%u(t, x),

e—0t
where, for € > 0,

u(t, ) —u(t, z)
’Z — x\N+20‘ XE("%. - Z‘)dZ

(-a)u(t.) = [

]RN
and

Xell) =
(r) 1 if r>e

{0 if rel0,¢,

In a pioneering work, Brezis and Friedman [6] have studied the semilinear heat
equation with measure as initial data

Ou — Au+uP =0 in Qo,

u(0,-) =kdp in RY,



where k£ > 0 and dg is the Dirac mass at the origin. They proved that if 1 < p <
(N +2)/N, then for every k > 0 there exists a unique solution uy to (1.2). When
p > (N +2)/N, problem (1.2) has no solution and even more, they proved that no
nontrivial solution of the above equation vanishing on R\ {0} at ¢t = 0 exists. When
l<p<1l+ %, Brezis, Peletier and Terman used a dynamical system technique in
[7] to prove the existence of a very singular solution us to

ou—Au+uP =0 in Qu, (1.3)

vanishing at t = 0 on RY \ {0}. This function u, is self-similar, i.e. expressed under
the form

ws(t,2) =t 7T f (%) , (1.4)

and f is uniquely determined by the following conditions
1+ (%Jr%n) f'+55f=f"=0 on Ry
f>0 and f issmooth on R (1.5)
f(0)=0 and lim;u n%f(n) =0.

Furthermore, it satisfies
2
fp) = ere = N1 = 0(a] )} as g - oo

for some ¢; > 0. Later on, Kamin and Peletier in [21] proved that the sequence of
weak solutions uy converges to the very singular solution us as k — co. After that,
Marcus and Véron in [23] studied the equation in the framework of the initial trace
theory. They pointed out the role of the very singular solution of (1.3) in the study
of the singular set of the initial trace, showing in particular that it is the unique
positive solution of (1.3) satisfying

lim [ w(t,x)dz = oo, Ve > 0, Be = B(0), (1.6)
t—0 Be
and
lim [ u(t,x)de =0 VK ¢ RY\ {0}, K compact. (1.7)
t—=0 J i

If one replaces uP by tPuP with p € (1,1 + 2(1—;6)), these results were extended by

Marcus and Véron (5 > 0) in [24] and then Al Sayed and Véron (8 > —1) in [1].
The initial data problem with measure and general absorption term

Ou— Au+h(t,z,u) =0 in (0,T) x Q,
u=0 in (0,7) x 0%, (1.8)
u(0,)=v in Q,



in a bounded domain © of RY, has been studied by Marcus and Véron in [24] in
the framework of the initial trace theory. They proved that the following general
integrability condition on h

0 <| h(t,z,7) |< h(t)f(|r]) NV(z,t,r) € QxR xR

T
/ WO f(ot2) 2dt<oo Yo >0 (1.9)
0
cither h(t) = t* with o > 0 or f is convex,

in order that the problem has a unique solution for any bounded measure. In the
particular case with h(t,z,r) = tP|u[P~lu, it is fulfilled if 1 < p < 1 + w and
£ > —1, and the very singular solution exists in this range of values.

Motivated by a growing number of applications in physics and by important links
on the theory of Lévy process, semilinear fractional equations has been attracted
much interest in last few years, (see e.g. [8, 9, 10, 12, 14, 17, 18, 19]). Recently,
in [15] we obtained the existence and uniqueness of a weak solution to semilinear
fractional elliptic equation

(—A)*u+ f(u)=v in Q,

(1.10)
u=0 in Q°

when v is a Radon measure and f satisfies a subcritical integrability condition. In

[14] we studied the the different types of isolated singularities when f(u) = u” where

1<p< %m In particular, assuming that 0 € ), we proved that the sequence of

solutions {uy} (k € N) of (1.10), with v = kdy converges to infinity when k — oo,

if pe (0,1+ 2—O‘) and it converges to a solution with a strong singularity at 0 if

142 A

pe(l+ N?N_Qa)’

One purpose of this paper is to study the existence and uniqueness of weak

solutions to semilinear fractional heat equation (1.1) in a measure framework. We

first make precise the notion of weak solution of (1.1) that we will use in this note.

Definition 1.1 We say that u is a weak solution of (1.1), if for any T > 0, u €
Ll(QT); h(t’u) € Ll(QT) and

/ (u(t, z)[—0(t, ) + (—A)*E(t, )] + h(t,u)é(t, x)) dxdt

— [ o= [ T aouTa)ds ¥ € Vo,
RN RN

(1.11)

where Qr = (0,T) x RN and Yor is a space of functions & : [0,T] x RY — R
satisfying



(@) 1€l @p) + N€llzoe@r) + 10:€ll oo (@) + I(=2)* €| Loo (@) < +00;

(ii) fort € (0,T), there exist M > 0 and ey > 0 such that for all € € (0, €],
(= A€t oo ny < M.

Before stating our main theorems, we introduce the subcritical integrability con-
dition for the nonlinearity h, that is,

(H) (i) The function h : (0,00) x R — R is continuous and for any ¢ € (0,00),
h(t,0) = 0 and h(t,r1) > h(t,ro) if 11 > 9.

(7) There exist f > —1 and a continuous, nondecreasing function g : Ry —
R, such that

|a(t.r)| < t%g(|rl)  ¥(t,r) € (0,00) x R

and
+oo .
/ g(s)s 1 Phds < 400, (1.12)
1
where 20(1 1 B)
a(l +
=14+ ——— . 1.13
pp=1+—% (1.13)

We denote by H, : (0,00) x RY x RV — R, the heat kernel for (—A)® in
(0,00) x RN, by H,[v] the associated heat potential of v € 9M’(RY), defined by

Holt)(t.) = | Holt.r.)dv(y)

and by H[u] the Duhamel operator defined for (¢,7) € Qr and any u € L'(Q7) by

Haolpl(t,z) = /0 He [p(s, )] (t — s,x)ds = /0 - Ho(t — s,z,y)u(s,y)dyds.

Now we state our first theorem as follows.

Theorem 1.1 Assume that v € MP(RYN) and the function h satisfies (H). Then
problem (1.1) admits a unique weak solution u, such that

Halv] — Halh( Halv])] <ty < Ha[v] — Halh(, —Ha[v_])] in Que,  (1.14)

where vy and v_ are respectively the positive and negative part in the Jordan de-
composition of v. Furthermore,

(1) if v is nonnegative, so is u,;



(13) the mapping: v — u, is increasing and stable in the sense that if {v,} is a
sequence of positive bounded Radon measures converging to v in the weak sense
of measures, then {u,,} converges to w, locally uniformly in Qu.

According to Theorem 1.1, there exists a unique positive weak solution uy to
Opu + (—A)%u + thuP = 0 in Qoo (1.15)
1.15
u(0,-) = kdp in RN,

where 8 > —1, k> 0 and p € (O,p}g). We observe that u, — 0o in (0,00) x RY as
k — oo for p € (0, 1], see Proposition 4.2 for details. Our next interest in this paper
is to study the limit of uy as k — oo for p € (1,pj), which exists since {uy}x is an

i ; ; 148\ p-1 ,— 2
increasing sequence of functions, bounded by T t »-1, and we set

Uoo = klingouk in Qoo (1.16)
Actually, us and {uy}y are classical solutions to equation
du+ (—A)u+tPuP =0 in  Qu, (1.17)
see Proposition 4.3 for details.

Definition 1.2 (i) A solution u of (1.17) is called a self-similar solution if

1+

u(t,x) =t »-1 u(l,t*ix) (t,2) € Qoo-

I

(ii) A solution u of (1.17) is called a very singular solution if it vanishes on R™ \ {0}

att =0 and
u(t,0)

150+ T (L, 0)

where Ty, := H,[0o] is the fundamental solution of
du+ (—A)*u=0 in Qo,
u(0,-) =3y in RN,

= +OO7

(1.18)

We remark that for p € (1,pj3), a self-similar solution u of (1.17) is also a very
singular solution, since
lim To(t,0)t2 = co, (1.19)
t—0+
for some ¢3 > 0. For any self-similar solution u of (1.17), v(n) = u(l,t_ﬁx) with
n= t~3ax is a solution of the self-similar equation

1 1
(=A)*v — —Vuv-n— +5

o p_1v+vp:0 in RY. (1.20)




1

Since (;%f) "' is a constant nonzero solution of (1.20), the function

1
1 p=1 148
ﬂ)” T >0 (1.21)
p—1

n(t) = (

is a flat self-similar solution of (1.17). It is actually the maximal solution of the
ODE 3/ + tPy? = 0 defined on R,. Our next goal in this paper is to study non-flat
self-similar solutions of (1.17).

Theorem 1.2 Assume that § > —1, us is defined by (1.16) and

P <p<Dps
where p}}* =1+ % Then us is a very singular self-similar solution of (1.17)
in Qoo. Moreover, there exists c3 > 1 such that
-1
c c3In(2 + |z
3 <us(l,z) < 3n(2 + [z])

—_— — e RV, 1.22
1+ [z[VF2e = =1+ gV F20 z (1.22)

When p5" < p < pj with 5 > —1, we observe that u and U), are self-similar
solutions of (1.17) and u« is non-flat. Now we are ready to consider the uniqueness
of non-flat self-similar solution of (1.17) with decay at infinity, precisely, we study
the uniqueness of self-similar solution to

Ou+ (—A)u+tPuP =0 in Qo
(1.23)

We remark that if u is self-similar, then the assumption lim|y|_,o u(1,7) = 0 is
equivalent to lim;| o0 u(t,z) = 0 for any t > 0. Finally, we state the properties of
Uso When 1 < p < pg* as follows.

Theorem 1.3 (i) Assume 1 < p < pj* and ux is defined by (1.16). Then uo = Uy,
where Uy, is given by (1.21).

(i1) Assume p = p§* and ues is defined by (1.16). Then ux is a self-similar solution
of (1.17) such that

_ NH42a
C4t 2a

Uoo (t, ) > (t,z) € (0,1) x RN, (1.24)

- 1+ ‘t—ﬁx‘NwLQa

for some ¢4 > 0.



We note that Theorem 1.3 indicates that there exists no self-similar solution of
(1.17) with an initial data u(0,-) vanishing in R™ \ {0} if p € (1,p%"), since uoo
is the least self-similar solution. In Theorem 1.3 part (i), we do not know if the
self-similar solution is flat or not. From the above theorems, we have the following
result.

Theorem 1.4 (i) Assume p’[;* <p< p’g. Then problem (1.20) admits a minimal
positive solution v, satisfying

2a(14-8)

lim || =1 wvs(n) = 0. (1.25)
[n|—o00
Furthermore,
—1
e c3In(2 + [n]) N
— 2 < <2 vneR 1.26
11 |,,7|N+204 ~ ’Uoo(n) - 14 |77|N+2a n ( )

(ii) Assume 1 < p < ps. Then problem (1.20) admits no positive solution satisfying
(1.25).

The question of uniqueness of the very singular solution in the case pj* < p < pj
remains an open problem.

It is worth comparing the above theorems with the results obtained by Nguyen
and Véron [25] concerning the limit, when k — oo of the solutions u = wuy, of

Ou — Au~+ u(ln(u +1)))* =0 in Qoo,

u(0,.) = kdyp in RN, (1.27)
where @ > 0. Note that uj > 0 and the sequence {uy} is increasing. In this problem,
they proved that the diffusion is dominating if 0 < < 1 and the limit of the uy
is infinite. If 1 < o < 2 the absorption dominates, but the limit of the wy is the
maximal solution of the associated ODE, ¢/ 4+ y(In(y + 1)))* = 0 on Ry. Finally, if
a > 2 the limit of the uy is a solution with a strong isolated singularity at (0, 0),
which could be called a very singular solution, although it is not self-similar.

This paper is organized as follows. In Section 2 we introduce some properties of
Marcinkiewicz spaces and Kato’s type inequality for non-homogeneous problems. In
Section 3 we prove Theorem 1.1. Section 4 is devoted to investigate the properties
of solutions to (1.15). In Section 5 we give the proof of Theorem 1.2 and Theorem
1.3. Finally, we prove Theorem 1.4.



2 Linear estimates

2.1 The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 2.1 Let © C RNt be an open domain and i be a positive Borel measure
in©. Fork > 1,k =r/(k—1) and u € L}, (0,dn), we set

loc
o
lullprs(@,du) = inf {c € [0,00] : / luldp < ¢ </ d,u) ’ , VE C ©, E Borel set}
E E
(2.1)
and
M™(©,dp) = {u € Ljp(0,dp) : |[ularx(e.4n) < 0} (2.2)

M*(©,du) is called the Marcinkiewicz space of exponent x or weak L* space
and |[|.||arx(@,dy) 18 @ quasi-norm. The following property holds.

Proposition 2.1 [3, 15] Assume that 1 < ¢ < k < o0 and u € L}, (©,dw). Then
there exists c5 > 0 dependent of q, K such that

1—q/k
[ ol < esllllgno.a ( / du) ,
E E

for any Borel set E of ©.

Remark 2.1 If Q is a smooth domain of RY, we denote by H : (0,00) x Q x Q —
R, the heat kernel for (—A)® and, if v € 9M(Q), by H[v] the corresponding heat
potential of v defined by

QV xT) = Q X v .
H[u) (1, 2) /Q H(t,2,y)dv(y)

When Q = RY, by Fourier transform, it is clear that

1

H,(t,z,y) = W

/ ei(x—y)'C—tKPadC = H,(t,x — y,0).
]RN

Furthermore, ||Hq(t,.,0)|/1 is independent of ¢. This implies
IHS(E e < lWlleey  V1<p<oo, Vve LP(RY). (2.3)

Since H[V](t + s,.) = HY[H[V](s,.)](t,.) for all t,s > 0 (semigroup property) and
v > 0= H[V|(t,.) > 0 the semigroup {H[](¢,.)}s>0 is sub-Markovian. Further-
more, since the operator (—A)® is symmetric in L?(RY), the above semigroup is



analytic in LP(RY) for all 1 < p < oo: if 1 < p < oo it follows from a general result
of Stein [27]) and for p = 1 it is a consequence of regularity result from fractional
powers of operators theory (see e.g. [22]). For 1 < p < oo the generator A, of the
semigroup in LP(RY) is the operator —(—A)® with domain

D(A,) == {v € LP(RY): (~A)*v € LP(RM)}. (2.4)

and D(A,) is dense since it contains C§° (RN). If p = oo, the natural space is the
space Co(R™) of continuous functions in RV tending to 0 at infinity. The domain
of the corresponding operator A, is

D(Ay,) == {v € Co(RY) : (=A)*v € Cu(RM)}. (2.5)

This operator is densely defined in Co(R™). In order to avoid confusion, C.(R™)
(resp. C°(R™)) denotes the space of continuous (resp. C*) functions in R with
compact support. It is a dense subset of Co(RY).

The following regularizing effect LP(RY) — LI(RY) (1 < p < ¢ < 00) is valid
for any submarkovian semigroup of contractions in all LP(R™)-spaces which has a
self-adjoint generator in L2(RY) (see e.g. [26]).

Proposition 2.2 Assume 1 < p < ¢ < oo, p # 0o. Then for any v € LP(RY),
Ha[V](t,.) € LARYN)ND(A,) for allt > 0 and there holds, for some positive constant
¢ = C(a? N?p? q)7

C
[Ha[V](ts )l La@ny < m“”“m(w)- (2.6)

2a0\p g

Note also that the function (¢,z) — Hy[v](t,2) is C* in Q as a result of the
analyticity on the semigroup {Hy[.](t) }+>0-

Proposition 2.3 For any g > —1 and T > 0, there exists cg > 0 dependent of
N, o, 3 such that for v € MY (Q),

217 g sty < 611 e (2.7)

where p is defined by (1.13) and Q% =(0,T) x Q.

In order to prove this proposition, we introduce some notations. For A > 0 and
y € €1, let us denote

AR(y) = {(t,2) € Q7 - H(t,x,y) > A} and mf(y) = /Q tPda.
A)\ (v)

N N
We also set Aﬂ§ = A, and mﬂ§ = m,y.

10



Lemma 2.1 There exists ¢z > 0 such that for any X > 1,

A\(y) C (0, etA" R x B 4 (y), (2.8)

ctAT N

where By.(y) is the ball with radius v and center y in RY.

w|2

Proof. We observe that H,(t,z,y) = t 2T (1, (z — y)t_ﬁ), where T, is the
fundamental solution of (1.18). From [4] (see also[13] for an analytic proof), there
exists cg > 0 such that

Cs
Pa(l, Z) S W
This implies in particular
Cgtiﬁ
Hy(t,z,y) < - N2 (2.9)
1+ (t_%\x - y\)
On the one hand, for (¢,x) € Ax(y), we have that
£ 3 Ta(1,0) > ¢ % a(l, (o = y)t730) > A,
which implies
20 o
t <Td (L,OA~. (2.10)
On the other hand, letting r = |z — y|,
cgt _N _1
— >t 21, (1 —y)tT2a) > A
PR N2 oll, (@ —g)t72e) > X,
then 1
r < (cgtA™ 1) Niza, (2.11)
which, together with (2.10), implies
r < 09)\_%,
for some cg > 0. O
Proof of Proposition 2.3. By Lemma 2.1, there exists cjg > 0 such that
_1_22(+B)
mA(y) S 010)\ 1 N .
Clearly
Hg(t’ x? y) S Ha(t? x? y)’ (2'12)

11



then for any Borel set F C Q% and y € Q, we have that

/Hg}(t,x,y)tﬁdmdt < A/ tPdadt + Ho(t, z,y)t? dadt
E E Ax(y)
and
+00 +oo
/ znmmwﬁMﬁz—/ swmwzxmmn+/ ma(y)ds
Ax(y) A A
« +OO «
< 010)\_2 Ean +01o/ s 122 g
A
<eciAT M(JIVW),

where c11 = ¢qg (1 + W]\{Fﬁ)) As a consequence, it follows

2a(14-8)

/Hg(t,m,y)tﬁdxdtg )\/ tPdedt + cp A~ .
E E

N
Taking A = ([, tdxdt)” N+220+8) | we obtain that

20:(148)

/ H(t, z, y)tPdedt < (¢y1 + 1)(/ P dxdt) NF2e0r |
E E
Since, by Fubini’s theorem,
| i dnd = [ [ B0yt dede
E EJQ
= [ [ #apPaaan )
QJE
together with (2.13), it yields

2a(1+8)
N+2a(1+3)

R O GO e R
B E
Thus,

B )]

Jn 2a(]1v+l3) Q.05 dwdt) < (011 + 1)”””9}@(9)7
T

which ends the proof.

12

(2.13)



2.2 The non-homogeneous problem
In this section we consider the linear non-homogeneous problem

u+ (—A)*u=p in Qr,

u(0,-) =v in RV (2.14)

If p € LY(Qr) and v € LY(RY) a function u defined in Q7 is an integral solution
of (2.14) in Qr if it is expressed by Duhamel’s formula, that is

u(t,z) = Hy[V](t, z) + Halp](t, z) a.e. in Qr. (2.15)

where, we denote by H,, the operator of L!(Q7) defined for all (z,t) € Qr by

(x,t) / H, | (x,t — s)ds —/ Hy(t — s,z y)u(s,y)dyds. (2.16)
RN
Notice that, by Duhamel’s formula, there holds

[ult, Mr@yy < lullo@r) + VI @yy, V€ (0,T), (2.17)

and
lullerry < Tlullzr@qr) + IVlLr@y)- (2.18)

The advantage of this notion of solution is that Duhamel’s formula has a meaning as
soon as j and v are integrable in their respective domains of definition. As for any
continuous semigroup of bounded linear operators, a strong solution is an integral
solution.

The following proposition is the Kato’s type estimate which is essential tool to

prove the uniqueness of solutions to (1.1). For T > 0, we denote Q7 = (0,T) x RV,

Proposition 2.4 Assume p € LY(Qr) and v € L*(RY). Then there exists a unique
weak solution u € L' (Qr) to the problem (2.14) and there exists c1o > 0 such that

/ \u]dxdtgclg/ ]u!dmdt—i—cm/ lv|dz. (2.19)
T Qr RN

Moreover, for any £ € Yo, £ >0, we have that

/ (=04 + (—A)E)dwdt + / (T, 2)[€(T, ) da

(2.20)

Esign(u ),udxdt—i—/ £(0,x)|v|dz
Qr

13



and

| ws-ag+ aredsits [ u (@600

T RN

< {sign+(u)udxdt+/ £(0,z)vidx.
Qr RN

(2.21)

In order to prove Proposition 2.4, we introduce the following notations. We say
that u: Qr — R is in CY;7 (Qr) for 0,0" € (0,1) if

< +00

L ‘u(tr%') B U(S,y)’
HUHCZ’IUI(QT) = HUHLOO(QT) + Sclgl}? ’t _ 8’0 + ‘.%' _ y‘a’

and u € C;:U’2Q+JI(QT) if
= / — @ / .
Hu||0§,§"’2“+"/(QT) = [|ul| o (@q) + ||atuHCz,xo Q1) + [[(=A) uHCi’,’f Q1) < +0o0

Lemma 2.2 Let u € CHQr)NL>®(Qr), v € L¥(RN) and u be an integral solution
of problem (2.14), then there exists o € (0,1) such that u € Ctl;ro’QaJrU in (e, T) x RV
for any e € (0,T). In particular, if || D*v|| ooy + [(=2)*[[g1-a gy < 00, then

ue CLi7 o (Qr).

Proof. Step 1. When |[D?v|| o @y) + [(=2)V[|g1-a @y < 00, it follows directly
by [9, (A.1)] that u € C.17***7(Qr).

Step 2. When v € L¥(RY), we use [10, Theorem 6.1] to obtain that u € Cﬁ_;’a(QT)
for some o > 0. For any € € (0,7), let 1 : [0,T] — [0,1] be a C? function such that
n=0in [0, 7] and n=11in [¢,7] and v = nu in Q7. Since n does not depend on =,
we obtain that v satifies,

O + (=) = nu + 7' (t)u, Y(t,z) € Qr,

where nu+n'(t)u € Ct%’U(QT) and v(0,-) = 0in R, Then we apply the argument in
Step 1 to obtain that v € C;:U’2Q+J(QT). Therefore, u is Ctl,;LU’QQJFU in (e, ) x RV,
The proof is complete. O

Lemma 2.3 (i) Let p € CYQ7) N L>®(Qr) and v € CYRN) N L®RY), then
problem (2.14) admits a unique classical solution u.

(ii) Let p € CHQr)NL=(Qr)NLYQr), v € C?(RN)NL¥(RN)NLY(RY) and u be
the classical solution of (2.14), then u is Ciia’QajLa in (e,T) x RN for any e € (0,T)
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and for any £ € Yo 1,

/ ult, 2)[~OE(t, ) + (D) E(t, o)) dadt

(2.22)
:/ w(t,x)E(t, x)dzdt + £(0,x)vdr — (T, x)u(T, z)dx.
T RN RN
Thus u is a weak solution and it belongs to Yo 7.
(iii) Let ji € CY(Qr) N L>®(Q7) and v € C*RN) N L=®(RYN), then problem
—w+ (—A)*w=p in Qr,
t (=4) H T (2.23)

w(T,)=v in RV

admits a unique classical solution w € C;’;LJ’MJFU(QT) for some o € (0,1). More-
over, if p € CHQr)NL¥(Qr)NLY(Qr) and v € C]RN)NL®RN)NLYRY), then
§ 1s a weak solution and it belongs to Yo 1.

Proof. (i) By [10, Theorem 3.3, Theorem 6.1], if x4 and v are continuous and
bounded, there exists a unique viscosity solution v € C(Qr). The higher regularity
is provided by [10, Theorem 6.1] which asserts that there exist 0 > 0 and a positive
constant ¢ depending on N, 7 € (0,7) and « such that for all (¢,z) and (s,y)
belonging to Q?iﬂ there holds

IUW@—UQQ

(|2 =yl + [t = s|>

< (nuum@?) # s [t s e + il
(2.24)

where Q% = (0,T) x Q. Thus u € Ct%’O(QT). By Lemma 2.2 the integral solution u

belongs to C;’;LUI’ZO‘J”’, in (e, T)xRY for any e € (0,T) and some ¢’ € (0, min{Z,0}).

Then u is a classical solution of (2.14) and thus a viscosity solution.

(ii) By the definition of (—A)%u, u(t,-) € LY(RY) for all t € (0,7). As in [9,

Appendix A.2] we have Duhamel formula, thus v € L'(Qr) and it is an integral

|
)o

solution.

We claim that [|(=A)gu(t, )| oo mny is uniformly bounded with respect to e € (0, o).
Since u(t,-) € C2**+7(RN) for some ¢ € (0,min{2 — 2a,1}), then for z € RV and
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y € B1(0), |u(z +y) + u(z —y) — 2u(x)| < |Ju(t, -)HCgaH(RN)]y\QO‘*U. Thus,

lu(x 4+ y) — u(z)|
—AN)u(t, )] oo < sup / dy
H‘( ) ( )‘HL (RNV) eRN [ RN\ By (0) |y|N+2a

1 / ul@ +y) + ulz —y) = 2u(@)]
B1(0)\Be(0)

2 PR
< 2ullpn + [V dylutt )z
B1(0)
Next we claim that
E(—A) udxdt = / u(—A)¢edxdt VE €Yo r. (2.25)
QT T

Indeed, using the fact that for any ¢ > 0 there holds

u(t, z) t,x
/RN /RN x|N+g]a£( )Xe(’$ - Z’)dzdx
E(t, z
/RN /RN |Z _ x|N+;]a ( )Xe(\x — z|)dzdzx,

then we have

§(t z)(=A)ult, z)dx

) —u(t,z t,x u(t,r) —u(t, z t,z
=3 fo o [ M e s
u(t,z) —u(t,x t, z t,x
/RN/RN £|[]£V(+2a) (o)) Xe(|lz — z|)dzdz.
Similarly,

o u(t, z) — ult, 2)][E(t, 2) — &(t, )]
/RNu(t,x)( A)¥¢(t, ) /RN/RN s — [N+ Xe(|z — z|)dzdx.

Then (2.25) holds. Since u is CHU 299 in (e, T) x RN for any e € (0,T) and ¢
belongs to Ya.r, (~A)E(t-) — (~A)€(t,) and (=A)2u(t,”) — (=A)%ult,) as

€= 0 RY and (—A)2E(t ), (—A)u(t.-) € L(RN) and £(t,-), u(t,-) € LLRN),

€

then it follows by the Dominated Convergence Theorem that

lim E(t,x)(—A)u(t, x)dx = E(t,x)(—A)Yu(t, x)dx

e—0t JRN RN
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and
lim (—A)?g(t,x)u(t,m)dx:/ (—A)YE(t, x)u(t, z)d.

e—=0t JRN RN

Combining this with (2.25), and letting € — 07, we have that

€(ta) (A u(t.a)ds = [ (A€t ult,)da,
RN RN
integrating over [0,7] and by (2.14), we conclude that (2.22) holds.

(13i) End of the proof. Let u be the weak solution of problem (2.14) obtained from
(ii) with (T —t,.) = u(t,.) and
w(t,x) =u(T —t,z) (t,x) € [0,T] x RV,

Then w is a solution of (2.23) and for some o € (0,1), w is C’;;FU’MJFU(QT). On the
contrary, if w is a solution of (2.23), then u(t,z) = w(T —t,z) for (t,z) € [0,T] x RY
is a solution of (2.14), then the uniqueness holds since the solution of (2.14) is unique.
Since u € Ctl,;ro’QaJrU(QT), then (—A)%u(t,-) € CZ and then (—A)%u(t, ) is bounded,
which implies u € Y, 7. ]

Proof of Proposition 2.4. Uniqueness. Let v € L'(Qr) be a weak solution of

v+ (=A)*v =0 in Qr,

2.26
v(0,-) =0 in RV, (2.26)
We claim that v =0 a.e. in Q.
In fact, let w be a Borel subset of Q7 and 7., be the solution of
-+ (—A)*u=(_, in Qp,

u(T,")=0 in RY,
where ¢, : Qr — [0,1] is a function C}(Qr) such that
Cn = Xw in L®(Qr) asn — oo.

Then 7, , € Yo r by Lemma 2.3, and

/ v(pdadt = 0.
T

Passing to the limit when n — oo, we derive

/ vdxdt = 0.
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This implies v = 0 a.e. in Q.

Ezistence and estimate (2.20). For § > 0, we define an even convex function ¢s by

-5 i >0
o5() =3 | (2.28)

Then for any ¢,s € R, |¢5(t)| < 1, ¢s(t) — [t| and ¢f(t) — sign(t) when § — 0.
Moreover,

Ps(s) — ¢s(t) = ¢5(t)(s — ). (2.29)

Let {pin}, {vn} be two sequences of functions in C2(Qr), CZ(RY), respectively,
such that

lim |, — pldzdt =0,  lim |y, — v|dx = 0.
n—oe Jo.. n—oo JpN

We denote by u, the corresponding solution to (2.14) where p,v are replaced by
ln, Vn, Tespectively. By Lemma 2.2 and Lemma 2.3(i4), u, € Cii0’2a+o(QT) N
LY(Qr) and then we use Lemma 2.3 in [15] and Lemma 2.3 (i) to obtain that for
any 0 > 0and { € Yo 1, £ >0,

o5 (up)[—0E + (—A)¥¢]dxdt + / (T, 2)ps(un (T, z))dx
Qr RN

= 0 §[8t¢5(un) + (_A)a¢5(un)]dxdt + fRN 5(07x)¢5(yn)dx

< EQ%5(un) [Opun + (—A)Yuy]dadt + / £(0,2)ps(vy)dx
Qr RN

~ [ cohtumdzdt+ [ €(0.0)05()da.
Qr RN

Letting § — 0T, we obtain

/ [un [0 + (—A)¥E]dxdt + /]RN (T, z)|un (T, x)|dx

< {sign(un)undaﬂdt—i—/ £(0,2)|vp|dx.
Qr RN

(2.30)

Let mi be the solution of

-+ (—A)*u =g in Qp,

2.31
w(T,)=0 in RY, (2:31)
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where ¢, : Qr — [0,1] is a CF function such that ¢, = 1 in (0,T') x By (0). From the
proof of Lemma 2.3, (¢, ) := np (T — t, z) satisfies with (¢, x) = (T — t, )

du+ (—A)u=g in Qr,
uw(0,-) =0 in RV,

By Lemma 2.2, 7 € C;;FU’2Q+J(QT) with some o € (0,1) and

N
s—t)
0 < i(ta) < / / dyds
RN1_|_|S_t ( —x)|N+2a

<
= 08/ /RN 1+ rz\Nm
013

Taking £ = 7, in (2.30), we derive that

/ [Un|X (0,7)x By (0)dTdt < CI3T/
Qr

Then, letting k£ — oo, we have

/ |up |dxdt < ClgT/ \,un]dxdt—i—clgT/ |vp|dz. (2.32)
T Qr RN

| pon |dzdt + ClgT/ |vp|d.
RN

T

Similarly,

/ [tn, — U |dz < ClgT/ |ttn, — pomn |dadt + ClgT/ |Un — v |de. (2.33)
T Qr RN

Therefore, {u,}, is a Cauchy sequence in L'(Qr) and its limit u is a weak solution
of (2.14). Letting n — oo, (2.20) and (2.19) follow by (2.30) and (2.32), respectively.
The proof of (2.21) is similar. O

Remark 2.2 Other classes of uniqueness of solutions of the fractional heat equa-
tions exist. In [2] it is proved that any positive strong solution u € C([0,T) x RY)
can be represented by the convolution integral defined by

RN
where )
Pi(e) = et el
t2a

However the fact that u € L'(Qr) is a part of the definition of strong solution
therein. Furthermore, the notion of weak solution used in this paper differs from
ours.
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3 Proof of Theorem 1.1

If h(t,.) is monotone nondecreasing, for any A > 0, I + Ah(¢,.) is an homeorphism
of R and the inverse function Jy(t,.) = (I + Ah(t,.))"! is a contraction. We define
the Yosida approximation by

EPND

ha(t,.) 3

(3.1)

The function hy(¢,.) is monotone nondecreasing, vanishes at 0 as h does it and it is
%—Lipschitz continuous. Furthermore

rha(t,r) T rh(t,r) as A — 0, Vr e R, (3.2)

see [5, Chap 2, Prop. 2.6]. If u is a real valued function we will denote by h o and
hy o u respectively the functions (¢,z) — h(t,u(t,z)) and (¢,x) — hy(t, u(t,x)).

Lemma 3.1 Assume that h satisfies (H)-(i), A > 0 and ¢ € L*(RY). Then there
exists a unique solution ug of

du+ (—A)*u+hyou=0 in Q,

w(0,-)=¢ in RNV, (3:3)

Moreover,

Ha[¢] = Halhr o Hald1])] < ug < Ha[g] — Halha o (~Halp-])] in Qr, (3.4)

where ¢+ = max{0, ¢} and

lug(t,.) = uy(t, )l < ll¢ =l VI<p<oo (3.5)

(i) up >0 if ¢ >0 in Q;

(1) the mapping ¢ — ug is increasing.

Proof. Existence is a consequence of the Cauchy-Lipschitz-Picard theorem (see [11,
Chap 4]): we write (3.3) under the integral form u = T [u] = Hy[¢] — Halhy o ul, i.e.

t
Tlu)(t,.) = Ha[o)(t,.) — /0 He [hx o u](t — s,.)ds. (3.6)
The space C([0,00); L' (RY)) endowed with the norm
Jeolle—rr = sup {e ™ (e, )2+t > 0},
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(k > A1), is a Banach space. Since u ~ hy(t,u) is %—Lipschitz continuous, the

mapping 7T is )\—lk—Lipschitz continuous in X,,. Thus it admits a unique fixed point

ug which is an integral solution of (3.3).

ug(t,.) = Halo](t,.) — /0 Halhy 0 ug)(t — s, .)ds. (3.7)

The semigroup {Ha[.](t,.)}:>0 is analytic in L'(RY) since it is generated by the
fractional power of a closed operator. It follows from the classical regularity theory
for analytic semigroups as exposed in [20, Sec 6] that uy is a strong solution of (3.3).
Since it is continuous, it is also a weak solution in the sense that

/ (ug[—0rE + (—A)*E] + Ehy o ug) ddt

T

= £(0,2)p(x)dx — (T, x)uy(T, z)dx VEeYqr.
RN RN
(3.8)
If ¢1,¢2 € L'(RY) and ug, are the corresponding solutions of (3.3), it follows from
the positivity of H, that
1
(g, = ug,)+ < (Halln 0 ugy = hooug, )+ < S Hal(ug, —us,)+]-

Therefore,

N P O N s P

and by Gronwall inequality
[ (s (8) = gy (D)4 1 < €3 I(92 = 61)-+|1s-
This implies (i) and (ii). As a consequence,
—Halp-] < —up_ < ug Sug, < Halo4]

and thus

hy o (=Ha[p-]) < hyo(—ug_) < hyoug < hyoug, < hyoHlpy].
Jointly with (3.7) it yields (3.4). 0
Notation. In the sequel, if n € L}(Q,) and 7 > T, we denote by &n,r the solution
i 0L+ (-AE =0 n Qs o)

&(r,.) =0.
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If n > 0, then &, - > 0; if n € CEP(RN ), then n € Yo -5 if m, = n(3), where n € N,
and 7 € C§°(RVNT1) is nonnegative, 0 < < 1, with value 1 on B; and 0 on B,
then &, » T 7—1tasn — oo.

In the next lemma we prove that we can replace h) by h.
Lemma 3.2 Assume that h satisfies (H)-(i) and ¢ € L*(RY). Then there exists a
unique solution uy € C([0,00); LY(RY) of

du+ (—A)*u+hou=0 in Q,
(3.10)
u(0,-) =¢ in RV,

Moreover inequality (3.5) and statements (i) and (ii) in Lemma 3.1 hold.

Proof. We denote by u) 4 the solution of (3.3).

Step 1- A priori estimate. Let ¢ > 0. If we take £ =&, - in (3.8) and let n — oo,
we derive

/ (ung + (T = t)hy o uy ) dedt + (17 — T)/ upo(T,x)de =1 (z)dz. (3.11)

T RN RN
For 0 < A < X we set w = uyg — un,g. It follows from (2.21) and inequality

hy ouy g < hyowuy g, that for any nonnegative £ in Y, 7,

/ (wi[=0& + (—A)*E] + & (hy o urg — hy 0wy g) sign, (w)) dadt

T

< / w4 (h)\/ OuUN p — h)\ o U)\/7¢) dxdt — / §(T,x)w+(T,x)dx,
T RN
Since h)(t,.) is nondecreasing, we derive

/ Wi [—0& + (—A)*€dwdt <O VEE Yar, £ 0.

T

Ifne Cgo(]RNH) is nonnegative, then &, € Y, 7, & > 0 and

/ wyndxdt = 0.
T
This implies uy ¢ < uy/ 4.

Step 2- Truncation. We replace ¢ by ¢, = inf{¢,n} for n € N, and denote by uy 4,
the corresponding solution of (3.3). By Step 1, the sequence {uy 4, } x>0 is decreasing
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and it converges to some nonnegative ug, when A | 0. Therefore hyouy ¢, — houg,
a.e. in Q. It follows from (3.11) and Fatou’s lemma that

/ (us, + (7 — ) o g, ) dadt + (r — T)/

T RN

ug, (., T)dx =1 RN(;Sn(x)dx. (3.12)

Since 0 < uy ¢, < n, then 0 < hyouyg, < houyg, < h(n) by (3.5). If EC Qr is
a Borel set,

/h)\ o U)\7¢nd$dt < h(’I’L)|E|
E

By Vitali convergence theorem hy ouy 4, — houg, in LY(Qr). Therefore, we can
let A — 0 in identity (3.8) and conclude that ug, is a weak solution of (3.10) with
initial data ¢,.

Step 3- Exzistence with ¢ bounded. 1f ¢ = ¢ —¢_ € LY(RY), set ¢4, = inf{p,,n}
and ¢, = inf{¢p_,n}. We denote by uxg¢, ., s, ., ur—¢_, and u_g_ the corre-
sponding solutions of (3.3) and (3.10). Then

UN—¢—in S Uhdyn—¢-n S Uhdyn
which implies (3.13)
hy o Un—p_ ., < hy o UNyp—pom = hy o Uy
Estimate (3.11) is valid under the form

/ (u&m,n + (1T —t)hyo U,\,¢+’n) dzxdt
' (3.14)

+ (1 — T)/RNU)MWW(.,T)dx = T/IRN¢+,n(x)dx.

and

/ (u%—m,n + (1T —t)hyo u)\7_¢,7n) dzxdt
: (3.15)

+ (17— T)/RNUA7_¢’n(‘,T)d:E = —7 RN¢,7n(x)dx.

Since hy ouy e, , and hyowuy _4_ , are bounded in L'(Qr) independently of A and
n, hxowuxge, ,—¢_, inherits the same property. Since

Ungy p—¢_n = Halp+n — ¢—n] — Halhaoung, ,—o_ .,

it follows from [20, Sec 6] that wuy 4, ,—¢_, remains bounded in the interpolation
space Y7 := LY([0,T]; D(A1)(RN)) n W*1([0,T]; L* (RN)), for any s € (0,1), where
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D(A;) is defined in (2.4). Although a bounded subset K of Y] is not a relatively
compact subset of L'(Q7), for any ball B c RY, the set of restrictions to B of
functions belonging to K is relatively compact in L*((0,T) x B). Thus, there exists
a subsequence {\} such that {uy, ¢, ,—¢_,} converges a.e. to some function U,.
Furthermore {hAk o u)%m’n,d)_’n} converges a.e. to h o U,. Since the sequences

{Un =6 P> L8NG m FAes 1PN, OUN, —_ F 2, and {hy, ouy, 6, , }, are convergent
in L'(Qr) they are uniformly integrable. Because of (3.13) the same property is
shared by the two sequences {ux, ¢, ,—¢_., tr, and {hx, our, 6, . —6_, }r,. Letting
Ak to 0 in the identity

t
UNg, ¢4 n—P—n (t7 ) = Ha[¢+,n - (b—m](tv ) - /0 Ha[hkk o U’)\k,tb-q-,n*(b—,n](t - S, ')ds
(3.16)
yields

t
Un(t.) = Haloin = -n)(6,) = [(Bulbo Ut —s,0ds. (317)
0
This implies that U, is an integral solution, thus a weak solution of (3.10) with
initial data ¢4, — ¢—,, = sgn(¢)inf{n,|p|} and then U, = uy,.
Step 4- Eristence with ¢ € L'(RY). By Kato’s inequality (2.20), we obtain that

/ (Jtgy, = g [(—=06E + (=2)%€) + E|h o ug, — howug,|) dedt
Qr
+/ [ugy (T, 2) = ug,,, (T, 2) E(T, 2)dx s/ €0, 2)|¢r — dmldz,
RN RN

for m,k € Ny and £ € Yo 1, £ > 0. Taking £ = &, - as in (3.9) and letting n — oo
yields

T

= T) [ i () = g, (T)lde < 7 [ |60~ Gulda.
RN RN
(3.18)
Since {¢y,} is a Cauchy sequence in L*(RY), {uy,, } and {howuy,,} are also Cauchy
sequences in C(0,7; L*(RY)) and L'(Q7) respectively. Set U = lim, o0 g,,, then
it satisfies

/ (U[=0i£ + (—A)*¢] + Eh o U) dadt

= £(0,2)p(x)dx — T, x)U(T, x)dx VéeYar,
. . (3.19)
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and it is also an integral solution of (3.10). Thus u, € C([0,00); L1 (RY)).

Finally, we end the proof of uniqueness which is a consequence of the inequality
below

/(|U—U’|+(T—t)|hoU—hoU'|)dxdt
' (3.20)

— ) — ! . d _ ,d
Hr=T) [ @) U@ <7 [ Jo- ol

valid for two solutions U and U’ of problem (3.10) with respective initial data ¢ and
¢, the proof of which is the same as the one of (3.18). Notice also that statement
(i) and (ii) as well as inequality (3.5) follows by the above approximations. O

Remark 3.1 By the same method it can be proved that for any p € (1,00) and ¢ €
LP(RYN) (resp. ¢ € Co(RY)) there exists a unique solution uy € C([0,00); LP(RY))
(resp. ugy € C([0,00); Co(RYN))) solution of (3.10). Purthermore (3.5) holds.

Proof of Theorem 1.1. Euxistence for v > 0. We consider a sequence of nonneg-
ative functions {v,,}, C C2(R") such that v, — v as n — oo in the weak sense of
bounded measures, i.e.

lim Cvpdr = [ Cdv V¢ € CRY) N L®(RY). (3.21)
RN

n—o0 RN

It follows from the Banach-Steinhaus theorem that ||v,[|ons g~y is bounded inde-
pendently of n and we assume that [|vp ||one@yy < 2[[V|logps (ey). By Lemma 3.1, we
denote by wu,, the corresponding solution of (3.10) with initial data v,,. Then w,, is
nonnegative and satisfies that

0 <wuy, =Hay[vn]) —Halhouy,| <Hplvn] in Q. (3.22)
Jointly with (2.7) it implies
ol gy < €5 ey (323

We have also the following estimates from (2.9) and (3.12)

Uy (t,7) < Halvn)(t,7) < 2e5t™ 2 |[v|lgmany,  V(t,2) € Qr (3.24)
and
/ (uy, + (1 —t)h oy, ) dxdt + (1 — T)/ Uy, (., T)dx = 7'/ Vp(x)dz
T RN RN

(3.25)
< 27([v[| g vy -
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As in the proof of Lemma 3.2-Step 3, using the regularizing properties of the semi-
group Hy[.](t) (see [20, Sec 6]) we infer that there exists a subsequence {u,,, } which
converges a.e. in Q7 to some function U and {h o Uy, } converges a.e. to hoU.

For £ > 0, we denote S, = {(t,2) € Qr : |up, (t,2)] > r} and w(k) = [ tPdadt.
Then for any Borel set £ C Qr

//hou,, dmdt<// hou,,n d:vdt—l—// how,, dxdt
E Eﬂ{uun <k} ENSk .
<g(k // tPdadt + // tﬁg(u,,nk)dxdt
/{)// tPdxdt —/ g(s)dw(s),
E K

| atorats) - hm/

By (2.1) and (3.23), w(s) < ci4s P, thus
M s=M M
- [ atate) = = [t |+ [l

S=K

where

M *
< g(R)w(r) — g(M)w(M) + 14 / sPhdg(s)

K

ca (M
/ s Pag(s)ds.
K

+
pz}+1

*

Since limps_oo M P5g(M) = 0 by (1.12) and [15, Lemma 4.1] and w(s) < cius 5,
we derive g(k)w(k) < c146 PPg(k) and then

_/:O g(s)dw(s) < -4 /ws—l—pég(s)ds.

B+1

The above quantity on the right-hand side tends to 0 when x — oo. The conclusion
follows: for any € > 0 there exists £ > 0 such that

C14 /OO sflfpgg(s)ds < €
p+1Js -2

and there exists § > 0 such that

/ tPdudt < § = g(n)/ tPdwdt < <.
E E 2
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This means that {hy, o u,,, } is uniformly integrable in LY(Qr) and by Vitali con-
vergence theorem hy, 0wy, — hoU in LY(Qr) . Letting nj, — oo in the identity

Uy, (t,.) = Ha[vn (¢, ) — /0 Halh 0wy, (s, )|(t —s,.)ds

for some ¢ > 0 such that w,, (¢,.) = U(t,.) a.e. in RV yields

U(t,.) = Ha[v](t,.) — /0 Ha[h o U(s,.)](t — s,.)ds.

This is valid for almost all ¢ > 0 and implies that U € C([0,T]; L*(RY)), up to a
modification on a set of ¢ > 0 with zero measure. Moreover

/ (uk (=0 + (=A)€) + Eh o uk) dzdt

- S(O,x)ynkdx - / ank (T,$)§(T,x)dx
RN RN

where £ € Y, 7 is arbitrary. Thus, using the continuity of ¢ — U(t,.) in L*(RY), we
derive

/ (U(=0& + (—A)*) + Eho U) dadt
= [ £(0,2)dv(z) - / U(T, 2)&(T, 2)da.
RN RN

From this we infer that U is a weak solution of (1.1).

Euzistence for general v. For v € MP(RY), a sequence {v,,} in CZ(RY) converge to
v in the weak sense of bounded measures. Because of the monotonicity of h(t, -),

—Ha[[vnl] < U]y, | < Uy, S Upy,| < Ha[lval]-

Then by above analysis, the sequence {h o u_y, )} and {howuy, )} are relatively
compact in LY(QF) for any T > 0 and ball B and (3.23) holds for {u,, }. Therefore
{u,,} is relatively locally compact in L'(QZ) and there exist some subsequence
{uy,, } and U € LY(Qr) such that

uyk%Uzhouynk%hoU as k— oo ae. in Q.

n

As in the previous case it implies that U is a weak solution of (1.1) and also an
integral solution.

27



Uniqueness. Let uy,us be two weak solutions of (1.1) with the same initial v and
w = uy — uy. Then

ow+ (—A)*w=houy —howu; in Q.

Since houg — howuy € LY(Qr), then by (2.20), for £ € Yo7, € > 0, we have that

/ w|[—04€ + (—A)E|dwdt + / (T, 2)|€(T, ) dadt

T RN

+/ (houg — howuy)sign(w)édxdt < 0.
T

This implies w = 0 by monotonicity.
Statements (i) and (i) and inequality (1.14) follows from the fact that the same
relation holds for u,, by Lemma 3.2.

Stability is proved by the same approach that existence. If {v,,} converges to v in
the weak sense of measures, then ||, |lgp is bounded independently of n. Since the
distribution function of how,, depends only on the supremum of ||v,||ons, this set of
functions is uniformly integrable in Q7. This, combined with local compactness of
the set {u,, } in L'(Qr), implies the convergence of a subsequence (Up, » howuy,, ) to
(uy, h owuy,) where u, is the solution of (1.1). Because of uniqueness, all converging
subsequences have the same limit, which imply the convergence of the whole sequence
and stability. O

4 Dirac mass as initial data

In this section, we study the properties of solutions to (1.1) when h(t,r) = t?rP with
B>—-land 0<p< pj; and the initial data is v = koo with k > 0.

Proposition 4.1 Assume 0 < p < ps and that uy is the solution of (1.15), then
there exists c¢i5 > 0 such that

N
lim #2euy(t,0) = 15k 4.1
Jim ug(t,0) = ci5 (4.1)

Proof. By (1.14) it follows that
ug(t,0) < kHg[00](t,0) = kL (t,0), t>0. (4.2)
We claim that there exists cjg > 0 independent of k£ such that

we(t,0) > kT (£,0) — kPt 2aPTH8 ¢ € (0,1/2). (4.3)
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Indeed, from (1.14), it is infered that
u(t,0) > kL' (t,0) — KPW (¢, 0), te(0,1/2),

where

W(t,x) = /0 Ha[sﬁ(Hg[éo]](t — s,x)ds, (t,z) € Quo-

For t € (0,1/4), there exists ¢17,c18 > 0 such that

N B _N p
tO <Cl7// t—S) 8 il dyds
BN L (1= 5) 73y \ 14 (573w |y )N 420
N

- / / sP=3aPdzds
Cc17
(N+2a)
RN < (t= S)i|z|) p) (1 + |2|N+2a)

B+ _Np deZ
< cy7t 2a
o JrN It (N+2a)p N N

14+ (T) 2a ’Z’( +2a)p (1 + ’Z’ +2a)

Np
< epstPtiTza

Combining (1.19) and —&£p+ 1+ 8 > — £ we obtain that

2a7

lim ¢2« W (t,0) = 0.

t—0+
Therefore, (4.1) holds. U
In what follows we consider the limit of the solution {ux} of (1.15) as k — oo
for p € (0,1].
Proposition 4.2 Assume 0 < p <1 and that uy, is the solution of (1.15), then

Iim up =00 in Qu,
k—00

locally uniformly in Q.

Proof. We observe that H,[] and H, [t? (H,[0])P] are positive in (0, 00) x RY. By
(1.14), for p € (0,1) and (t,x) € (0,00) x RV, we have that

U > /{?Ha[50]—/{3pW:> lim up, = 00

k—o00
For p = 1, it is obvious that uz = kuj and u; > 0 in (0,00) x RY, then

Iim up =00 in Qoo
k—r00

The proof is complete. O
Now we deal with the range p € (1,pj).
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Lemma 4.1 Assume 1 < p < pj and that uy is the solution of (1.15). Then for
any k > 0,

0<u, <U, in Qu, (4.4)
where U, is given by (1.21).

Proof. Let {f,x} be a sequence of nonnegative functions in C}(R™) which con-
verges to kdg in the weak sense of measures as n — oo. We denote by u, the
corresponding solution of (1.17) with initial data by f, k.
We claim that

Unk <Up in Qoo (4.5)
where, we recall it, U, is the maximal solution of the ODE ¢ + tBy? = 0 on R.
Indeed this implies (4.4).
Step 1. We claim that

lim w, ,(t,z) =0, vt > 0. (4.6)

|x|—o00
From [13, 17], there exists cg > 0 such that for any z,y € R and ¢ € (0, 00),
Cgti%

0<Ta(t,z—y) < .
’ 1+ (| — ylt~2e)N+20

Then for |z| > 1,
fn,k:(y)

| — |t~ 2 )N+2a

0 < Halfurl(td) < cst 3 /
RN 1+ (

1
fog(z — 2t2a)
® Jav 1+ |2|Nt2a

1 1

xr — zt2a x — zt2a
= cg / —fn’k( N+2a)dz+ —fn’k( N+2a)dz ,
RM\Bp 1+ 2] By 1+I[2]

where R = %|x|t7i and Br = {z € RY : |2| < R}. It is obvious that

|z — zt%] > |z| — ]z\tﬁ > |xz|/2 for all z € Bg.

Then
1
In k(x - Zt%) 1
——————dz < sup fpi(y) ————dz
by L+ oy Ina®) [ T TR
1
< su ————dz
N |y\>l\)ﬂ Fnil0) /]RN 1+ |z NH2e
=3
= (16 Sup fn,k(y)
ly|> 121
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and

1
[z — 2t2) / ankHLOO(RN) 9 c1st
————dz < 2 dz < cigRT* = 7
/RN\BR 1+ [o|V420 7 = Jgnip, 1+ [o[NF20 7 =708 EE

for some c13 > 0 independent of z,t and R. Since f,, € C}(RY), we have that

lim sup fpr(y) =0

|z|—o00 B
|y‘27

and then for any ¢t > 0, 0 < u, (¢, z) < Hy[fni](t,2) = 0 as |z| = oco.

Step 2. We claim that (4.5) holds. By contradiction, if (4.5) is not verified, there
exists (tg, o) € (0,00) x RY such that

(Up = un,i)(to, zo) = (M)E%{QVRN(U;) = un)(t,7) <0,

since Up(t) > 0 = lim|y| 00 Unk(t, ) for any ¢t € (0,00), Up(0) = o0 > fur(z) =
£ (0,2) for x € RY and limy—,e Up(t) = limy o0 un k(t,2) = 0 for z € RY. Then
0y (Up — up i) (to, xo) = 0. Moreover,

(Up — tn ) (to, x0) = min{U,(to) — un k(to,z) : € RV}
= Up(to) — max{u, x(to, ) : * € RV}
and
Un i (to, o) = max{un, x(to, z) : © € RN} = (= A)%up i (to, 20) > 0

Then
0 = 9,(Up — i) (to, 70) — (—A)“up i (to, 70) + tgUP (to) — tou? ;. (to, o) < 0,

which is impossible. Thus (4.5) holds. O

Proposition 4.3 (i) Assume 0 < p < pj and that uy is the solution of (1.15).
Then uy is a classical solution of (1.17).

(ii) Assume 1 < p < ps and that us is defined by (1.16). Then us is a classical
solution of (1.17).

Proof. (i) Since uy < kH,[dg], it is infered that uy is bounded in (e,00) x RN for

¢ > 0. Let {g,x} be a sequence of nonnegative functions in C(RY) which converges
to kdg as n — oo and uy, ;, the corresponding solution of (1.17) with initial data gy, k.
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Then Hy[gn 1] — kHa[6o] as n — oo uniformly in [¢,00) x RY for any € > 0 and by
the Comparison Principle, there exists c19 > 1 such that

0 < upi(t,x) < kHylgnx] < crokHa[6] in [e,00) x RY,
and there exists o € (0,1) such that {u, } are uniformly bounded with respect to n
in th_‘;’a((e, 00) x RY) with € > 0. Therefore, by the Arzela-Ascoli theorem, u, ; con-

verges to uy in Cﬁ_g’o ((e,00) x RN) with o’ € (0,0) and then wy, is a viscosity solution
of (1.17) in (e, 00) x RY. By estimate (A.1) in [9], uy is in C’;:O,’Qa+0/((e, o0) x RY)
and wuy, is a classical solution of (1.17) in (e, 00) x RY.

(ii) The proof is the same as part (i), just replacing uy, < kHq[0p] by teo < Up. O

5 Self-similar and very singular solutions

By Theorem 1.1 and (4.4), we see that {uy} is an increasing sequence of nonnegative
functions bounded from above by U,. Then for p € (1, p’g), there exists uq =
limy,_, oo ug, which is a classical solution of (1.17) by Proposition 4.3 (ii) and satisfies

Uso < Up in Q. (5'1)
Proposition 5.1 Assume 1 <p < p’g, then uoo 15 a self-similar solution of (1.17).

Proof. For A > 0, we set

2a(143)

Ta[u](t,z) = X =1 u(A\*%, Az), (t,x) € Q-
It is straightforward to verify that T[ug] is the solution of

Opu + (—A)%u + thuP = 0 in Qoo,

2a(146) _ ,
Nk50 in RV,

u(0,.) =X »-1 (5:2)

Because of uniqueness, T)\[ug] = ¢ 2a(148) v Letting k& — oo and using the conti-
kX =1

nuity of u — T)[u|, we have that

lim T\ [ug] = T [tuoo] = Uoo,
k—o0

which implies that u« is a self-similar solution (1.17). O

Let us denote
Uso(2) = uxo(1, 2), zeRY,
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1
then Uy is a classical solution of (1.20). It is clear that the constant (%)F is
a constant positive solution of the self-similar equation (1.20). We observe that
N<W<N+2awhen1+2%(r;£) <p<1+w.

We prove below this fundamental result that w., is the minimal self similar
solution.

Proposition 5.2 Assume that 1 <p <1+ w and U s a positive self-similar
solution of (1.23). Then us < .
Proof. For any r > 0, we have that
_ 148
/ u(t,x)de = t r-1 ﬁ(l,t*im)daﬁ
+(0) B (0)
_ 4B, N
— ¢ p-1t2a (1, 2)dz
B_1 (0)
t 2ar
148, N
> t it (1, z)dz
B1(0)

— 400 ast—0T,

where last inequality holds for ¢ € (0,72%]. Let {e, } be a sequence positive decreasing
numbers converging to 0 as n — oco. For €, and k& > 0, there exists ¢, > 0 such

that
/ Wty k, x)de = k.
Bﬁn (0)

We observe that for any fixed k, ¢, — 0 as n — oo since lim, o€, = 0. Let
no : RY — [0,1] be a C? function such that suppng C Bz2(0), 70 = 1 in B1(0) and
nn(z) = no(e,1z) for x € RY. Choosing {f,.} be a sequence of C? functions such
that

0 < for(z) <nu(z)a(t,k, ), Vo € RY

and
fnk — kdo as n — oo.
Let u,  be the solution of (1.1) with initial data f, s, then
Un k() < ultyr +t, ), V(t,z) € Qoo

and by uniqueness of wuy, lim,_o0 Uy = ug, where wuy, is the solution of (1.1) with
initial data kdg. Then for any k, we have up < @ in Qoo, which implies that

Uso < U I Qoo
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2a(14-8) (1+B)
5.1 Thecase 1+ 552 <p<l+

We define the function wy by

Q

wy(t,z) = At = w(t™ 2oe|3:|) (t,7) € Qo, (5.3)

In(e+s2
where w(s) = 1+(5N+2f)1'

Lemma 5.1 Assume 1+ 2%(41_;5) <p<l+

that for A > Ag,

(1+ﬁ)

, then there exists Ag > 0 such

Oywy(t, x) + (—A)%wy\(t, x) + tﬁwﬁ(t,x) >0, V(t,z)€ Qoo (5.4)
Proof. By direct computation, we have

(1+ﬂ) = PSS A 1481y
2c

and s

(—A)wa(t,@) = M1 (= A) w(t 3 ]a]),
which implies

dwy(t, ) + (—A)wy (¢, ) + tPul (¢, x)

_ 148 1 1 5.5
At [(—A)O‘w(S) - %w'(S)s - erffw(S) +)J’_1wp(8)} ; >
where s = |z| with z = 20 1. Next, for s > 0, we have
1 (s) 1+4 w(s) N +2a sh+2a 1+8 s%(e+s?)7! ()
——w'(s)s — ——w(s) = - - s
2 p—1 200 1+sN+2 p—1  aln(e+ s2)
Since NQLO?O‘ > ;—FT[;, hms%w% = 1 and llms%wm = 0, there exists
Ry > 0 and o¢ > 0 such that
1, 1+
S _-F > > Ry. .
5 (s)s - 1w(s) > oow(s), Vs > Ry (5.6)

For |z| > 2, and using the definition of the fractional Laplacian, we have

—(=A)w(|z]) = 1 / In(e + |z + g/*) + In(e + [z — g|*) _ 2In(e + [2]%) dy
2 1+ ’Z + g’N-{-Qa 1+ ’Z _ g’N-{-Qa 1+ ’Z‘N"'ZO‘ ’g‘N—f—Za

w(lz]) / L:(y)

T2 Jp y[V 2

(5.7)
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where
L(y) = 1+ [o V2 In(e + |2*[ez +yI)
T T N 2ale, + yN 20 In(e + |2]2)
1+ [z|VH2e In(e + |z[%e. — y|?)
1+ [z[N+2a]e, —y|NF2a In(e + |2[?)

-2

_l’_

and e, = |—§|
We claim that there exists cog > 0 such that

z(y) €20
dy < . 5.8
Ayeﬂm@JWWHa w(lz) ¥ .

(S

In fact, for y € Bi(—e,), there exists co; > 0 such that
2

Lt oM Infe+[2Ple. —yl*) _
1+ [o|N+*2ale, —y[N¥20 e+ []2) — 4
and then
1
/ L) 40 o / L+ M2 Inet [2Pr®) noyp o
By (-es) |ly|[ N2 = o L+ (lzlr)N+2 In(e + [2]?)
WN /OO thlln(e—l—tQ)dt%_C
= w(EDREN Sy T N
C23
w(|z|)|z|V’

where cg2,c23 > 0 and the last inequality holds since w(|z|)|z|Y — 0 as |z| — oo.

Thus,
1. (y) / L(y) Ca3
dy = dy < —2
L#@MMM 5y ey WY S WD

We claim that there exists coq > 0 such that

/ Iz(y) dy S C24. (5.9)
B

%(O) ’y N+2«

Indeed, since the function I, is C? in Bi1(0), I.(0) = 0 and I,(y) = I.(—y), then
2
VI.(0) =0 and there exists ¢34 > 0 such that

ID’L(y)l <25 Vy € Bi(0).
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Then we have

which implies

2

L(y) ly[?
v dy < 025/ Tivs Ay < coa.
/B%(O) |y| V2 B, (0) [y|N T2

We claim that there exists cog > 0 such that
L.(y)
/A Wdy < ¢26; (5.10)

where A = RN \ (B1(0) U Bi(e;) U Bi(—e)). In fact, for y € A, we observe that
2 2 2
there exists ca7 > 0 such that I,(y) < co7 and

Iz(y) / Ca7
dy S T INLoA S €28,
/A |y| N2 RV\B4 (0) |y[ V2

for some cog > 0. Therefore, by (5.5)-(5.10), there exists ca9 > 0 such that

o 29
(=A)%w(|z]) > TTE N 2| > 2. (5.11)

By (5.6) and (5.11), there exists Ry > Ry + 2 such that for |z| > Ry,

r 1+8 €29
(=A)%w(|z]) — 2 (IzDl=] = pj (Iz]) = oow(|z]) — W
_ 9
~ (- )
> 0.
When |z| < Ry, it is clear that there exists ¢3g > 0 such that
1 145
_A)° ! Sl > _ex0.
(=A)%w(|z]) = 5-w(|z])]=| P (Iz]) = —es0
Then there exists Ag > 0 such that for A > Ag,
1 1
(A w(lz]) — e ()2~ D wlel) + WPl 20, vz RV, (512
! p—
which, together with (5.5), implies that (5.4) holds. O

Next we prove that us is not a trivial flat solution when 1 + % <p< pZ}.
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Lemma 5.2 Assume 1+ % <p<l+ &]\fﬁ), that wp, is giwen in (5.3) and

Uso 1S given in (1.16). Then

Uoo (t, ) < wp, (L, x) V(t,x) € Qoo (5.13)
Moreover,
2ynéuoo(t, ) =0 wuniformly on B, Ve > 0. (5.14)
-y
Proof. Let us denote
koln(e + 72
fo(r) = W, Vr>0 and fox(x) = kn® fo(n|z]), Ve eRY,
where .
®In(e+7r%) Ny 1.1
]{?0 - [WNA m?" dr .

Then for any 1 € C.(RY), we have that

. . x
Jim /RN funde =k lim /RN Jo(lz)n <E) dz = kn(0).

Let t,, = n~2 and then

_ L
Ly g (et (et 2000 In(e + (nfe])?)
Wpy(tn, ) = Aotn —T = T (n]z)N+20
1+ (t, > |z])N+20
Ay 22048
= 20,5 NanO(n]x\)
ko
AO _20048)
> i n™ fo(nlz]) = fok, (@),
_ _22048) N _22048) N
where n < n and ki = Agn »—1 . We see that ki = Ao 1 — 00 a8

n — 00, since % — N > 0. Let u,,, be the solution of (1.17) with initial data

frk,- By Lemma 5.1, wa, (- + ty,-) is a super-solution of (1.17) with initial data
W, (tn, ), that is, for (t,z) € Q,

W (t + tn, ) + (—A) WA (L + @) + (t+ o) Wk (t + tn, z) > 0.
By the Comparison Principle,
Un ks (£, ) < wpy(t+ty, x), V(t,z) € Qoo,

for any n < n. Letting n — oo we infer

ug, (t, ) < wp,(t,x), V(t,x) € Qoos (5.15)
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where uy, is the solution of (1.17) with k;dp initial data. Thus (5.13) is obtained
by letting 7 — oo. Finally (5.14) follows by the fact that

lim wp,(t,z) =0, vz € RV \ {0},

t—0t

which completes the proof. O

Lemma 5.3 Assume 1 <p < P, then there exists cs1 > 0 such that

-

1+
csit Pt

@

Uso(t, ) > Y(t,z) € (0,1) x RY. (5.16)

14 |fix|zv+2a’

Proof. We divide the proof into two steps.
Step 1. Let op =1+ — %(p —1) >0, n(t) =2 —1t° for t > 0 and denote

Ue(t, x) = En(t)ra(t’ :C),

where I'y is the fundamental solution of (1.17). In this step we prove that there
exists €y > 0 such that
Ug, > v, in (0,1) x RY, (5.17)

where ko = 2¢p and uy, is the solution of (1.17) with initial data kodp. Indeed,
Opve(t, ) = enf ()T a(t, ) + en(t)OTa(t, z)

and
(—=A)%(t,z) = en(t)(—A)* T (t, x).

Let I‘l(fix) =T.(1, fix), then there exists ey > 0 such that for any € < ¢y and
(t,xz) € (0,1) x RN we have that

Ave(t, ) + (—A)ve(t, ) + PP (¢, )
— e ()t 2Ty (t2a x) + PP ()t 2P AT (¢ 20 1)

< —eogt ™2 OO (t7 20 1) + PPt 2P TR (20 1) < 0

the last inequality holds since —% — 1409 = —%p + f and I'7 is bounded. In
particular, there holds

Oyve, (t, ) + (—A) %, (t, ) + tﬁvfo (t,x) <0, V(t,z) € (0,1) x RV, (5.18)
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Let fn(2) = ve, (tn, z) with ¢, = n~2%. Since lim,_,o+ 1(t) = 2, then we have that
frn — 26009 as n — oo in the weak sense of measures. There exists Ny > 0 such that
t, € (0, %) for n > Ny. Let w, be the solution of (1.17) with initial data f,, then it
infers that

Wy (t,x) > vy (t+ ty, ), (t,x) € (0,1 —t,) x RY.
Because uy, is uniquely defined, there holds
Wy, —> U, AS M — 00 in (0,1) x RY

and
lim v, (t + tn, ) = v, (t, ), V(t,z) € (0,1) x RY,
n—o0

which imply (5.17).
Step 2. We claim that (5.16) holds. Since

Vey(t, ) > ot 2Ty (t"2a2),  (t,z) € (0,1) x RV,
then, along with the relation T)[ux] = u 200+s ,, we observe that for any A > 0,
kX p—1

2a(1+8)

U 24 tx) = AN 1w (A2 A\
ko)\QT(ljlﬂ_N( ) ko( ’ )
2a(14-8) 2%
> X Ly, (AN, Ax)
20(1+8)
> A 1 ViR ().
1 1
20a(148) N _1+8 N _118
Let o=\ »1 N, to = (20) %6 ~5=T and T, = Q?%_PTT, then

0<t,<Ty—0 as p— oc.

For (t,z) € (t,,T,) x R, we have that

1+

=)

Upgo(t, ) > coot 2Ty (¢ %) > %Ot_ﬁn(t_% ),
then e 1as )
Uno (t, 1) > Eofﬁrl(t*%x), V(t,z) € (ty, T,) x RV,
which implies (5.16) and completes the proof. O

Proof of Theorem 1.2. It follows from Proposition 5.1 and Lemma 5.2 that wuq
is a nontrivial self-similar solution of (1.17) and (1.22) follows by (5.13), (5.16) and

In(e + ]t’%mﬁ) <2In(2 + \t*ix]), which ends the proof. O

We have actually a stronger result which is a consequence of Theorem 1.4-(i)
proved in next section:
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Corollary 5.1 Assume 1+ % <p<l+ &]\fﬁ) Then
either
0> Use i Qoo (5.19)
or
U=Uso N Qoo (5.20)
2a(14+5)
5.2 Thecase 1 <p <1+ 5,

Forl<p<1+ Z%i;(f ), it follows from Lemma 5.3 that
lm ueo(t, ) = 00, vz e RY. (5.21)
t—0+

Proof of Theorem 1.3 (). Let fy € C.(RY) be a nonnegative function such that

C B41(0 d =1.
supp fo 1(0) an mé%?((o) fo

Denote
Fag(@) = kn®N fo(n’ (x — ),

where £ < n” with 7 = %(M—N—%x) > 0,0 =% and 79 € RN, Since

fok(z) <n7 for z € By(xo), fi(m) =0 for x € Bf(xp) and

2a(1+8) ~_N—2«
c3gn Pl

@+l

Veo (tny ) > Vz € Bi(xp),

where t,, = n2%. Then there exists Ny > 0 such that for any n > N,
k(@) < ve(tn, ), Va € By(xg).

Since nN fo(n?(x — x0)) — €410z, as n — oo in weak sense of measures, for some
cq1 > 0.

Let wy, j be the solution of (1.17) with initial data f,, 5, then
Wk (0,2) = frp(2) < Ve (tn, ) < Uoso(tn, ), vz € RV,
Therefore, by the Comparison Principle
Wy (1, 2) < use(t + ty, ), V(t,z) € Qoo
We observe that

lim [ im wy, (¢, )] = ueo(t, z — x0), V(t,z) € Qoo

k—00 n—00

40



Thus, we derive that
Uoo(t, T — x0) < Uso(t, ), V(t,z) € Qoo (5.22)

Then us (t,© — x9) = uso(t,x) for all (¢,2) € Qu, which implies that us is inde-
pendent of . Combining (5.1) and (5.16), implies that

p—1
The proof is complete. O
In the case of p=1+ N(HB )it derive from Lemma 5.3 that
=
o=
liminf us (£, ) > lim €40 = %02 , Ve € RY.
t—0+ t=0% 1 4 [¢ an‘N-i—Zoc || V2

Proof of Theorem 1.3 (ii). We note that us is a self-similar solution of (1.17).
Moreover, we derive (1.24) by (5.16), which ends the proof. O

5.3 The self-similar equation

In this section we prove Theorem 1.4.

148
Proof of Theorem 1.4 (i). We set voo(n) = tP~Tuoo(1,7). Then relations (1.25)
and (1.26) hold from Lemmas 5.2 and 5.3. Assume ¥ is another positive solution of
_1+8
(1.20). Then (t,z) — t »-1 6(t7%x) is a positive self-similar solution of (1.23). By
Proposition 5.2 it is larger than u,. Thus vy < ©. Assume now that there exists
no € RY such that ve(19) = 9(1p). and set w =  — vso. Then

: : w(1o) — w(n)
—A)%w = lim(—A)%w = lim —d < 0.
( ) (770) e~>0( ) (770) 0 Be(no) |77 770|N+2a
Since Vw(ny) we reach a contradiction. O

Proof of Theorem 1.4 (iz). It is a consequence of the equality

1
14+ pB\r 1
uoo:Up<:>voo: (pj)
Open problem. We conjecture that in the case 1 4 2%(}35) <p<l+ (HB) s Voo

is the unique positive solution of the self-similar equation satisfying (1.25). One step
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could be to prove that any positive solution ¥ satisfying (1.25) satisfies, for some
K >1,

< Kvs  in RV, (5.23)
We also conjecture that vy satisfies the following asymptotic behavior

Voo(n) = eNpaalnl N as |n| — o (5.24)

Thus if any positive solution ¥ inherits the same property, the conclusion (and the
uniqueness) follows.
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