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Abstract

We study the existence and uniqueness of weak solution to (F)
O + (=A)*u + h(t,u) = 0 in (0,00) x RY is given by the initial
condition u(0,-) = v in RV, where N > 1, the nonlocal operator (—A)
denotes the fractional Laplacian with « € (0,1), v is a bounded Radon
measure and A : (0,00) X R — R is a continuous function satisfying a
subcritical integrability condition.

In particular of h(t,u) = t?uP with B > —1, there exists a unique
solution uy to (F) with v = kdy, where Jp is the Dirac mass at the
origin. We obtain that ux — oo in (0,00) x RY as k — oo for p € (0,1]
and the limit of wy exists as k — oo when p € (1,1 4+ W), in

this case denoting it by us. When p € (1 + Q?V(Jlr;rf) , 1+ 20‘(]1\,+ﬂ) )y Uoo
is the unique self-similar solution of (F)ee Ou + (—A)*u + tPuP = 0
in (0,00) x RY with the initial condition u(0,-) = 0 in R¥ \ {0}.

When p € (1,14 2a(145) ), Uso 18 a trivial self-similar solution to (F)uo,

N+2«a
precisely,
1
oot ) = ( +f)ﬁf%‘f, (t,7) € (0,00) x RV,
p—
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1 Introduction

Let h: (0,00) x R — R be a continuous function and Qs = (0,00) x RY
with NV > 1. The first object of this paper is to consider the existence and
uniqueness of weak solution to semilinear fractional heat equation involving
initial measure data

u+ (—A)*u+h(t,u) =0 in Qu,

u(0,) =v in RN, (L)

where v € 9MP(RY) the bounded Radon measure space and the fractional
Laplacian (—A)® with « € (0,1) is defined by

(=A)%u(x) = lim (=A)du(z),

€
e—0t

here for € > 0,

(-a)ut) = [ Ol - 2D

0, if rel0,e€,
xg(r):{ € [0,¢

1, if r>e

and

In the pioneering work, Brezis and Friedman [4] have studied parabolic
equation involving initial measure data

ou—Au+uP =0 in Qoo

o (1.2
u(0,-) =kdp in RY,



where k& > 0 is a constant and J§y denotes the Dirac mass at the origin. They
asserted that if 1 < p < (N + 2)/N, then for every k > 0 there exists a
unique solution uy to (1.2). When p > (N + 2)/N, problem (1.2) has no
solution. Later on, Brezis, Peletier and Terman in [5] made use of dynamic
method to obtain that there exists a unique very singular solution us to

Ou—Au+uP =0 in Qu,

u(0,)=0 in RN\ {0} (13)

with 1 < p < (N +2)/N. In addition the asymptotic behavior of us(1,-) as
|z| — oo is given by

2
us(L,x) = ere” 1P 271N (1 — O(j2| %)},

where ¢; is a certain positive constant. From then on, Kamin and Peletier
in [18] built the connection that the weak solution wuj convergence to the
very singular solution ug as k — oo. Marcus and Véron [23], Al Sayed and
Véron in [2] obtained the very singular solution of (1.3) replaced u? by t?u?
with 8 > —landp € (1,14 2(1—;6)) The initial trace of nonlinear parabolic

equations with general Radon measure and general nonlinearity
Ou — Au+h(t,u) =0 in (0,T) x €,
u=0 in (0,7) x 08, (1.4)
u(0,-)=v in Q,

where Q is a domain in RV and T' > 0, has been well studied by Marcus and
Véron. In [21, 22], they proved the existence and uniqueness of solutions
to (1.4). Therein, the very singular solution plays a fundamental role in
dealing with the initial trace and they used dichotomy argument to make
classification to the initial trace of the solutions to (1.4).

Motivated by great applications in physics and by important links on the
theory of Lévy process, semilinear fractional equations has been attracted
much interest in last few years, and see the references [6, 7, 8, 9, 11, 14, 15,
16]. Recently, in [12] we obtained existence and uniqueness of weak solution
to semilinear fractional elliptic equation

(=A)*u+ f(u)=v in Q,

u=0 in Q°

(1.5)

when v is Radon measure and f satisfies a subcritical integrability condition.

Our purpose of this paper is to consider the existence and uniqueness of
solutions to semilinear fractional heat equation (1.1) in the measure frame-
work. We observe that most of the techniques used in the case of the Lapla-
cian are not available. First, we make precise the notion of weak solution of
(1.1) that we will use in this note.



Definition 1.1 We say that u is a weak solution of (1.1), if for any T > 0,
u € Ll(QT)f h(tau) € Ll(QT) and

Jo, {ut, 2)[=0i(t, x) + (=A)*E(t, =) + h(t, w)é(t, 2)} drdt
= fRN £(0,z)dv — fRN ET,z)u(T,z)dx, V&€ Yor,

where Qr = (0,T) xRN and Y, r is a space of functionss : [0, T] x RN — R
satisfying

(1.6)

(@) lsllzr@p) + sllzoe @r) + 19es oo (@) + 1(=2)%C oo (@g) < 4005

(1) fort € (0,T), there exist M > 0 and ¢y > 0 such that for all
€ € (0, €], [I(=A)2s(t; )| oo vy < M.

Before stating our first main theorem, we introduce the subcritical inte-
grability condition for the nonlinearity h, that is,

(H) (i) The function h : (0,00) x R — R is continuous and for any
t € (0,00), h(t,0) =0 and h(t,r1) > h(t,re) if r1 > ro.

(74) There exist f > —1 and a continuous, nondecreasing function
g : Ry — R, such that

[a(t,r)| < Pg(lr)),  V(t,r) € (0,00) x R

and oo
/ g(s)s 7 Phds < +o0, (1.7)
1
where 20(1 1 B)
a(l +
=14+ ——". 1.
Pp=1+—% (1.8)

Denote by Hy, : (0,00) x RY x RN — R, the heat kernel in (0, 00) x RY
with homogeneous boundary conditions and by H,[v] the heat potential of

v € MY(RY), defined by
Ha[V](t, ) = Hu(t,z,y)dv(y).
RN
We state the first theorem as follows.

Theorem 1.1 Assume that v € M (RY) and the function h satisfies (H).
Then problem (1.1) admits a unique weak solution wu, such that

Ha[v] = Ha[h(t, Ha[v4])] < up < Ho[v] = Ha[h(t, —Ha[v-])] in Qoo, (1.9)

where vy and v_ are respectively the positive and negative part in the Jordan
decomposition of v. Furthermore,



(1) if v is nonnegative, S0 is uy;
(7i) the mapping: v — u, is increasing.

According to Theorem 1.1, there exists a unique positive weak solution
ug to fractional problem

Opu + (—A)%u + thuP = 0 in Qoo

1.10
u(0,-) = kdyp in RN (1.10)

where 5 > —1, k > 0 and p € (0, p’g) It is of interest to investigate the limit
of u, as k — oo for p € (1,pj), which exists since {uy} are an increasing
1 _14p
sequence functions and bounded by (?Tff) r=1t p-1. We denote the limit uq
by
Uso = lim ug in Qoo (1.11)
k—o00

In fact, us and {ug }x~o are classical solutions to equation

du+ (A u+t°uP =0 in Q. (1.12)
See Proposition 4.3.
Definition 1.2 (i) A solution w of (1.12) is called a self-similar solution if

_1+8 1
u(t,z) =t rTu(l,t"22z), (t,2) € Qo

(13) A solution u of (1.12) is called a very singular solution if

u(t,0)
im
t—0t+ [y (¢,0)

= +007

where 'y, is the fundamental solution of

Ou+ (—A)*u=0 in Qo,

1.13
u(0,-) =8 in RN, (1.13)

We remark that for p € (1,p}), a self-similar solution u of (1.12) is also a
very singular solution, since

N
lim [y (¢,0)t2a = co, 1.14
ot a(t,0) 2 ( )
for some co > 0. For any self-similar solution u of (1.12), v(Z) := (1, tfix)
with # = ¢~ 22 is a solution of
1 1+

(—A) v—%Vv-x—p_

fwrvp:o in RY. (1.15)



1
It is obvious that (#) »=1 is a trivial solution of (1.15) and then the function

bS]

1+ 3
p—1

1+

VT, £ 0 (1.16)

™

-

]

Up(t) := (

is the flat self-similar solution of (1.12). From Proposition 4.1, wuy is not
self-similar solution of (1.12). Therefore, our second goal in this paper is to
search for non-flat self-similar solution of (1.12).

Theorem 1.2 Assume that § > —1, us is defined by (1.11) and

p € (P5,ph)

where ng* =1+ 2%}:5? and ng =1+ w Then us 1S a positive

self-similar solution of (1.12) with initial data u(0,-) =0 in RV \ {0}.
Moreover, there exists c3 > 1 such that

-1

8 <un(l,x) <

c3log(2 + |z|)
1+ ’x‘N+2a —

RV, 1.17
1+ [z[V+2e T (1.17)

When p € (pg*,p’g) with 8 > —1, we observe that us, and U, are self-
similar solutions of (1.12) and wus is not flat. An interest is to obtain the
uniqueness of non flat self-similar solution of (1.12). We may propose our
uniqueness for self-similar solution to

du+ (—A)u+thu? =0 in Q.
(1.18)
lim| ;o0 u(1, ) = 0.
Theorem 1.3 Assume that p € (p;g*,pz}) and uq s defined by (1.11), then
Uso 1S the unique positive self-similar solution of (1.18).

We note when u is self-similar, lim,_ u(l,z) = 0 is equivalent to
lim, o0 u(t,z) = 0 for any ¢ > 0. Finally, we state the properties of s
when p € (1, p;*] as follows.

Theorem 1.4 (i) Assume that p € (1,p3") and ue is defined by (1.11).
Then us is the flat self-similar solution of (1.12), that is,

Uso = Up,

where U, is given by (1.16).
(ii) Assume that p = pj* and us is defined by (1.11). Then uc is a
self-similar solution of (1.12) such that

__ N+2a
C4t 2

Uco(t, ) >

. (t,z) € (0,1) x RY, 1.19
2t BN (t,z) € (0,1) (1.19)

for some c4 > 0.



We note that Theorem 1.4 indicates that there is no self-similar solution
of (1.12) with initial data u(0,-) = 0 in RY \ {0}, since s, is the least self-
similar solution. In Theorem 1.4 part (iz), we don’t know if the self-similar
solution is flat or not.

According to theorems above, we make a summary for problem (1.15)
as follows:

Remark 1.1 (i) When p € (pj",pj), problem (1.15) under the condition
lim, |00 v(z) = 0 admits a unique positive solution.

(i7) Whenp € (1,p5"), problem (1.15) under the condition lim,) ., v(x) =
0 has no any positive solution.

This paper is organized as follows. In Section 2 we obtain that

Q
21 7 g sty < 511 e

and the Kato’s type inequality for the non-homogeneous problem. In Section
3 we prove Theorem 1.1. Section 4 is devoted to investigate the properties
of solutions to (1.10). In Section 5 we give the proof of Theorem 1.2 and
Theorem 1.4. Finally, we put the uniqueness of self-similar solution when
p € (p",pj) in the section 6.

2 Linear estimates
2.1 The Marcinkiewicz spaces
We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 2.1 Let © € RNt be an open domain and p be a positive Borel
measure in ©. For k > 1, k' = k/(k —1) and u € L} (0,du), we set

loc

=

K

lull pre 0,4y = inf{c € [0, 0] : / luldp < ¢ </ d,u> , VE C © Borel set}
E E

(2.1)
and
MR(Gad:u') = {u S Llloc(eadlu') : HUHMH(@,d,u) < OO} (22)

M*(©,du) is called the Marcinkiewicz space of exponent k or weak L"
space and ||.|[y7~(@,4u) i @ quasi-norm. The following property holds.

Proposition 2.1 /3, 12] Assume 1 < ¢ < k < 00 and u € L} (0,dp).
Then there exists cg > 0 dependent of q, k such that

1—q/k
/ ful9dps < esllullaro.d0 ( / du) ,
E FE

for any Borel set 2 of ©.



For an open regular domain € in RY, we denote HS! : (0,00) x Q x Q —
Ry the heat kernel in (0,00) x © with homogeneous boundary conditions
and by H}[v] the heat potential of v € MP(12), defined by

HEl (o) = [ A2 )i ),
When Q = R¥, by Fourier transform, it is obvious that

1 : 2
_ i(z—y)-C—t|C|*™
H,(t,z,y) = e /RNG( W)-C—HEP g

Proposition 2.2 For any 5 > —1 and T > 0, there exists a positive con-
stant c5 > 0 dependent of N, a, 8 such that for v € MP(Q),
Q
[[HLy 1]

M5 (Q$ t8dadt) < esl|vllome() (2.3)

where p; is defined by (1.8) and Q% = (0,T) x Q.

In order to prove this proposition, we introduce some normal notations.
For A > 0 and y € (), let us denote

Ax(y) = {(t,x) € Q% : Hy(t,z,y) > A} and my(y) = /A ( )tﬁdxdt.
Ay

Lemma 2.1 There exists ¢z > 0 such that for any X > 1,

Ar(y) C (0, etA" R x B4 (y), (2.4)

ctA N

where By(y) is the ball with radius v and center y in RV,

Proof. We observe that H,(t,z,y) = tf%l’a(l, (x — y)tfi), where T, is
the fundamental solution of (1.13). From (1.1) in [10], there exists c¢g > 0
such that

Ia(l,2) < . T
T 4 |2 V2
On the one hand, for (¢,z) € Ax(y), we have that

N
2

720 (1,0) > t 2T (1, (z — y)t 20) > A,

which implies that

2a

t< T2 (1,OA~. (2.5)
On the other hand, letting r = |z — y|,

Cgt 1

Pa(L (1‘ - y)tiﬁ) > )‘7

8=

TN w2t
titaos + pN+2a



then

r < (cgth™Y)¥im, (2.6)
which, together with (2.5), implies that
r< CgAiﬁa
for some cg > 0. O

Proof of Proposition 2.2. By Lemma 2.1, there exists cig > 0 such that

_1_2a(148)
ma(y) < cioA 1 N,

We observe that
H(t,2,y) < Halt,z,y). (2.7)

Then for any Borel set £ C Q¥ and y € (), we have that

/Hg(t,x,y)tﬂdxdtg/\/ tﬂd;cdtJr/ H(t,z,y)tP dadt
E E Ax(y)

and
fA/\(y) Hy(t, x, y)tPdadt = — /\+oo sdms(y)
= xma(y) + [ ms(y)ds
< CloA_Qa(fl\’W) + c10 f;oo P
< 011)\_w,
where c11 = c1o[1 + WNwLﬁ)] As a consequence, we have that
/ HE(t, z, )t  dwdt < A/ tPdxdt + cu)\_w_
E E
Taking A = (fE tﬁdxdt)_ﬁ(“ﬁ), we obtain that
/EHg(t,x,y)tﬁdmdt < (c11 + 1)(/E tﬁdxdt)%. (2.8)

By Fubini’s theorem, we have that
[ B o ae = [ [ B ) et
E EJQ

- / / HO(t, 2, y)tP dadtd v (y)),
QOJE

which, together with (2.8), implies that

2a(1+5)

/ HE[|v])(t, z)tP dedt < (c11 + 1)Huumb(ﬂ)(/ P dxdt) Fr2em) |
E E

9



Thus,

0
HHaUVHHMHM(}Vw) < (en1 + Dlvflans )

TN (QE P dadt)

which ends the proof. O

2.2 Non-homogeneous problem

The following proposition is the Kato’s type estimate which is essential
tool to prove the uniqueness of solution to (1.1). For T' > 0, we denote
Qr = (0,T) x RN,

Proposition 2.3 Assume that p € LY(Qr) and v € LY(RY). Then there
exists a unique weak solution u of the problem

ou+ (—A)*u=p in Qr,

u(0,)=v in RV (29)

and there exists c¢19 > 0 such that

/ |u|dxdt < 012/ |p|dxdt + 012/ |v|dz. (2.10)
T QT RN
Moreover, for any £ € Yo, £ >0, we have

Jo, [W{=0:8 + (=A)*E}dadt + [pn [u(T,2)|E(T, x)dx

2.11
< fQT Esign(u)pdrdt + [pr £(0,2)|v|da. 211)

To prove Proposition 2.3, we introduce following notations. We say that
u: Qr— Risin CF) (Qr) for o,0" € (0,1) if

ju(t, z) = u(s, )|
1ol gy = I1ll % @y + 51D < 400

Qr It =sl7 + ]z —y|”

and u € C;IO’QMLU/(QT) if
= / — a / .
HuHCtl;cr,2a+o’(QT) T HUHLOO(QT)—i_HatuHCfo (QT)+H( A) u”cgf (QT) < 400

Lemma 2.2 Let p € CYQr) N L>®(Qr), v € L¥(RY) and u is a solution
of problem (2.9), then there exists o € (0,1) such that u € C;’;LU’ZO‘JFO in
(To, T) x RN for any Ty € (0,T).

In particular, if \|D2V||L00(RN) + H(—A)al/HC;—a(RN) < 00, we have u €
C;:U,2CV+O’(QT)‘

10



Proof. Step 1. When || D?v| 00y + [(=2)*[[g1-a gy < oo, it follows
directly by [7, (A.1)] that u € Ctl,;LU’ZO‘Jm(QT).

Step 2. When v € L®(RY), we use [8, Theorem 6.1] to obtain that
u € Ct%’U(QT) for some o > 0. For any Ty € (0,7"), let n: [0,7] — [0, 1] be
a C? functions such that 7 = 0 in [0, 2] and 5 = 1 in [Ty, T] and v = nu in
Qr. Then we obtain that for ¢ € [L2,T] and = € RV,

Ov + (=A)% = nu+ 1 (t)u,

where nu + 7' (t)u € Ct?E’J(QT) and v(0,-) = 0 in RY, Then we apply
argument in Step 1 to obtain that v € C't{ IU’2Q+U(QT). Therefore, u is
CH729%% 0 (Ty, T) x RY. The proof is complete. O

t,x

Lemma 2.3 (i) Let p € CYQ7) N L>®(Qr) and v € CHRN) N L®(RY),
then problem (2.9) admits a unique solution u and for some o € (0,1), u is
CH729% i (Ty, T) x RN for any Ty € (0,T).

t,x
(ii) Assume that p € CHQr)NL®(Qr)NLY(Qr), v € C*RN)NL®RN)N
LY(RN) and u be the solution of (2.9), then u € LY (Qr), is C;’;LU’QQJFU in
(To, T) x RN for any Ty € (0,T) and for any &€ € Yo,
Jo, ult,2)[=0i&(t, x) + (—A)*E(t, )| dwdt
= Jo, 1t 2)&(t, x)dzdt + [pn £(0,2)vdr — [pn E(T, 2)u(T, z)dz.
(iii) Let p € CH(Qr) N L=(Q7) and v € C*(RN) N L=®(RYN), then problem
—u+ (—A)*u=p in Qr,
wT,)=v in RV

(2.12)

(2.13)

admits a unique solution u € C;;ra’QajLU(QT) for some o € (0,1).
Moreover, u € Yo 1 if p € CHQr)NL®(Q7)NLY(Qr) and v € C?(RY)N
L®(RN) N LYRY).
Proof. (i) By [8, Theorem 2.6, Theorem 6.1], there exists a unique viscosity
solution u € Cf’_;’a(QT) with o > 0 of (2.9), and then it follows by Lemma
2.2 that u is Ciia/,mw—/ in (Tp,T) x RN for any Ty € (0,7) and some
o' € (0,min{g%,0}). Then u is a classical solution of (2.9).
(i) To prove u € LY(Qr) and u(t,-) € L*RYN) for t € (0,T). By
Duhamel formula, we have

IN

et )l vy / Halt, 5,2, y) (s, )| dydsde
RN JQr

+ / Halt, 2, 9)lv(y)|dyda
RN JRN

< Nl @y + Iwller @y

A

11



and

T
lull @) :/0 [ult, ) prsydt < T(plle@r) + Wl @y))-

To prove that ||(=A)gu(t, )| e (mvy is uniformly bounded with to € € (0, €o).
Since u(t, ) € C29F7(RN) for some o € (0, min{2 —2a, 1}), then for + € RY
and y € B1(0), |u(z +y) + u(z —y) — 2u(@)] < [[u(t, )| czote g y|>*.
Thus

lu(z +y) — u(z)|
—A)%u(t, - o < sup/ d
[N L

zERN

1/ [u(z +y) +u(r —y) — 2u(z)|
+= dy
2 JB1(0)\B.(0) |y| N2 ]

< 2HuHL1<RN>+/ [yl7~ N dyllu(t, ) gzate @n)-

B1(0)

To prove (2.12). We claim that

E(—A)udzrdt = / w(—A)Xédxdt, V&€ Yo (2.14)
Qr T

Indeed, by using the fact that for any ¢t > 0, we have

/RN /RN x‘N-}—;]f(t’ x) XE(’x - Z‘)dzdx
/]RN /]RN t xz :Z’f\fﬁgf(m Z) Xe(’x - z!)dzdx7

then we have
Jan £t ) (—A)2u(t, x)dx
—5 Jan Jrn | (U(t Tz x‘N+)2)§(t z) (b ‘Z) $|(N+)2L£(t Z)]Xg(lm — z|)dzdx
=3 fRN Jan e \Sf;)ﬂﬁféi)* ()] Xe(|z — z|)dzdx.

Similarly,

Sy u(t, @) (=2)2E(t, @) da = § [y LA LALLDLCI (|3 — 2])dzda.

Then (2.14) holds. Since u is CHJ 2047 i (T, T) x RY for any Tp € (0,T)
and & belongs to Yo7, (—A )?5( ) = (—A)O‘{(t, ) and (—A)%u(t, ) —
(—=A)u(t,") as € — 0 in RY and (—A)%¢(t,-), (—A)%u(t,-) € L®(RY)

and £(t,-),u(t,-) € LY(RY), then it follows by the Dominated Convergence
Theorem

lim E(t,x)(—A)u(t, x)dx = E(t,x)(—A)Yu(t, x)dx

e—0t JRN RN

12



and

lim (—A)gf(t,x)u(t,x)dx:/ (—A)¥(t, z)u(t, z)dx.

e—0t JrN RN

Combining with (2.14), taking e — 0T, we have that

f(t,x)(—A)au(t,x)dx:/ (—=A)*¢(t, x)u(t, z)dx,

RN RN

integrating over [0,7] and by (2.9), we conclude that (2.12) holds.
(73i) Let u be the solution of problem (2.9) and

w(t,x) =u(T —t,z), (t,x)e[0,T] x RY.

Then w is a solution of (2.13) and for some o € (0,1), w is Ctl;ro’QaJrU(QT).
On the contrary, if w is a solution of (2.13), then u(t,z) = w(T — t,z) for
(t,x) € [0,T] x RY is a solution of (2.9), then the uniqueness holds since the
solution of (2.9) is unique. Since u € C;;O’QajLU(QT), then (—A)%u(t,-) €

CZ and then (—A)%u(t,-) is bounded, which implies v € Y, 7. O

Proof of Proposition 2.3. Uniqueness. Let v be a weak solution of

v+ (=AY =0 in Qr,

2.15
v(0,-) =0 in RN, (2.15)
We claim that v =0 a.e. in Q.
In fact, let w be a Borel subset of Q7 and 7., be the solution of
O+ (-A)%u=¢, in Qr,
(2.16)

u(T,)=0 in RV,
where ¢, : Qr — [0,1] is a function C(Qr) such that
Cn = Xw 1in L®(Qr) asn — oc.

Then by Lemma 2.3, we have that 7., € Y, 7 and

/ vpdadt = 0.
QT

Thus passing the limit of n — oo, we have

/ vdxdt = 0.

This implies v = 0 a.e. in Q.
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Ezistence and estimate (2.11). For § > 0, we define an even convex function

¢s by
lt| =3, if |t| >4,
e, it [t < 6/2.

Then for any t,s € R, |¢5(t)| < 1, ¢s5(t) — [t| and ¢§(t) — sign(t) when
§ — 0T. Moreover

Ps(t) = (2.17)

¢s(s) — ¢s(t) = ¢5(t)(s — ). (2.18)

Let {n}, {vn} be two sequences functions in C2(Qr), CZ(RY) respec-
tively such that

lim |t — pldzdt =0,  lim |y, — vlde = 0.

n—00 Qr n—oo [pN

We denote u,, be the corresponding solution to (2.9) replaced p, v by piy, vp,
respectively. By Lemma 2.2 and Lemma 2.3(ii), u, € C’; Fe2ete (o n
LY(Qr) and then we use Lemma 2.3 in [12] and Lemma 2.3 (i) to obtain
that for any 6 > 0 and £ € Yo 7, £ > 0,

Jor @5(un)[=0& + (=A)*E]dadt + [pn §(T, )¢5 (un (T, x))da
= Jo, 10195 (un) + (=A)* s (un)]dzdt + [ §(0,2)ds(vn)da
< S £ (un) [Ortu + (—A)*up]dwdt + [r £(0, )5 (vn)da
= [, €05(un)pndadt + [o £(0,2)05 (v )d.

Taking § — 0T, we obtain

/ ([~ 4€ + (—A)E]dwdt + / (T, 2)|un (T, ) |dz
QT RN

(2.19)
< Esign(uy, ) pupdxdt + / £(0,2)|vy|dx.
Qr RN
Denote by 7 the solution of
—Oiu+ (—A)*u=¢ in Qr,
ot (CAS% =g . (2.20)

uw(T,")=0 in RV,

where ¢, : Q7 +— [0,1] is a CZ function such that ¢, = 1 in (0,7) x B(0).
From the proof of Lemma 2.3, 7 (t,z) := ngp(T — t,x) solves

8t’l,L + (—A)au = Gk in QT7
u(0,-) =0 in RV,

14



By Lemma 2.2, then 7, € C&:U’ZO‘JFO(QT) with some o € (0,1) and

N
0 < inlt,r) < / / (=0 dyds
RN 1+ [(s — £) 35 (y — )| V2

<
= 08/ /RN1_|_|Z|N+2a
ci3(T

Taking £ = ny in (2.19), we derive

/ ’un’X(O,T)ka(O)dxdt < ClgT/ \,un]dxdt + ClgT/N ’Vn‘dm'
R

T T

Then taking k — oo,

/ [t |dzdt < ClgT/ |,un|d:cdt—{—013T/ |vp|de. (2.21)
T Qr RN

Similarly,
/ [tn, — Uy |dx < ClgT/ |t — i |dzdt + ClgT/ |y — v |dz. (2.22)
T Qr RN

Therefore, {u,} is a Cauchy sequence in L'(Qr) and its limit u is a weak
solution of (2.9). Letting n — oo, (2.11) and (2.10) follow by (2.19) and
(2.21), respectively. O

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first consider the classical solution of
(1.1) in domain Q7 with regular initial data for 7" > 0. Assume that

(H) The function h satisfies (H) part (i) and h € C7([0,T] x R) for
some v € (0,1).

Lemma 3.1 Let h satisfy (?IJ), ¢ € C2(RN)N L¥(RN) and T > 0. Then
there exists a unique solution ug of (1.1) in Qr with v = ¢ such that

Ha[¢] = Halh(t, Hal¢+])] < up < Ha[¢] — Ho[h(t, —Hu[p-])] in Qr, (3.1)

where ¢ = max{0, +¢}. Moreover,
(i) up >0 if ¢ >0 in Q;

(1) the mapping ¢ — ug is increasing.
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Proof. To prove that there exists T' > 0 such that problem

8tu + (—A)a’u + h(t, u)X(O,T’)(t) =0 in QOO;

u(0,)=¢ in RN 3.2)
admits a solution g, 4.
For parameter 7" > 0, we denote the operator Y by
T(u) = Hal¢ — h(t,u)xpr], v € L*(Qoo)-
We observe that H,[#](0,-) = ¢ in RV, then
161l Lo vy < Ha[@]ll oo (o)
< c14]|@l oo @M || Jrv o i dyll Lo (0u0) (3.3)

1
|t 20 (z—y)[N+2e

< 015”¢HL00(RN)7

where ¢14 > 0 and c¢15 = c1s f]RN Wdz. Let B, = {u € L*(Qw) :
ullLoo(@ue) < 7} with 7 = 2015H¢HL00(RN) and A = [0,T] x [-r,7]. For
T’ > 0 small enough and u € B,, we derive that

[ Ha[A(, U)X(O,T/) ()] HLOO(QOO)

(s—t)" %

1+|(s—t) ™ 26 (s —y)| N+20

< cramaxgen bt )| f7T fan

< c15T" max; )4 (¢, 5)|.

dyds|| (@)

Therefore, choosing 7" > 0 such that T" max gea |h(t,s)] < §, we derive
that

1)z () < 15 (18]l vy + T/ maxgpea h(t, 5)])
<r.

(3.4)

For our choosing r and T’, we have that Y(B,) C B,.
Next we prove that the operator T is compact in B,. We observe that
for u € B,,

[w(t, MLt @, @dzy < c16l|ullLe Qo) < c167 (3.5)

where c16 > 0 and @(z) = (1 + |z|V*22)~L. By [8, Theorem 5.1], there exist
o € (0,1) and ¢17,¢18 > 0 only dependent of a, N such that

IIT(U)IICt%,o(Qw) < arf{llullze @) + sup (T Ml @y, 2z
+ (A (W)l Lo (@} (3.6)

< ern {0l ) + gma [h(t, )]
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Therefore, T is compact. It follows by Schauder’s fixed point theorem, that
there exists ugy € B, such that T(ugg) = uge. It infers by (3.6) that
(S Ct%’U(QOO). By Lemma 2.2, ug 4 is in C’;:al’2a+ol
o’ > 0 and wug 4 is a classical solution of (3.2).

Moreover, since Hy, [¢] — Hy [h(t, —Hy[¢—])] and Hy, [¢] — Hy [h(t, Ho[o4])]
are super and sub solution of (3.2) respectively, then by Comparison Prin-
ciple, we have that

(Qx) for some

Ho[6] — Ha[a(t, B[94 ])] < to,p < Halé] — Halh(t,~Halp_])] in Q.

(3.7)

The mapping ¢ +— ug e is increasing. Let vi, va be solutions of (3.2)

with initial data ¢1 and ¢ respectively, where ¢1 > ¢ and denote w =

v1 —ve. We prove this argument by contradiction. Assume that there exists
(to, o) € Qoo satisfying w(tg, xo) < 0. Since

’LU(O,.%') = (bl(x) - (ﬁz(.%') Z 07 HARS RN7
then there exist t; € (0,t0] and 27 € RY such that

w(ty, 1) = min w(t,x) <0,
(t,2)€[0,t1] xRN

thus, dw(ty, z1) <0 and (—A)*w(ty,z1) < 0 and by monotonicity of h, we
have h(t1,v1(t1,21)) < h(t1,v2(t1,21)). Therefore,

Orw(ty, x1) + (—A)%w(ty, z1) + h(t1,vi(t1, z1)) — h(t1,v2(t1, 1)) <O0.

which contradicts that v; and vy are solutions of (3.2).

Moveover, the uniqueness of solution to (3.2) follows by the fact that the
mapping ¢ — ug 4 is increasing. Then 0 is the unique solution of (3.2) with
0 initial data. Therefore, ug 4 > 0 if ¢ > 0.

To prove that (1.1) in Qr with T > 0 admits a solution ug.

Since [pn Ha(t,z —y)dy =1 for any t > 0 and = € RV, then

[l oo mrvy < [[Hald]ll Lo Qo)
<@l oo @yl Jon Haltsz = 9)dyll Lo Qo)
= H¢HL<><>(RN)7
which, combining (3.7) with |¢|, infers that
0,6 (T, M oo @y < IHQ[ AT, ) oo vy < Nlbll oo mv)- (3.8)

Thus, there exists a unique solution u; 4 to (3.2) with initial data u;,4(0,-) =
ug,4(T",-) and we note that it is also able to choose the same 7" by (3.8) in
this step and it could iterate this process by times k£ and we obtain a unique
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solution uy, ¢ of (3.2) with ug4(0,-) = up_1,4(7",-) initial data for the same
T’ > 0. Since for any T > 0, there exists m € N such that mT’ > T and
(m—1)T" < T, letting

m—1
u¢(t, 1’) = Z um)(t — ’iT,, m)x(iT/7(i+1)T/] (t), (t, 1’) S (0, T) X RN7
=0

then ug is the unique solution of (1.1) in Q7 with v = ¢ and (3.1) follows
by (3.7). O

Proof of Theorem 1.1. FEuxistence for v > 0. We consider a sequence
nonnegative functions {v,} C CZ(R") such that v,, — v in the duality sense
of

lim Cvpda = / Cdv, V¢ e CRN)NL®RY). (3.9)
RN

n—oo RN

It follows from the Banach-Steinhaus theorem that [|,[|gnsry) is bounded
independently of n and we assume that ||ty [logne@yvy < 2||v[lgns ). For any

T > 0, we consider a sequence functions {h, } satisfying (H),

|hn| < |h| and [hn = Rl oo (o, 77x®) = 0.

lim

n—o0
By Lemma 3.1, we denote by u,, the corresponding solution of (1.1) with

nonlinearity h, and initial v,, then u, is nonnegative and satisfies that

0 < wup=Hy[vy — hn(t,un)] <Halvn] in Qr. (3.10)
By (2.3) it follows that
lunll o 0 oy < €51V Ilano@)- (3.11)

For e > 0 and o € (0,«), set & = (nx + e)% — ea, where 1, is given by
(2.20), then by [12, Lemma 2.3 part (ii)],

O+ (FA) 6= S+ ) A+ ) (< A)
(o — ) o=20 / (i (y) = @)
RN

- 2 (nk‘ + 6) ‘y — x‘N+2a

and & € Y, 7. By (2.11

/ (tnl[=O1Ee + (~ D) + [t un) ) it + / (T, 2)|E(T, z)dz

T RN

< /RN £.(0, 2)|n(2)|dz,
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then we obtain

/ | (t, up )| Ee (8, x)dadt < / £(0, )|y (x)|dx.
T RN
If we let € — 0, we obtain

/ ]hn(t,un)\nkg (t,x)dxdt < /]RN n,?(O,x)\un(x)]dx.

T

Taking k — oo and then o — 0T, we obtain that

1P (8 un )l 1 (@r) < IWnllans vy < 2[1¥llane mov)- (3.12)

Since N )
Hy(t,x,y) =t 2aDo(1,t" 2 (x — y)),

then combining with (3.10), we obtain that for ¢ > 0

N Vn(y)
(£, )| oo vy < €5t 35 sup /
mn ) 2€RN RN 1+’t 2a(1‘— )‘N+20¢

_N

< cgt 2“HVnHLl(RN)
_N

< 2cgt™ 2 ||V |gpp )

and

. () dyds
H, [v,](t, gy < Csta
Balvat e,z S st [ [ o

_N
< c1st™ 2 |[vp || pr vy

N
< 215t 2 [V ||y (Vs

then
N |h (t, up)| dydx
H h t ~ < t 2c
Bt vl < st ™55 [ [
1 1

< Cl5||hn(t,un)”L°°(RN)/RN /]RN 1+ 2N 11 |y|N+2adydx
< C2Ot69(208t7N/2aHVHSRb(RN))

and then

Jun(t, L@, gdz) < IHaWnlll i@y, gdzy + Halhn (E wn)]ll @y | 2dz)

< 2615757%”””9376(11&% + 020t59(208t_N/2a||V||9nb(1RN))-
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Then by [8, Theorem 5.1], there exists o € (0,1) such that for any Ty €
(0,7),

[Junl < 618{||unHL°°((TO,T)><RN) + sup |Jun(T, ')HLl(RN, odx)

CE (@ 1)) re(To )

+ [[Pon (- wn) | oo (7,7 xRN) }
- N —N/2a
< ey * [Vl gan + ea(T7 +T9)g(2esTy ™ [ oo vy
(3.13)

Therefore, there exist a sub-sequence {u,, } and some u € Ct%’o locally in
Qr such that u,, — v in Q7 and then hy, (-, up,) = h(-,u) in Q7.

For A > 0, we denote Sy = {(t,x) € Qr : |un, (t,z)] > A} and w(A) =
‘[SA tPdxdt. Then for any Borel set E C Qr, we use (H) to obtain

/|hnk(t,unk)|dxdt§/ g(|unk|)t6d:vdt+/ 9(Jtin, )P dxdt
E Eﬁsi ENS)y

< g(\) / tPdxdt + / g(un, tPdzdt
E N

<o) [ Pdwit— [ gts)dats)

where
M

/:O g(s)dw(s) = lim g(s)dw(s).

M—oo Jy

By (3.11), we have w(s) < ca3s % and then

s=M

- A Y g(s)ds) = - [g(s)w(s)} + A " (s)dg(s)

s=A\
< gNw(N) — g(M)w(M) + c23 A SPhdg(s)

< g (N) — g(M)w(M) + a5 (M Phg(M) = X Pg(N))

By (1.7) and Lemma 4.1 in [12], we have limp_,0o M Pég(M) = 0. Since
w(s) < cogs 77, we obtain g(A\)w(X\) < cagA Psg(A) and then

- [ sets) < 2 [ g sy
A pz+1.Jx5

Notice that the above quantity on the right-hand side tends to 0 when
A — oo. The conclusion follows: for any € > 0 there exists A > 0 such that

23 /OO s_l_pgg(s)ds <
ps+1J5 B

€
2
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and there exists § > 0 such that

/ Pdudt < § = g()\)/ tBdzdt < <.
E B 2
This means that {hy, (-, un, )} is uniformly integrable in L'(Qr). Combin-

ing (3.12), we have hy, (-,un,) — h(-,u) in L'(Qr) by Vitali convergence
theorem. Letting ny — oo in the identity

/ [_unkatg + Uny, (_A)ag + fhnk (tv unk)] dxdt

= §(0,x)ynkdx—/ un, (T, 2)¢(T, x)dx, VEeYqr,
RN RN

which infers that u is a weak solution of (1.1).

Ezistence for general v. For v € MP(RN), a sequence {v,,} in CZ(RY)
converge to v in the dual sense of (3.9). From the monotonicity of h,(t,-)

—Ha[lvn]] < Uy, | S Uy, < Uy, | < Ha[|vn]-

Then by above analysis, the sequence {h,(-,u_,, )} and {hn(-,u,,)} are
compact in L'(Qr) for any T > 0 and (3.11) holds for {u,,}. Therefore
{u,, } is compact in L'(Q$}) and there exist some subsequence {uy,, } and
u, € L' (Qr) such that

Uy, —> Uy aS k—oo in Qr

and

/ [—up 0 + uy (—A)*E + Eh(t, uy)] dedt

= £(0,z)dv —/ uy (T, 2)&(T, x)dx, V&€ Yqr.
RN RN

Uniqueness. Let uj,us be two weak solutions of (1.1) with the same initial
v and w = u; — us. Then

Ow + (—=A)*w = h(t,ug) — h(t,u;) in Qr.

Since h(t,u2) — h(t,u1) € L'(Qr), then by (2.11), for £ € Yo r, £ > 0, we
have

/ |w|[—0:& + (—A)af]dxdt—i—/ |w(T, z)|¢(T, x)dxdt

T RN

+ / [h(t,u1) — h(t,ug)]sign(w)édzdt < 0.
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Together with fQT [h(t,u1) — h(t,uz)sign(w)dxdt > 0, then
w=0 a.e. in Qr.

To prove that the mapping v — w,, is increasing. Let vy, vo € MP(RY) and
V1 > vy, then there exist two sequences {v;,} and {ra,} in CZ(RY) such
that vy, > va,, converge to vy and v, respectively in the sense of (3.9). Let
u; n be the corresponding unique solution of (1.1) with initial v;, and u,,
be the unique solution of (1.1) with initial v; for i = 1,2. Then uy , > ug .
Moveover, by uniqueness, u;, convergence to u,, in LY(Qr) for i = 1,2.

Then we have u,, > u,,.

To prove (1.9). We make Jordan decomposition of v € DMP(RY) by the
positive part vy and the negative part v_. For vy, it is able to find two
sequences of nonnegative functions {v,,, } in CZ(R¥) which converge to v+
in the dual sense of (3.9) respectively. Then the sequence functions v, =
Vn, — Vn_ converge to v in the dual sense of (3.9). From the monotonicity
of h(t,-),

_Ha[an] S Uy, Sy, < Uy, < Ha[yn+]a

which, together with the uniqueness of u,, implies that
—Huv-] < uy, <Hg[vy]. (3.14)

Therefore, by monotonicity of h(t,-),

and
uy, = Ha[v] —Halh(,w)]
> Ha[v] — Ho[h(-, Ha[vy])],
which imply (1.9). The proof is complete. O

4 Initial Dirac mass

In this section, we will consider the properties of solutions to (1.1) in the
particular case of h(t,r) = t?rP and the initial data v = ko, where § > —1

and p € (0,p3).

Proposition 4.1 Letp € (O,pg) and uy, be the solution of (1.10), then there
exists cag > 0 such that

lim wy(t,0)t3 = ek (4.1)
t—0t
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Proof. By (1.9) it follows that
ug(t,0) < kHg[00](t,0) = k[ (t,0), ¢ > 0. (4.2)
We claim that there exists co5 > 0 independent of & such that
we(t,0) > kLo (,0) — coskPt—2aPT1HB ¢ € (0,1/2). (4.3)
Indeed, from (1.9), it infers that
up(t,0) > kLo (t,0) — KPW(£,0), t e (0,1/2),

where
W (t, o) = Ho[t (Ha[60])"](t,2),  (,7) € Qoo
For t € (0,1/4), there exists cog, co7 > 0 such that

s — t 2a 85 3_% b
t 0 < 626/ / I dyds + cor
RV 1+ (s — t e y|N+2a \ 1+ |s 2ay|N+2e

3 — t 2a$ 20¢p+6
< c26 / / dyds + co7
R 1 [(25) gl

—t. N

SCQG/ (S—t) 2087%p+6( )%d8+027
t
< eopt 2P 4 g,
Combining (1.14) and ——p + 1+ 3 > —5-, we obtain that

lim ¢2a W (¢,0) = 0.

t—0t

Therefore, (4.1) holds. O
In what follows we consider the limit of the solution {ux} of (1.10) as
k — oo for p € (0,1].

Proposition 4.2 Assume that p € (0,1] and uy is the solution of (1.10),
then

Im up =00 in Que.
k—o0

Proof. We observe that Hy[do] and Hy[t? (H,[00])?] are positive in (0, 00) x
RY. By (1.9), for p € (0,1) and (t,z) € (0,00) x RY, we have that

up > kHy[00] — kPHL[t? (Ha[00])P]
— oo as k — oo.
For p = 1, it is obvious that uj = ku; and u; > 0 in (0,00) x RY, then

Im up =00 in Q.
k—o0

The proof is complete. U
Now we deal with the range p € (1,pj).
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Lemma 4.1 Let p € (1,p;) and uy be the solution of (1.10), then for any
k>0,
0<u, <U, in Qo, (4.4)

where U, is given by (1.16).

Proof. Let {f,} be a sequence of nonnegative functions in C¢(RY) that
converge to kdg in the distribution sense as n — oo, denote by wu, ; the
corresponding solution of (1.12) with initial data by f, .

We claim that
Unp <Up in Q. (4.5)

Now we assume this claim holds at this moment, then it follows that
U < Up in QOO7

where uy, is the solution of (1.10), since limy, o0 tup 1 = uy in (0,00) X RY.
Step 1. To prove lim o Un i (t, ) = 0 for any t > 0. From [10, 14], there
exists cg > 0 such that for any 2,y € RY and t € (0, 00),

_N
Cgt 2

1+ (Jo — ylt~ 2 )N+2a

Then for |z| > 1,

OSHa[fn,k](t’x) < C8t_2]\;/ fmk(y)l
R 1 (Jr —yft )V

fn,k(m - Zti)
RN 1_|_|Z|N+2a

1 1
xr — zt2a xr — zt2a
= cg / —fn,k( N2 )dz + —fn,k( Ni2a ) dz ,
RM\Br 1+ 7| Br 1+]7|

where R = %]w\t_ﬁ and Br = {z € RY : |z| < R}. It is obvious that

|z — zt2a| > |z| — |2|t2a > |2|/2 for all 2 € Bp.
Then

1
In k(x - Zt%) 1
7—dZ S sup f 7k(y) 7d2
Bgr 1+ ’Z‘N—’—Z& MZ% " Bgr 1+ ’Z‘N—’—Z&

1
< ———d
= sul‘)x‘ T (y) /RN 1+ 2N+ z
‘y|27

C25 Sup fn,k (y)
Jy|> 121
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and

1
< o vioa 4z < e = ,
RN\By 1+ [2|N T2 RN\By 1+ [2|N T2 |z |2

for some co7 > 0 independent of z,¢ and R. Since f,x € C}(RY), we have
T 00 SUDy, > lsl fok(y) =0 and then 0 < u, i (¢, ) < Holfrnkl(t,z) = 0
as |x| — oo for t > 0.

Step 2. To prove (4.5). If (4.5) fails, there exists (tg, zo) € (0,00) x RY such
that

(Up - un,k)(t07 1’0) = (t,x)eg(r)l,go})xRN(Up - un,k)(t7 .%') <0,

since Up(t) > 0 = im0 unk(t,z) for any ¢ € (0,00), Up(0) = oo >
fok(@) = upk(0,2) for x € RY and lim;_,o Up(t) = lim¢ o0 upn i(t,x) =0
for z € RN. Then 0,(U, — un ) (to, x0) = 0, (—A)*(Up — tn ) (to, x0) < 0
and

Ou(Uy — 1) (to, 20) + (=) (Uy — ) (foy 0) + LU (to) — A (t0, w0) < O,
which is impossible with

0u(Up — un i) (t0, m0) + (=) (Up — un 1) (to, 20) + tgUP (to) — toul, , (to, wo)

= atUp(t()) + thII;(tQ) — {8tun7k(t0, x(]) + (—A)aumk(to, x(]) + tgui’k(to, xo)}
= 0.

The proof is complete. O

Proposition 4.3 (i) Assume that p € (O,pg) and uy, s the solution of
(1.10). Then uy is a classical solution of (1.12).

(ii) Assume that p € (1,p}) and uc is defined by (1.11). Then us is a
classical solution of (1.12).

Proof. (i) Since u < kHy[do], then it infers that uy is bounded in (T, co) x
RN with Ty > 0. Let {gn.x} be a sequence of nonnegative functions in
C&(RN ) that converge to kdy in the distribution sense as n — oo and wuy,
the corresponding solution of (1.12) with initial data g, . Then Hy[gy, 1] —
kH,[60] as n — oo uniformly in [Ty, o0) x RY for any Ty > 0 and by Com-
parison Principle, there exists cog > 1 such that

0< un,k(tax) < kHa[gn,k] < C28kHa[6O] in [TO, OO) x RN

and there exists o € (0,1) such that {w,} are uniformly bounded with
respect to n in Ct%’g((To, o0) x RY) with Ty > 0. Therefore, by the Arzela-

!

Ascoli theorem, u,, j, converges to uy, in Cf’_g’a ((Tp, 00) xRN with o’ € (0,0)

25



and then wuy, is a viscosity solution of (1.12) in (7p, 00) x RY. By estimate
(A1) in [7], ug is in C;zJI’QO‘JFJI((TO, o0) x RY) and uy, is a classical solution
of (1.12) in (Tp, 00) x RY.

(79) The proof is the same as part (i) just replacing uy < kH,[do] by
Uso < Up. O

5 Self-similar solution when p € (1,1 + 2a(11v+6)>

5.1 Non-flat self-similar solution for p € (1+ 2%}:2“5), 1+ QG(}V”LB))

By Theorem 1.1 and (4.4), we see that {uy} are a sequence of nonnegative
and increasing functions and controlled by function U, defined in (1.16),then
for p € (1, pg), the limit of ug as k — oo exists and unique, then we denote
it by uso, see (1.11). By Proposition 4.3 (i) and (4.4), us is a classical
solution of (1.12) and

Uso < Up In Qoo (5.1)

Proposition 5.1 Assume that p € (1,pj) and ue is defined in (1.16).
Then us is a self-similar solution of (1.12).

Proof. For A > 0, we denote

B 2a(1+8) 2,
ax(t,x) = A =1 ur (At Ax),  (t,7) € Qoo-

By direct computation, we have

ata)\(t’ x) + (_A)a&)\(ta CC) + tﬁal))\(t’ CC)
2ap(1+8)

=N [Quup (A2, Ax) 4 (—A) g (A2, Ax) + tPub (A2, Ax)]
=0. (5.2)

Moreover, for f € Co(RV)

(@(0,),f) = N7 lim [ w3 \a) f(a)da

t—0t JpN

2a(148)
= A » 1V lim uk()\Qat,z)f(i)dz

t—0t JRN
2a(148) _N

— A Ve, (5.3)
where % — N > 0 by the fact of p € (1,p;§). Thus,

2a(14-8)
ix(0,) = A"t Vksy in RY.

26



2a(148)
By (5.3), ¥ 240148, is a unique solution of (1.12) with initial data A »~1 Nkéo,
kX p—T

then by (5.2) it infers that for (¢,2) € Qoo,

2a(148) 2%
A Pl (A ) = ap(t,z) = u 2(1(1%{3)71\7(26,33) (5.4)
kX P~

and letting k — oo we have that

2a(14-8) 9
Uoo(t, ) = NP1 use (A, Ax), (t,z) € Quo,

which implies that us is a self-similar solution (1.12). O
Let us denote
Uso(2) = uso(1, 2), zeRY
and we observe that U is a classical solution of (1.15). It is obvious that the
(E2)o

constant r-1 is a trivial positive classical solution of (1.15). We observe

that N < w < N+2aforpe(1+ N(Hﬁ),pﬁ). To be convenient, we
introduce the auxiliary function

_1+8
wa(t,z) = M tw(t 2 z)),,  (£2) € Qoo (5.5)
where w(s) = llofgi\,—fji with e is the natural number.

Lemma 5.1 Assume that p € (1 + N(rgg),pﬁ) and wy is defined by (5.5).

Then there exists Ay > 0 such that for A > Ag,
Aywy(t, o) + (—A)%wy (t,x) + tPwl (t,x) >0, V(t,z) € Q. (5.6)

Proof. By direct computation,

AN1+8), 184 A8

dyw (t, ) = — 1 Lt 2e |a|) — ot et ! (¢ 2 |||t 2e
hw (¢, z) o1 L w(t™ |z]) = 5=t (t™2a |z|)[t™ 20 2

and
148

(—=A)wy(t, ) = X7 1 H(—A) w(t 2 |z,
which implies that

Oy (t, z) + (—A)*wy(t, x) + tPuh (t, z) (5.7)
= AT ) - gl - ) £ 0|

where s = |z| with z = 20z,
For s > 0, by the direct computation, we obtain that

1 1+ w(s) = [N—{—Qoz sN+2a 1+8 s2(e+s2)71
p—1

_ / _— J—
wi(s)s 200 1+ sVNt2 p—1  alogle + s?)

} w(s).
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. . N+2a .
Since % > ;%f, limg o0 73orszs = 1 and limg o m = 0, then
there exists Ry > 0 and op > 0 such that
1 1
_gw/(s)s - p—i_ffw(s) > oow(s), s > Ro. (5.8)

For |z| > 2, by the definition of fractional Laplacian, we have that

log(e+[z+9[*) | log(e+|z—3|*) _ 2log(et|2|*)

1 1+|Z+§‘N+2°‘ + 1+|z—zﬂN+2°‘ 1+|Z|N+2a ~
—_(—=A® . d
( )Y w(|z]) 2 Jan || N+2a Y
w(lZl)/ L. (y)
= d 5.9
2N Joo Ty Y (59)
where
L) L2 log(e  [2Ples +u)
2\Y 1+ |Z|N+2a|ez +y|N+2a log(e+ |z|2)
L 1AV logle|2Ple. —y)
1+ |[z|N+2a)e, — y|N+2a log(e + |z/?)

and e, = ﬁ
To estimate that there exists cog > 0 such that

z(y) €29
TiNa Y < — (5.10)
/B%(—ez)uB%(ez) [Nz = w(l=]) |

In fact, for y € Bi(—e,), there exists c3p > 0 such that
2

4V doget [Pl —uP) _
L+ [N F2ofe, —y[NF20 " log(e+ [22)  — 0
and then
1
/ L@) . < WN/Q 1+ [o]VH2e log(e+!z\27"2)rzv_1dr+631
pyen WYL T el Toge + [2P)
WN /‘x’ tN_llOg(6+t2)dt+c
w([z)[zIN Jo 1 4 tN+2a o
C32
w(|z])|z[V

where c31,c32 > 0 and the last inequality holds since w(|z|)|z|Y — 0 as
|z| = oo.

L(y) / 1. (y) C32
dy = dy < .
/B (ez) Y[V T2 By (—e) Y[V T2 w(|z])] 2V

1 1
2 2
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To estimate that there exists cgz3 > 0 such that

L (y)
dy < C33. (511)
/B%(O) |y| VA2

Indeed, since function I, is C? in B1(0) such that
2

I,(0) =0, I.(y)=1IL(-vy),
then VI,(0) = 0 and there exists ¢34 > 0 such that
ID’L(y)| <31, y€ B4(0).

Then we have
L(y) <caalyl®, ye B%(O),

which implies that

L(y) ly|?
—vandy < 634/ o dy < e33.
/B (o) |y|N+2e B, (0) [yl T2

1 1
2 2

To estimate that there exists ¢ > 0 such that

L(y)
/A V2 dy <c, (5.12)

where A = RN\ (B%(O) UB%(ez) UB%(—ez)). In fact, for y € A, we observe

that there exists cg5 > 0 such that I, (y) < ¢35 and

L. (y) / C35
dy < s < €36,
/A |y|VH-2e RV\B, (0) |y| N2

for some c3g > 0. Therefore, by (5.7)-(5.12), there exists cg7 > 0 such that

« C37

By (5.8) and (5.13), there exists Ry > Ry + 2 such that for |z| > Ry,

1 1
(=) w(el) = g (Dla] - =R ulel) 2 avlll) - T

= w(]z)) (Uo - bg(:%>

> 0.

For |z| < Ry, it is obvious that there exists c3g > 0 such that

(-8 u(lz) - 5w’ (=Dla] - - Hwel) 2 —eas
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Then there exists Ag > 0 such that for A > Ay,

1 1
(=) w(ll) = 5w/ (elel = S 2wz + 3 ur(a) 20, s e RY,
(5.14)
which together with (5.7), implies that (5.6) holds. O

Lemma 5.2 Assume that p € (1 + ]\,(41_42_5),]95) wp, 1S giwen in (5.5) and
Uso 1S given in (1.11). Then

Uso(t,x) S wp,(t, ), (t,2) € Qoo (5.15)

In particular,
Uoo(0,2) =0, xRV {0}. (5.16)

Proof. Let us denote

kolog(e + r2
fo(r) = %, r>0 and foi(z) =kn® fo(n|z]), = € RY,
where .
®logle+12) v 1.1
ko = [WNA mr dr .

Then for any 1 € Co(RY), we have

lim (fpx,n) = k lim nN/ fo(n|z|)n(z)dx

n—oo n—oo
= k lim fo(lz|)n ( )dx
n—oo R
= kn(0).
Let t,, = n~2 and then
1
~ 8 90g (e + (t, > |z])? 20048) log (e + (n|z|)?
way(tn, ®) = Aotn” ' ( 7(in =1)°) = Agn 771 14‘(( ‘(’)J’V—I—)Za)
1+ (t, 2 |z])N+20 nix
Ay 22048) +5) _ N
= 0N ()
0
AO 2a(1+8) _N
> k—on -1 N fo(nfa]) = fos (@),
2a(1+B) _ 20(14B)
where n < n and kj = Agn »-1 . We see that kj = Agnn »—1 — 00

as 1 — 0o, since % N > 0. Let uy,, be the solution of (1.12) with
the initial data f, ;.. By Lemma 5.1, wa,(- + t,-) is a super solution of
(1.12) with the initial data wa, (¢, ), that is, for (t,2) € Qo,

Owp(t + tn, ) + (—A) W (t + tn, ) + (t + ) Wk (¢ + ty,x) > 0.
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By Comparison Principle,
o (0,2) < g+ @), (£,2) € Qs
for any n < n. Then taking n — oo, implies that
ug, (t, ) <wp,(t,z), (t2) € Qo (5.17)

where wuy, is the solution of (1.12) with kzdp initial data. We derive (5.15)
by taking n — oc.
In particular, the argument (5.16) follows by the fact of

lim wp,(t,z) =0, x € RN\ {0}.
t—0+

The proof is complete. O

Lemma 5.3 Assume that p € (1,p2§), then there exists csg > 0 such that

1+8
ot
Uso(t, ) > — 3" . V(t,z) € (0,1) x RY. (5.18)
1_|_ |t*%x|N+2a

Proof. We divide the proof into several steps.
Step 1. Let 00:1—1—5—%(]9—1) >0,

nt)=2-1t°, t>0

and denote
ve(t, z) = en(t)To(t, ),
where Ty, is the solution of (1.13).
In this step we prove that there exists ¢y > 0 such that

Ugy > Ve, in (0,1) x RY, (5.19)

where kg = 2¢p and ug, is the solution of (1.12) with initial data kodo.
Indeed,
Opve(t, ) = en ()T a(t, ) + en(t)OTa(t, z)

and

(_A)ave(tv 1‘) - En(t)(_A)ara(t7 .%'),

Let Fl(t_ﬁx) = Fa(l,t_ﬁx), then there exists g > 0 such that for any
e < ¢ and (t,z) € (0,1) x RV

Ove(t, z) + (—A)Yve(t, x) + tﬁvf(t, z)
= af (O STy () + P (O ST )
< —eopt" BT IFOOD, (3w g) + QPEPt—%p—I—Ble)(t—%x)
<0

)
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the last inequality holds since —% —1409= —%p +  and I'y is bounded.
In particular, we have that

Oveo (t, ) + (—A) ey (L, ) + 702 (t,2) <0, V(t,z) € (0,1) x RY. (5.20)

Let fn(z) = vey(tn, ) with ¢, = n=2%. Since lim;_,o+ n(t) = 2, then we
have that f,, — 2690y as n — oo in the distribution sense. There exists
No > 0 such that t, € (0, %) for n > Ny. Let w, be the solution of (1.12)
with initial data f,, then it infers that

Wy (t, ) > ve, (t+ o, x),  (t,2) € (0,1 —t,) x RY
By the uniqueness of ug,, we have
w, = up, as n—oo in (0,1) x RY

and
lim v, (t 4 tn, ©) = v, (t,2),  (t,x) € (0,1) x RY,
n—o0

which imply (5.19).
Step 2. To prove (5.18). Since
Ve (t, ) > ot 2Ty (¢t 2ax), (t,2) € (0,1) x RY,

then, along with (5.4), we observe that for any A > 0,

2a(148)

U seais_(Gx) = AT g (A M)
ko\ P—1
20(14+8) 9
> AP 0 (A, M)
20(148) N
> e\ 1 VTl ().
22(148) pr ﬂju ﬂ,lli
Let p= X »-1 s to = (29) 2a " p-1 gnd Tg = p2 p-1  then

0<ty,<T,—0 as p— oc.

For (t,z) € (t,,T,) x RY,

1+
Upyo(t, ) > €got 2Ty (t 20 3) > %Ot‘ﬁrl(t—i:g),

then e 1 )
Uno(t, ) > gt_ﬁfl(t_%x), (t,z) € (t,,T,) x RV,

which, choosing a sequence {0, } such that (0,1) C U(t,,,T,,), infers (5.18).
The proof is complete. U

Proof of Theorem 1.2. By Proposition 5.1 and Lemma 5.2, we have that
Uso 18 & nontrivial self-similar solution of (1.12) and (1.17) follows by (5.15),

(5.18) and log(e + |t7i3§|2) < 2log(2 + |t7ix|) The proof is complete. [
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2a(1+6))

5.2 Trivial self-similar solution for p € (1,1 + =5

For p e (1,1 + 2%_155) ), it derive from Lemma 5.3 that
lim uq(t, ) = 00, VreRY. (5.21)
t—0t

Proof of Theorem 1.4 (7). Let fo : RV — R be a nonnegative continuous
function such that

C B41(0 d =1.
supp fo 1(0) an xérg}?o) fo

Denote
Fap(@) = kn®Y fo(n’ (z — ),

where k < n” with 7 = %(M—N—Qa) > 0,0 =% and 29 € RV. Since

fap(x) <n7 for x e Bl(xo)?}n(x) =0 for z € Bf(xg) and

2a(148) _N—2a
c3gn Pl

(24 |z )2

Veo (tn,x) > x € Bi(xp),

where ¢, = n2%. Then there exists Ny > 0 such that for any n > Ny

fn,k(x) < er(tn,x), T e Bl(xo).

Since nN fo(n?(x — 20)) — 4104y, as n — oo in the distribution sense, for
some c41 > 0.
Let wy, i be the solution of (1.12) with initial data f, and then

Wnk(0,2) = frp(x) < v (tn, @) < Uso(tn,x), € RV,
Therefore, by comparison principle
W k(6 0) < Use(t +tn, ), (t,7) € Qoo
We observe that
kl;ra[y};rgo Wy k(t,x)] = uss(t, — z0), (t,2) € Qoo-
Thus, we derive that
Uso(t, 2 — x0) < Uso(t,x), (t,) € Quo- (5.22)

By changing the role of zy and 0 in (5.22), we have that

Uso (B, — 0) = Uso(t, ),  (t,2) € Quo,
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which implies that ue, is independent of x. Combining (5.1) and (5.18),
implies that

1 148 _14P
uoo:( +/8)p_lt Pl
p—1
The proof is complete. O
In the case of p =1+ Q%i;(f ), it derive from Lemma 5.3 that
=
c P c
liminf ueo (¢, ) > lim 9 = ;’im, Ve € RY.
t—0+ =0t 1 4 [t~ 2ag|N+20 2]

Proof of Theorem 1.4 (ii). We note that us is a self-similar solution of
(1.12). Moreover, we derive (1.19) by (5.18), ends the proof. O

6 Uniqueness of self-similar solution when p € (1+

2a(1+4) 2a(1+)
?{7+204 ’1 + CYN )

Theorem 1.3 will be proved by contradiction. We first introduce some aux-
iliary lemmas.

20(148)
Lemma 6.1 Assume that p € (1+ “Fi5.7,

self-similar solution of (1.18). Then either

1+ 2a(]1\[+5)) and U is a positive

or
U=Up In Qo (6.2)

Proof. For any r > 0, we have that

_1+8 1
/ u(t,x)de = t »T a(1,t" 2ax)dx
B (0) B,-(0)
8
T a(1,2)dz

_ 48, N
>t p1+2a/ a(1,z)dz
B1
— 400 ast—0T,

where last inequality holds for ¢ € (0,72%]. Let {e,} be a sequence positive
decreasing numbers converging to 0 as n — oo. For ¢, and k& > 0, there
exists t,, , > 0 such that

/ Wty i, x)dr = k.
Bey, (0)
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We observe that for any fixed k, ¢, — 0 as n — oo since lim,,_, €, = 0.
Let 19 : RNV — [0,1] be a C? function such that suppng C B2(0), ng = 1 in
B1(0) and 0, (x) = no(e, z) for x € RY. Choosing {f,x} be a sequence of
C? functions such that

0 < for(@) < nu(@)i(typ,z), RN
and
fnk —kdyp as n — oo.
Let u, ; be the solution of (1.1) with initial data f, s, then
up(t,x) <ultpr +t,2), (t,7) € Qu

and by uniqueness of uy, limy, o U = ug, where uy, is the solution of (1.1)
with initial data kdy. Then for any k, we have up < 4 in @, which implies
that

U > Usp N Qoo

Now we assume there exists (tg, zg) € Qoo such that
u(to, zo) = uso(to, o).
Since 4 and uy, are self-similar, then
(t,xg) = uoo(t, o), t>0.

Now for any ¢t > 0, w(t,-) = u(t, ) — us(t,-) achieves the minimum at x.
Combining with dyw(t,zo) = 0 and tPaP(t, zg) = tPuB(t, 20), we derive that
(—A)*w(t, zp) = 0, which implies that

a(t,") = uso(t,-) in RV,
Then @ = us in Qo. The proof is complete. O

Lemma 6.2 Assume that p € (1 + 2%(}55) , 1+ 2a(]1\,+5)) and U 1s a positive

self-similar solution of (1.18). Then for any € > 0, there exists A\c > 1 such
that for any X > A,

i< Moo +€ in [1,00) x RY =: Q. (6.3)
Proof. For ¢ > 0, there exists R, > 0 such that
u(l,z) <e, € Bg(0).

Then there exists o9 > 0 such that us(1,2) > o for z € Bg(0). By
continuity of @(1,-), there exists Ac > 1 such that a(1,z) < Acuso(1,x) for
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x € Bg,(0). Then @(1,2) < Atoo(1,2) + € for 2 € RV, By the definition of
self-similar solution,

_ 148
a(t,r) < Aduoo(t,z) +et p-1
< Aeuoo(t, x) + €, (t, x) € Ql’
which ends the proof. U

Proof of Theorem 1.3. Let @ be a positive self-similar solution of (1.18).
By Lemma 6.1, 4@ > U in Qo OF U = Use N Qoo. Our aim is to rule out
the case @ > U in Q- To this end, for € € (0, 1] we denote

Ac=min{l € [1,00) : @ < M + € in Q1}.

It follows by Lemma 6.2 that )\, is well-defined and A, < A..
We first claim that

A, =1 forany e € (0,1]. (6.4)

In fact, if (6.4) fails, then there exists ¢y € (0, 1] such that A, > 1.
Step 1. To prove A, uso + €9 > 4 in Q1. By continuity, we see that A\, ue +
€0 > @ in Q1. If there exists (tg,z) € Q1 such that

Ao loo (o, o) + €0 = U(to, xo)-
Let w = A Uco +€0 — . Since g > 0, there exists Ry such that u(to, r) < €o

for z € Bf , then w achieves the minimum at (¢o, o) then dyw(to, zo) = 0,
tg()\ uoo(to, 1‘0) + eo)p = tgﬂp(to, 1‘0) and

AT

w(to, zo + )

N2 dy < 0.

(~A) o, 0) = - |

RN

Thus, we obtain a contradiction, since A, us + € is a super solution of
(1.12) and @ is a solution of (1.12).

Step 2. To prove that there exists o € (0, —1) such that (A, —0)too+
€0 >u Ql'

For €g > 0, there exists Rg such that @(1,z) < ¢ for x € By (0). By Step
1, 4(1,x) < A, uso(1,2) + € for z € RN, then there exists 0 € (0,A,, — 1)
such that

a(1,2) < Ayuoo(1,2) + €0 — ouse(1,0), z € Bp,(0).
Then we have
i(1,2) < (A — 0)uso(l,2) + €0, x€RY.
By Comparison Principle, we have

a(t,x) < (A, — 0)Uoo(t, ) + €0, (t,7) € Qu,
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which contradicts the definition of A, . Therefore, (6.4) holds.

By (6.4), we have @t < uy, + € in @7 for any € > 0. Taking ¢ — 0, we

derive that

U< Uy In Q1

and then it follows by Lemma 6.1 that @ = s in Quo. (]
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