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Abstract

We study the existence and uniqueness of weak solution to (F)
∂tu + (−∆)αu + h(t, u) = 0 in (0,∞) × R

N , is given by the initial
condition u(0, ·) = ν in R

N , whereN ≥ 1, the nonlocal operator (−∆)α

denotes the fractional Laplacian with α ∈ (0, 1), ν is a bounded Radon
measure and h : (0,∞)× R 7→ R is a continuous function satisfying a
subcritical integrability condition.

In particular of h(t, u) = tβup with β > −1, there exists a unique
solution uk to (F) with ν = kδ0, where δ0 is the Dirac mass at the
origin. We obtain that uk → ∞ in (0,∞)×R

N as k → ∞ for p ∈ (0, 1]

and the limit of uk exists as k → ∞ when p ∈ (1, 1 + 2α(1+β)
N

), in

this case denoting it by u∞. When p ∈ (1 + 2α(1+β)
N+2α , 1 + 2α(1+β)

N
), u∞

is the unique self-similar solution of (F )∞ ∂tu + (−∆)αu + tβup = 0
in (0,∞) × R

N with the initial condition u(0, ·) = 0 in R
N \ {0}.

When p ∈ (1, 1+ 2α(1+β)
N+2α ), u∞ is a trivial self-similar solution to (F )∞,

precisely,

u∞(t, x) = (
1 + β

p− 1
)

1
p−1 t−

1+β
p−1 , (t, x) ∈ (0,∞)× R

N .
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1 Introduction

Let h : (0,∞) × R 7→ R be a continuous function and Q∞ = (0,∞) × R
N

with N ≥ 1. The first object of this paper is to consider the existence and
uniqueness of weak solution to semilinear fractional heat equation involving
initial measure data

∂tu+ (−∆)αu+ h(t, u) = 0 in Q∞,

u(0, ·) = ν in R
N ,

(1.1)

where ν ∈ M
b(RN ) the bounded Radon measure space and the fractional

Laplacian (−∆)α with α ∈ (0, 1) is defined by

(−∆)αu(x) = lim
ǫ→0+

(−∆)αǫ u(x),

here for ǫ > 0,

(−∆)αǫ u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χǫ(|x− z|)dz

and

χǫ(r) =

{
0, if r ∈ [0, ǫ],

1, if r > ǫ.

In the pioneering work, Brezis and Friedman [4] have studied parabolic
equation involving initial measure data

∂tu−∆u+ up = 0 in Q∞,

u(0, ·) = kδ0 in R
N ,

(1.2)
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where k > 0 is a constant and δ0 denotes the Dirac mass at the origin. They
asserted that if 1 < p < (N + 2)/N , then for every k > 0 there exists a
unique solution uk to (1.2). When p ≥ (N + 2)/N , problem (1.2) has no
solution. Later on, Brezis, Peletier and Terman in [5] made use of dynamic
method to obtain that there exists a unique very singular solution us to

∂tu−∆u+ up = 0 in Q∞,

u(0, ·) = 0 in R
N \ {0}

(1.3)

with 1 < p < (N + 2)/N . In addition the asymptotic behavior of us(1, ·) as
|x| → ∞ is given by

us(1, x) = c1e
− 1

4
|x|2 |x|

2
p−1

−N
{1−O(|x|−2)},

where c1 is a certain positive constant. From then on, Kamin and Peletier
in [18] built the connection that the weak solution uk convergence to the
very singular solution us as k → ∞. Marcus and Véron [23], Al Sayed and
Véron in [2] obtained the very singular solution of (1.3) replaced up by tβup

with β > −1 and p ∈ (1, 1+ 2(1+β)
N ). The initial trace of nonlinear parabolic

equations with general Radon measure and general nonlinearity

∂tu−∆u+ h(t, u) = 0 in (0,T) × Ω,

u = 0 in (0, T ) × ∂Ω,

u(0, ·) = ν in Ω,

(1.4)

where Ω is a domain in R
N and T > 0, has been well studied by Marcus and

Véron. In [21, 22], they proved the existence and uniqueness of solutions
to (1.4). Therein, the very singular solution plays a fundamental role in
dealing with the initial trace and they used dichotomy argument to make
classification to the initial trace of the solutions to (1.4).

Motivated by great applications in physics and by important links on the
theory of Lévy process, semilinear fractional equations has been attracted
much interest in last few years, and see the references [6, 7, 8, 9, 11, 14, 15,
16]. Recently, in [12] we obtained existence and uniqueness of weak solution
to semilinear fractional elliptic equation

(−∆)αu+ f(u) = ν in Ω,

u = 0 in Ωc,
(1.5)

when ν is Radon measure and f satisfies a subcritical integrability condition.
Our purpose of this paper is to consider the existence and uniqueness of

solutions to semilinear fractional heat equation (1.1) in the measure frame-
work. We observe that most of the techniques used in the case of the Lapla-
cian are not available. First, we make precise the notion of weak solution of
(1.1) that we will use in this note.
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Definition 1.1 We say that u is a weak solution of (1.1), if for any T > 0,
u ∈ L1(QT ), h(t, u) ∈ L1(QT ) and

∫
QT

{u(t, x)[−∂tξ(t, x) + (−∆)αξ(t, x)] + h(t, u)ξ(t, x)} dxdt

=
∫
RN ξ(0, x)dν −

∫
RN ξ(T, x)u(T, x)dx, ∀ξ ∈ Yα,T ,

(1.6)

where QT = (0, T )×R
N and Yα,T is a space of functions ς : [0, T ]×R

N 7→ R

satisfying

(i) ‖ς‖L1(QT )+ ‖ς‖L∞(QT ) + ‖∂tς‖L∞(QT ) + ‖(−∆)ας‖L∞(QT ) < +∞;

(ii) for t ∈ (0, T ), there exist M > 0 and ǫ0 > 0 such that for all
ǫ ∈ (0, ǫ0], ‖(−∆)αǫ ς(t, ·)‖L∞(RN ) < M.

Before stating our first main theorem, we introduce the subcritical inte-
grability condition for the nonlinearity h, that is,

(H) (i) The function h : (0,∞) × R → R is continuous and for any
t ∈ (0,∞), h(t, 0) = 0 and h(t, r1) ≥ h(t, r2) if r1 ≥ r2.

(ii) There exist β > −1 and a continuous, nondecreasing function
g : R+ 7→ R+ such that

|h(t, r)| ≤ tβg(|r|), ∀(t, r) ∈ (0,∞) × R

and ∫ +∞

1
g(s)s−1−p∗

βds < +∞, (1.7)

where

p∗β = 1 +
2α(1 + β)

N
. (1.8)

Denote by Hα : (0,∞)×R
N ×R

N → R+ the heat kernel in (0,∞)×R
N

with homogeneous boundary conditions and by Hα[ν] the heat potential of
ν ∈ M

b(RN ), defined by

Hα[ν](t, x) =

∫

RN

Hα(t, x, y)dν(y).

We state the first theorem as follows.

Theorem 1.1 Assume that ν ∈ M
b(RN ) and the function h satisfies (H).

Then problem (1.1) admits a unique weak solution uν such that

Hα[ν]−Hα[h(t,Hα[ν+])] ≤ uν ≤ Hα[ν]−Hα[h(t,−Hα[ν−])] in Q∞, (1.9)

where ν+ and ν− are respectively the positive and negative part in the Jordan
decomposition of ν. Furthermore,
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(i) if ν is nonnegative, so is uν ;

(ii) the mapping: ν 7→ uν is increasing.

According to Theorem 1.1, there exists a unique positive weak solution
uk to fractional problem

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

u(0, ·) = kδ0 in R
N

(1.10)

where β > −1, k > 0 and p ∈ (0, p∗β). It is of interest to investigate the limit
of uk as k → ∞ for p ∈ (1, p∗β), which exists since {uk} are an increasing

sequence functions and bounded by (1+β
p−1 )

1
p−1 t−

1+β

p−1 . We denote the limit u∞
by

u∞ = lim
k→∞

uk in Q∞. (1.11)

In fact, u∞ and {uk}k>0 are classical solutions to equation

∂tu+ (−∆)αu+ tβup = 0 in Q∞. (1.12)

See Proposition 4.3.

Definition 1.2 (i) A solution u of (1.12) is called a self-similar solution if

u(t, x) = t
− 1+β

p−1u(1, t−
1
2αx), (t, x) ∈ Q∞.

(ii) A solution u of (1.12) is called a very singular solution if

lim
t→0+

u(t, 0)

Γα(t, 0)
= +∞,

where Γα is the fundamental solution of

∂tu+ (−∆)αu = 0 in Q∞,

u(0, ·) = δ0 in R
N.

(1.13)

We remark that for p ∈ (1, p∗β), a self-similar solution u of (1.12) is also a
very singular solution, since

lim
t→0+

Γα(t, 0)t
N
2α = c2, (1.14)

for some c2 > 0. For any self-similar solution u of (1.12), v(x̃) := u(1, t−
1
2αx)

with x̃ = t−
1
2αx is a solution of

(−∆)αv −
1

2α
∇v · x̃−

1 + β

p − 1
v + vp = 0 in R

N . (1.15)
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It is obvious that (1+β
p−1 )

1
p−1 is a trivial solution of (1.15) and then the function

Up(t) := (
1 + β

p− 1
)

1
p−1 t−

1+β

p−1 , t > 0 (1.16)

is the flat self-similar solution of (1.12). From Proposition 4.1, uk is not
self-similar solution of (1.12). Therefore, our second goal in this paper is to
search for non-flat self-similar solution of (1.12).

Theorem 1.2 Assume that β > −1, u∞ is defined by (1.11) and

p ∈ (p∗∗β , p∗β).

where p∗∗β = 1 + 2α(1+β)
N+2α and p∗β = 1 + 2α(1+β)

N . Then u∞ is a positive

self-similar solution of (1.12) with initial data u(0, ·) = 0 in R
N \ {0}.

Moreover, there exists c3 > 1 such that

c−1
3

1 + |x|N+2α
≤ u∞(1, x) ≤

c3 log(2 + |x|)

1 + |x|N+2α
, x ∈ R

N . (1.17)

When p ∈ (p∗∗β , p∗β) with β > −1, we observe that u∞ and Up are self-
similar solutions of (1.12) and u∞ is not flat. An interest is to obtain the
uniqueness of non flat self-similar solution of (1.12). We may propose our
uniqueness for self-similar solution to

∂tu+ (−∆)αu+ tβup = 0 in Q∞,

lim|x|→∞ u(1, x) = 0.
(1.18)

Theorem 1.3 Assume that p ∈ (p∗∗β , p∗β) and u∞ is defined by (1.11), then
u∞ is the unique positive self-similar solution of (1.18).

We note when u is self-similar, lim|x|→∞ u(1, x) = 0 is equivalent to
lim|x|→∞ u(t, x) = 0 for any t > 0. Finally, we state the properties of u∞
when p ∈ (1, p∗∗β ] as follows.

Theorem 1.4 (i) Assume that p ∈ (1, p∗∗β ) and u∞ is defined by (1.11).
Then u∞ is the flat self-similar solution of (1.12), that is,

u∞ = Up,

where Up is given by (1.16).
(ii) Assume that p = p∗∗β and u∞ is defined by (1.11). Then u∞ is a

self-similar solution of (1.12) such that

u∞(t, x) ≥
c4t

−N+2α
2α

1 + |t−
1
2αx|N+2α

, (t, x) ∈ (0, 1) × R
N , (1.19)

for some c4 > 0.
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We note that Theorem 1.4 indicates that there is no self-similar solution
of (1.12) with initial data u(0, ·) = 0 in R

N \ {0}, since u∞ is the least self-
similar solution. In Theorem 1.4 part (ii), we don’t know if the self-similar
solution is flat or not.

According to theorems above, we make a summary for problem (1.15)
as follows:

Remark 1.1 (i) When p ∈ (p∗∗β , p∗β), problem (1.15) under the condition
lim|x|→∞ v(x) = 0 admits a unique positive solution.

(ii) When p ∈ (1, p∗∗β ), problem (1.15) under the condition lim|x|→∞ v(x) =
0 has no any positive solution.

This paper is organized as follows. In Section 2 we obtain that

‖HΩ
α [|ν|]‖Mp∗

β (QΩ
T
,tβdxdt)

≤ c5‖ν‖Mb(Ω)

and the Kato’s type inequality for the non-homogeneous problem. In Section
3 we prove Theorem 1.1. Section 4 is devoted to investigate the properties
of solutions to (1.10). In Section 5 we give the proof of Theorem 1.2 and
Theorem 1.4. Finally, we put the uniqueness of self-similar solution when
p ∈ (p∗∗β , p∗β) in the section 6.

2 Linear estimates

2.1 The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 2.1 Let Θ ⊂ R
N+1 be an open domain and µ be a positive Borel

measure in Θ. For κ > 1, κ′ = κ/(κ − 1) and u ∈ L1
loc(Θ, dµ), we set

‖u‖Mκ(Θ,dµ) = inf{c ∈ [0,∞] :

∫

E
|u|dµ ≤ c

(∫

E
dµ

) 1
κ′

, ∀E ⊂ Θ Borel set}

(2.1)
and

Mκ(Θ, dµ) = {u ∈ L1
loc(Θ, dµ) : ‖u‖Mκ(Θ,dµ) < ∞}. (2.2)

Mκ(Θ, dµ) is called the Marcinkiewicz space of exponent κ or weak Lκ

space and ‖.‖Mκ(Θ,dµ) is a quasi-norm. The following property holds.

Proposition 2.1 [3, 12] Assume 1 ≤ q < κ < ∞ and u ∈ L1
loc(Θ, dµ).

Then there exists c6 > 0 dependent of q, κ such that

∫

E
|u|qdµ ≤ c6‖u‖Mκ(Θ,dµ)

(∫

E
dµ

)1−q/κ

,

for any Borel set E of Θ.
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For an open regular domain Ω in R
N , we denote HΩ

α : (0,∞)×Ω×Ω →
R+ the heat kernel in (0,∞) × Ω with homogeneous boundary conditions
and by H

Ω
α [ν] the heat potential of ν ∈ M

b(Ω), defined by

H
Ω
α [ν](t, x) =

∫

Ω
HΩ

α (t, x, y)dν(y).

When Ω = R
N , by Fourier transform, it is obvious that

Hα(t, x, y) =
1

(2π)N/2

∫

RN

ei(x−y)·ζ−t|ζ|2αdζ.

Proposition 2.2 For any β > −1 and T > 0, there exists a positive con-
stant c5 > 0 dependent of N,α, β such that for ν ∈ M

b(Ω),

‖HΩ
α [|ν|]‖Mp∗

β (QΩ
T
,tβdxdt)

≤ c5‖ν‖Mb(Ω), (2.3)

where p∗β is defined by (1.8) and QΩ
T = (0, T ) × Ω.

In order to prove this proposition, we introduce some normal notations.
For λ > 0 and y ∈ Ω, let us denote

Aλ(y) = {(t, x) ∈ QΩ
T : Hα(t, x, y) > λ} and mλ(y) =

∫

Aλ(y)
tβdxdt.

Lemma 2.1 There exists c7 > 0 such that for any λ > 1,

Aλ(y) ⊂ (0, c7λ
− 2α

N ]×B
c7λ

− 1
N
(y), (2.4)

where Br(y) is the ball with radius r and center y in R
N .

Proof. We observe that Hα(t, x, y) = t−
N
2αΓα(1, (x − y)t−

1
2α ), where Γα is

the fundamental solution of (1.13). From (1.1) in [10], there exists c8 > 0
such that

Γα(1, z) ≤
c8

1 + |z|N+2α
.

On the one hand, for (t, x) ∈ Aλ(y), we have that

t−
N
2αΓα(1, 0) ≥ t−

N
2αΓα(1, (x− y)t−

1
2α ) > λ,

which implies that

t < Γ
2α
N
α (1, 0)λ− 2α

N . (2.5)

On the other hand, letting r = |x− y|,

c8t

t1+
N
2α + rN+2α

≥ t−
N
2αΓα(1, (x− y)t−

1
2α ) > λ,
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then
r ≤ (c8tλ

−1)
1

N+2α , (2.6)

which, together with (2.5), implies that

r ≤ c9λ
− 1

N ,

for some c9 > 0. �

Proof of Proposition 2.2. By Lemma 2.1, there exists c10 > 0 such that

mλ(y) ≤ c10λ
−1− 2α(1+β)

N .

We observe that
HΩ

α (t, x, y) ≤ Hα(t, x, y). (2.7)

Then for any Borel set E ⊂ QΩ
T and y ∈ Ω, we have that

∫

E
HΩ

α (t, x, y)t
βdxdt ≤ λ

∫

E
tβdxdt+

∫

Aλ(y)
Hα(t, x, y)t

βdxdt

and
∫
Aλ(y)

Hα(t, x, y)t
βdxdt = −

∫ +∞
λ sdms(y)

= λmλ(y) +
∫ +∞
λ ms(y)ds

≤ c10λ
− 2α(1+β)

N + c10
∫ +∞
λ s−1− 2α(1+β)

N ds

≤ c11λ
−

2α(1+β)
N ,

where c11 = c10[1 +
N

2α(1+β) ]. As a consequence, we have that

∫

E
HΩ

α (t, x, y)t
βdxdt ≤ λ

∫

E
tβdxdt+ c11λ

−
2α(1+β)

N .

Taking λ = (
∫
E tβdxdt)

− N
N+2α(1+β) , we obtain that

∫

E
HΩ

α (t, x, y)t
βdxdt ≤ (c11 + 1)(

∫

E
tβdxdt)

2α(1+β)
N+2α(1+β) . (2.8)

By Fubini’s theorem, we have that
∫

E
H

Ω
α [|ν|](t, x)t

βdxdt =

∫

E

∫

Ω
HΩ

α (t, x, y)d|ν(y)|t
βdxdt

=

∫

Ω

∫

E
HΩ

α (t, x, y)t
βdxdtd|ν(y)|,

which, together with (2.8), implies that
∫

E
H

Ω
α [|ν|](t, x)t

βdxdt ≤ (c11 + 1)‖ν‖Mb(Ω)(

∫

E
tβdxdt)

2α(1+β)
N+2α(1+β) .

9



Thus,

‖HΩ
α [|ν|]‖

M1+
2α(1+β)

N (QΩ
T
,tβdxdt)

≤ (c11 + 1)‖ν‖Mb(Ω),

which ends the proof. �

2.2 Non-homogeneous problem

The following proposition is the Kato’s type estimate which is essential
tool to prove the uniqueness of solution to (1.1). For T > 0, we denote
QT = (0, T ) ×R

N .

Proposition 2.3 Assume that µ ∈ L1(QT ) and ν ∈ L1(RN ). Then there
exists a unique weak solution u of the problem

∂tu+ (−∆)αu = µ in QT ,

u(0, ·) = ν in R
N

(2.9)

and there exists c12 > 0 such that

∫

QT

|u|dxdt ≤ c12

∫

QT

|µ|dxdt+ c12

∫

RN

|ν|dx. (2.10)

Moreover, for any ξ ∈ Yα,T , ξ ≥ 0, we have

∫
QT

|u|{−∂tξ + (−∆)αξ}dxdt+
∫
RN |u(T, x)|ξ(T, x)dx

≤
∫
QT

ξsign(u)µdxdt+
∫
RN ξ(0, x)|ν|dx.

(2.11)

To prove Proposition 2.3, we introduce following notations. We say that

u : QT 7→ R is in Cσ,σ′

t,x (QT ) for σ, σ
′ ∈ (0, 1) if

‖u‖
Cσ,σ′

t,x (QT )
:= ‖u‖L∞(QT ) + sup

QT

|u(t, x)− u(s, y)|

|t− s|σ + |x− y|σ′ < +∞

and u ∈ C1+σ,2α+σ′

t,x (QT ) if

‖u‖
C1+σ,2α+σ′

t,x (QT )
:= ‖u‖L∞(QT )+‖∂tu‖Cσ,σ′

t,x (QT )
+‖(−∆)αu‖

Cσ,σ′

t,x (QT )
< +∞.

Lemma 2.2 Let µ ∈ C1(QT ) ∩ L∞(QT ), ν ∈ L∞(RN ) and u is a solution
of problem (2.9), then there exists σ ∈ (0, 1) such that u ∈ C1+σ,2α+σ

t,x in

(T0, T )×R
N for any T0 ∈ (0, T ).

In particular, if ‖D2ν‖L∞(RN ) + ‖(−∆)αν‖C1−α
x (RN ) < ∞, we have u ∈

C1+σ,2α+σ
t,x (QT ).
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Proof. Step 1. When ‖D2ν‖L∞(RN ) + ‖(−∆)αν‖C1−α
x (RN ) < ∞, it follows

directly by [7, (A.1)] that u ∈ C1+σ,2α+σ
t,x (QT ).

Step 2. When ν ∈ L∞(RN ), we use [8, Theorem 6.1] to obtain that

u ∈ C
σ
2α

,σ
t,x (QT ) for some σ > 0. For any T0 ∈ (0, T ), let η : [0, T ] → [0, 1] be

a C2 functions such that η = 0 in [0, T0
4 ] and η = 1 in [T0, T ] and v = ηu in

QT . Then we obtain that for t ∈ [T0
4 , T ] and x ∈ R

N ,

∂tv + (−∆)αv = ηµ+ η′(t)u,

where ηµ + η′(t)u ∈ C
σ
2α

,σ
t,x (QT ) and v(0, ·) = 0 in R

N , Then we apply

argument in Step 1 to obtain that v ∈ C1+σ,2α+σ
t,x (QT ). Therefore, u is

C1+σ,2α+σ
t,x in (T0, T )× R

N . The proof is complete. �

Lemma 2.3 (i) Let µ ∈ C1(QT ) ∩ L∞(QT ) and ν ∈ C1(RN ) ∩ L∞(RN ),
then problem (2.9) admits a unique solution u and for some σ ∈ (0, 1), u is
C1+σ,2α+σ
t,x in (T0, T )× R

N for any T0 ∈ (0, T ).

(ii) Assume that µ ∈ C1(QT )∩L∞(QT )∩L1(QT ), ν ∈ C1(RN )∩L∞(RN )∩
L1(RN ) and u be the solution of (2.9), then u ∈ L1(QT ), is C1+σ,2α+σ

t,x in

(T0, T )×R
N for any T0 ∈ (0, T ) and for any ξ ∈ Yα,T ,

∫
QT

u(t, x)[−∂tξ(t, x) + (−∆)αξ(t, x)]dxdt

=
∫
QT

µ(t, x)ξ(t, x)dxdt +
∫
RN ξ(0, x)νdx−

∫
RN ξ(T, x)u(T, x)dx.

(2.12)

(iii) Let µ ∈ C1(QT ) ∩ L∞(QT ) and ν ∈ C2(RN ) ∩ L∞(RN ), then problem

−∂tu+ (−∆)αu = µ in QT ,

u(T, ·) = ν in R
N

(2.13)

admits a unique solution u ∈ C1+σ,2α+σ
t,x (QT ) for some σ ∈ (0, 1).

Moreover, u ∈ Yα,T if µ ∈ C1(QT )∩L
∞(QT )∩L

1(QT ) and ν ∈ C2(RN )∩
L∞(RN ) ∩ L1(RN ).

Proof. (i) By [8, Theorem 2.6, Theorem 6.1], there exists a unique viscosity

solution u ∈ C
σ
2α

,σ
t,x (QT ) with σ > 0 of (2.9), and then it follows by Lemma

2.2 that u is C1+σ′,2α+σ′

t,x in (T0, T ) × R
N for any T0 ∈ (0, T ) and some

σ′ ∈ (0,min{ σ
2α , σ}). Then u is a classical solution of (2.9).

(ii) To prove u ∈ L1(QT ) and u(t, ·) ∈ L1(RN ) for t ∈ (0, T ). By
Duhamel formula, we have

‖u(t, ·)‖L1(RN ) ≤

∫

RN

∫

QT

Hα(t, s, x, y)|µ(s, y)|dydsdx

+

∫

RN

∫

RN

Hα(t, x, y)|ν(y)|dydx

≤ ‖µ‖L1(QT ) + ‖ν‖L1(RN )
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and

‖u‖L1(QT ) =

∫ T

0
‖u(t, ·)‖L1(RN )dt ≤ T (‖µ‖L1(QT ) + ‖ν‖L1(RN )).

To prove that ‖(−∆)αǫ u(t, ·)‖L∞(RN ) is uniformly bounded with to ǫ ∈ (0, ǫ0).

Since u(t, ·) ∈ C2α+σ
x (RN ) for some σ ∈ (0,min{2−2α, 1}), then for x ∈ R

N

and y ∈ B1(0), |u(x + y) + u(x − y) − 2u(x)| ≤ ‖u(t, ·)‖C2α+σ
x (RN )|y|

2α+σ.
Thus

‖|(−∆)αǫ u(t, ·)|‖L∞(RN ) ≤ sup
x∈RN

[

∫

RN\B1(0)

|u(x+ y)− u(x)|

|y|N+2α
dy

+
1

2

∫

B1(0)\Bǫ(0)

|u(x+ y) + u(x− y)− 2u(x)|

|y|N+2α
dy]

≤ 2‖u‖L1(RN ) +

∫

B1(0)
|y|σ−Ndy‖u(t, ·)‖C2α+σ

x (RN ).

To prove (2.12). We claim that
∫

QT

ξ(−∆)αǫ udxdt =

∫

QT

u(−∆)αǫ ξdxdt, ∀ξ ∈ Yα,T . (2.14)

Indeed, by using the fact that for any t > 0, we have
∫

RN

∫

RN

[u(t, z) − u(t, x)]ξ(t, x)

|z − x|N+2α
χǫ(|x− z|)dzdx

=

∫

RN

∫

RN

[u(t, x) − u(t, z)]ξ(t, z)

|z − x|N+2α
χǫ(|x− z|)dzdx,

then we have
∫
RN ξ(t, x)(−∆)αǫ u(t, x)dx

= −1
2

∫
RN

∫
RN [

(u(t,z)−u(t,x))ξ(t,x)
|z−x|N+2α + (u(t,x)−u(t,z))ξ(t,z)

|z−x|N+2α ]χǫ(|x− z|)dzdx

= 1
2

∫
RN

∫
RN

[u(t,z)−u(t,x)][ξ(t,z)−ξ(t,x)]
|z−x|N+2α χǫ(|x− z|)dzdx.

Similarly,

∫
RN u(t, x)(−∆)αǫ ξ(t, x)dx = 1

2

∫
R2N

[u(t,z)−u(t,x)][ξ(t,z)−ξ(t,x)]
|z−x|N+2α χǫ(|x− z|)dzdx.

Then (2.14) holds. Since u is C1+σ,2α+σ
t,x in (T0, T )×R

N for any T0 ∈ (0, T )
and ξ belongs to Yα,T , (−∆)αǫ ξ(t, ·) → (−∆)αξ(t, ·) and (−∆)αǫ u(t, ·) →
(−∆)αu(t, ·) as ǫ → 0 in R

N and (−∆)αǫ ξ(t, ·), (−∆)αǫ u(t, ·) ∈ L∞(RN )
and ξ(t, ·), u(t, ·) ∈ L1(RN ), then it follows by the Dominated Convergence
Theorem

lim
ǫ→0+

∫

RN

ξ(t, x)(−∆)αǫ u(t, x)dx =

∫

RN

ξ(t, x)(−∆)αu(t, x)dx

12



and

lim
ǫ→0+

∫

RN

(−∆)αǫ ξ(t, x)u(t, x)dx =

∫

RN

(−∆)αξ(t, x)u(t, x)dx.

Combining with (2.14), taking ǫ → 0+, we have that

∫

RN

ξ(t, x)(−∆)αu(t, x)dx =

∫

RN

(−∆)αξ(t, x)u(t, x)dx,

integrating over [0, T ] and by (2.9), we conclude that (2.12) holds.

(iii) Let u be the solution of problem (2.9) and

w(t, x) = u(T − t, x), (t, x) ∈ [0, T ] × R
N .

Then w is a solution of (2.13) and for some σ ∈ (0, 1), w is C1+σ,2α+σ
t,x (QT ).

On the contrary, if w is a solution of (2.13), then u(t, x) = w(T − t, x) for
(t, x) ∈ [0, T ]×R

N is a solution of (2.9), then the uniqueness holds since the
solution of (2.9) is unique. Since u ∈ C1+σ,2α+σ

t,x (QT ), then (−∆)αu(t, ·) ∈
Cσ
x and then (−∆)αǫ u(t, ·) is bounded, which implies u ∈ Yα,T . �

Proof of Proposition 2.3. Uniqueness. Let v be a weak solution of

∂tv + (−∆)αv = 0 in QT ,

v(0, ·) = 0 in R
N .

(2.15)

We claim that v = 0 a.e. in QT .
In fact, let ω be a Borel subset of QT and ηω,n be the solution of

−∂tu+ (−∆)αu = ζn in QT ,

u(T, ·) = 0 in R
N ,

(2.16)

where ζn : Q̄T 7→ [0, 1] is a function C1
0 (QT ) such that

ζn → χω in L∞(Q̄T ) as n → ∞.

Then by Lemma 2.3, we have that ηω,n ∈ Yα,T and

∫

QT

vζndxdt = 0.

Thus passing the limit of n → ∞, we have

∫

ω
vdxdt = 0.

This implies v = 0 a.e. in QT .
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Existence and estimate (2.11). For δ > 0, we define an even convex function
φδ by

φδ(t) =

{
|t| − δ

2 , if |t| ≥ δ,

t2

2δ , if |t| < δ/2.
(2.17)

Then for any t, s ∈ R, |φ′
δ(t)| ≤ 1, φδ(t) → |t| and φ′

δ(t) → sign(t) when
δ → 0+. Moreover

φδ(s)− φδ(t) ≥ φ′
δ(t)(s − t). (2.18)

Let {µn}, {νn} be two sequences functions in C2
0 (QT ), C

2
0 (R

N ) respec-
tively such that

lim
n→∞

∫

QT

|µn − µ|dxdt = 0, lim
n→∞

∫

RN

|νn − ν|dx = 0.

We denote un be the corresponding solution to (2.9) replaced µ, ν by µn, νn,
respectively. By Lemma 2.2 and Lemma 2.3(ii), un ∈ C1+σ,2α+σ

t,x (QT ) ∩
L1(QT ) and then we use Lemma 2.3 in [12] and Lemma 2.3 (ii) to obtain
that for any δ > 0 and ξ ∈ Yα,T , ξ ≥ 0,

∫
QT

φδ(un)[−∂tξ + (−∆)αξ]dxdt+
∫
RN ξ(T, x)φδ(un(T, x))dx

=
∫
QT

ξ[∂tφδ(un) + (−∆)αφδ(un)]dxdt+
∫
RN ξ(0, x)φδ(νn)dx

≤
∫
QT

ξφ′
δ(un)[∂tun + (−∆)αun]dxdt+

∫
RN ξ(0, x)φδ(νn)dx

=
∫
QT

ξφ′
δ(un)µndxdt+

∫
RN ξ(0, x)φδ(νn)dx.

Taking δ → 0+, we obtain

∫

QT

|un|[−∂tξ + (−∆)αξ]dxdt+

∫

RN

ξ(T, x)|un(T, x)|dx

≤

∫

QT

ξsign(un)µndxdt+

∫

RN

ξ(0, x)|νn|dx.
(2.19)

Denote by ηk the solution of

−∂tu+ (−∆)αu = ςk in QT ,

u(T, ·) = 0 in R
N ,

(2.20)

where ςk : QT 7→ [0, 1] is a C2
0 function such that ςk = 1 in (0, T ) × Bk(0).

From the proof of Lemma 2.3, η̃k(t, x) := ηk(T − t, x) solves

∂tu+ (−∆)αu = ςk in QT ,

u(0, ·) = 0 in R
N .
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By Lemma 2.2, then η̃k ∈ C1+σ,2α+σ
t,x (QT ) with some σ ∈ (0, 1) and

0 ≤ η̃k(t, x) ≤ c8

∫ T

t

∫

RN

(s− t)−
N
2α

1 + |(s− t)−
1
2α (y − x)|N+2α

dyds

≤ c8

∫ T

t

∫

RN

dz

1 + |z|N+2α
ds

= c13(T − t).

Taking ξ = ηk in (2.19), we derive

∫

QT

|un|χ(0,T )×Bk(0)dxdt ≤ c13T

∫

QT

|µn|dxdt+ c13T

∫

RN

|νn|dx.

Then taking k → ∞,

∫

QT

|un|dxdt ≤ c13T

∫

QT

|µn|dxdt+ c13T

∫

RN

|νn|dx. (2.21)

Similarly,

∫

QT

|un − um|dx ≤ c13T

∫

QT

|µn − µm|dxdt+ c13T

∫

RN

|νn − νm|dx. (2.22)

Therefore, {un} is a Cauchy sequence in L1(QT ) and its limit u is a weak
solution of (2.9). Letting n → ∞, (2.11) and (2.10) follow by (2.19) and
(2.21), respectively. �

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first consider the classical solution of
(1.1) in domain QT with regular initial data for T > 0. Assume that

(̃H) The function h satisfies (H) part (i) and h ∈ Cγ([0, T ] × R) for
some γ ∈ (0, 1).

Lemma 3.1 Let h satisfy (̃H), φ ∈ C2(RN ) ∩ L∞(RN ) and T > 0. Then
there exists a unique solution uφ of (1.1) in QT with ν = φ such that

Hα[φ]−Hα[h(t,Hα[φ+])] ≤ uφ ≤ Hα[φ]−Hα[h(t,−Hα[φ−])] in QT , (3.1)

where φ± = max{0,±φ}. Moreover,
(i) uφ ≥ 0 if φ ≥ 0 in Ω;

(ii) the mapping φ 7→ uφ is increasing.
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Proof. To prove that there exists T ′ > 0 such that problem

∂tu+ (−∆)αu+ h(t, u)χ(0,T ′)(t) = 0 in Q∞,

u(0, ·) = φ in R
N

(3.2)

admits a solution u0,φ.
For parameter T ′ > 0, we denote the operator Υ by

Υ(u) = Hα[φ− h(t, u)χ[0,T ′]], u ∈ L∞(Q∞).

We observe that Hα[φ](0, ·) = φ in R
N , then

‖φ‖L∞(RN ) ≤ ‖Hα[φ]‖L∞(Q∞)

≤ c14‖φ‖L∞(RN )‖
∫
RN

t−
N
2α

1+|t−
1
2α (x−y)|N+2α

dy‖L∞(Q∞)

≤ c15‖φ‖L∞(RN ),

(3.3)

where c14 > 0 and c15 = c14
∫
RN

1
1+|z|N+2αdz. Let Br = {u ∈ L∞(Q∞) :

‖u‖L∞(Q∞) ≤ r} with r = 2c15‖φ‖L∞(RN ) and A = [0, T ] × [−r, r]. For
T ′ > 0 small enough and u ∈ Br, we derive that

‖Hα[h(·, u)χ(0,T ′)(·)]‖L∞(Q∞)

≤ c14 max(t,s)∈A |h(t, s)|‖
∫ T ′

t

∫
RN

(s−t)−
N
2α

1+|(s−t)−
1
2α (x−y)|N+2α

dyds‖L∞(QT ′ )

≤ c15T
′max(t,s)∈A |h(t, s)|.

Therefore, choosing T ′ > 0 such that T ′max(t,s)∈A |h(t, s)| ≤ r
2 , we derive

that

‖Υ(u)‖L∞(Q∞) ≤ c15

(
‖φ‖L∞(RN ) + T ′max(t,s)∈A |h(t, s)|

)

≤ r.
(3.4)

For our choosing r and T ′, we have that Υ(Br) ⊂ Br.
Next we prove that the operator Υ is compact in Br. We observe that

for u ∈ Br,
‖u(t, ·)‖L1(RN , ω̃dx) ≤ c16‖u‖L∞(Q∞) ≤ c16r, (3.5)

where c16 > 0 and ω̃(x) = (1+ |x|N+2α)−1. By [8, Theorem 5.1], there exist
σ ∈ (0, 1) and c17, c18 > 0 only dependent of α,N such that

‖Υ(u)‖
C

σ
2α ,σ

t,x (Q∞)
≤ c17{‖u‖L∞(Q∞) + sup

τ>0
‖u(τ, ·)‖L1(RN , ω̃dx)

+ ‖h(·, u)‖L∞(QT ′ )}

≤ c18{‖φ‖L∞(RN ) + max
(t,s)∈A

|h(t, s)|}.

(3.6)
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Therefore, Υ is compact. It follows by Schauder’s fixed point theorem, that
there exists u0,φ ∈ Br such that Υ(u0,φ) = u0,φ. It infers by (3.6) that

u0,φ ∈ C
σ
2α

,σ
t,x (Q∞). By Lemma 2.2, u0,φ is in C1+σ′,2α+σ′

t,x (Q∞) for some
σ′ > 0 and u0,φ is a classical solution of (3.2).

Moreover, since Hα[φ]−Hα[h(t,−Hα[φ−])] and Hα[φ]−Hα[h(t,Hα[φ+])]
are super and sub solution of (3.2) respectively, then by Comparison Prin-
ciple, we have that

Hα[φ]−Hα[h(t,Hα[φ+])] ≤ u0,φ ≤ Hα[φ]−Hα[h(t,−Hα[φ−])] in Q∞.
(3.7)

The mapping φ 7→ u0,φ is increasing. Let v1, v2 be solutions of (3.2)
with initial data φ1 and φ2 respectively, where φ1 ≥ φ2 and denote w =
v1− v2. We prove this argument by contradiction. Assume that there exists
(t0, x0) ∈ Q∞ satisfying w(t0, x0) < 0. Since

w(0, x) = φ1(x)− φ2(x) ≥ 0, x ∈ R
N ,

then there exist t1 ∈ (0, t0] and x1 ∈ R
N such that

w(t1, x1) = min
(t,x)∈[0,t1]×RN

w(t, x) < 0,

thus, ∂tw(t1, x1) ≤ 0 and (−∆)αw(t1, x1) < 0 and by monotonicity of h, we
have h(t1, v1(t1, x1)) ≤ h(t1, v2(t1, x1)). Therefore,

∂tw(t1, x1) + (−∆)αw(t1, x1) + h(t1, v1(t1, x1))− h(t1, v2(t1, x1)) < 0.

which contradicts that v1 and v2 are solutions of (3.2).
Moveover, the uniqueness of solution to (3.2) follows by the fact that the

mapping φ 7→ u0,φ is increasing. Then 0 is the unique solution of (3.2) with
0 initial data. Therefore, u0,φ ≥ 0 if φ ≥ 0.

To prove that (1.1) in QT with T > 0 admits a solution uφ.
Since

∫
RN Hα(t, x− y)dy = 1 for any t > 0 and x ∈ R

N , then

‖φ‖L∞(RN ) ≤ ‖Hα[φ]‖L∞(Q∞)

≤ ‖φ‖L∞(RN )‖
∫
RN Hα(t, x− y)dy‖L∞(Q∞)

= ‖φ‖L∞(RN ),

which, combining (3.7) with |φ|, infers that

‖u0,φ(T
′, ·)‖L∞(RN ) ≤ ‖Hα[|φ|](T

′, ·)‖L∞(RN ) ≤ ‖φ‖L∞(RN ). (3.8)

Thus, there exists a unique solution u1,φ to (3.2) with initial data u1,φ(0, ·) =
u0,φ(T

′, ·) and we note that it is also able to choose the same T ′ by (3.8) in
this step and it could iterate this process by times k and we obtain a unique
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solution uk,φ of (3.2) with uk,φ(0, ·) = uk−1,φ(T
′, ·) initial data for the same

T ′ > 0. Since for any T > 0, there exists m ∈ N such that mT ′ ≥ T and
(m− 1)T ′ < T , letting

uφ(t, x) =

m−1∑

i=0

ui,φ(t− iT ′, x)χ(iT ′,(i+1)T ′](t), (t, x) ∈ (0, T ) × R
N ,

then uφ is the unique solution of (1.1) in QT with ν = φ and (3.1) follows
by (3.7). �

Proof of Theorem 1.1. Existence for ν ≥ 0. We consider a sequence
nonnegative functions {νn} ⊂ C2

0 (R
N ) such that νn → ν in the duality sense

of

lim
n→∞

∫

RN

ζνndx =

∫

RN

ζdν, ∀ζ ∈ C(RN ) ∩ L∞(RN ). (3.9)

It follows from the Banach-Steinhaus theorem that ‖νn‖Mb(RN ) is bounded
independently of n and we assume that ‖νn‖Mb(RN ) ≤ 2‖ν‖Mb(RN ). For any

T > 0, we consider a sequence functions {hn} satisfying (̃H),

|hn| ≤ |h| and lim
n→∞

‖hn − h‖L∞([0,T ]×R) = 0.

By Lemma 3.1, we denote by un the corresponding solution of (1.1) with
nonlinearity hn and initial νn, then un is nonnegative and satisfies that

0 ≤ un = Hα[νn − hn(t, un)] ≤ Hα[νn] in QT . (3.10)

By (2.3) it follows that

‖un‖
M

p∗
β (QT ,tβdxdt)

≤ c5‖ν‖Mb(RN ). (3.11)

For ǫ > 0 and σ ∈ (0, α), set ξǫ = (ηk + ǫ)
σ
α − ǫ

σ
α , where ηk is given by

(2.20), then by [12, Lemma 2.3 part (ii)],

−∂tξǫ + (−∆)αξǫ = −
σ

α
(ηk + ǫ)

σ−α
α ∂tηk +

σ

α
(ηk + ǫ)

σ−α
α (−∆)αηk

−
σ(σ − α)

α2
(ηk + ǫ)

σ−2α
α

∫

RN

(ηk(y)− ηk(x))
2

|y − x|N+2α
dy

≥
σ

α
(ηk + ǫ)

σ−α
α ,

and ξǫ ∈ Yα,T . By (2.11)

∫

QT

(|un|[−∂tξǫ + (−∆)αξǫ] + |hn(t, un)|ξǫ) dxdt+

∫

RN

|u(T, x)|ξǫ(T, x)dx

≤

∫

RN

ξǫ(0, x)|νn(x)|dx,
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then we obtain
∫

QT

|hn(t, un)|ξǫ(t, x)dxdt ≤

∫

RN

ξǫ(0, x)|νn(x)|dx.

If we let ǫ → 0, we obtain

∫

QT

|hn(t, un)|η
σ
α

k (t, x)dxdt ≤

∫

RN

η
σ
α

k (0, x)|νn(x)|dx.

Taking k → ∞ and then σ → 0+, we obtain that

‖hn(t, un)‖L1(QT ) ≤ ‖νn‖Mb(RN ) ≤ 2‖ν‖Mb(RN ). (3.12)

Since
Hα(t, x, y) = t−

N
2αΓα(1, t

− 1
2α (x− y)),

then combining with (3.10), we obtain that for t > 0

‖un(t, ·)‖L∞(RN ) ≤ c8t
− N

2α sup
x∈RN

∫

RN

νn(y)

1 + |t−
1
2α (x− y)|N+2α

dy

≤ c8t
− N

2α ‖νn‖L1(RN )

≤ 2c8t
− N

2α ‖ν‖Mb(RN )

and

‖Hα[νn](t, ·)‖L1(RN , ω̃dx) ≤ c8t
− N

2α

∫

RN

∫

RN

νn(y)

1 + |t−
1
2α (x− y)|N+2α

dydx

1 + |x|N+2α

≤ c15t
− N

2α ‖νn‖L1(RN )

≤ 2c15t
− N

2α ‖ν‖Mb(RN ),

then

‖Hα[hn(t, un)]‖L1(RN , ω̃dx) ≤ c8t
− N

2α

∫

RN

∫

RN

|hn(t, un)|

1 + |t−
1
2α (x− y)|N+2α

dydx

1 + |x|N+2α

≤ c15‖hn(t, un)‖L∞(RN )

∫

RN

∫

RN

1

1 + |x|N+2α

1

1 + |y|N+2α
dydx

≤ c20t
βg(2c8t

−N/2α‖ν‖Mb(RN ))

and then

‖un(t, ·)‖L1(RN , ω̃dx) ≤ ‖Hα[νn]‖L1(RN , ω̃dx) + ‖Hα[hn(t, un)]‖L1(RN , ω̃dx)

≤ 2c15t
− N

2α ‖ν‖Mb(RN ) + c20t
βg(2c8t

−N/2α‖ν‖Mb(RN )).
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Then by [8, Theorem 5.1], there exists σ ∈ (0, 1) such that for any T0 ∈
(0, T ),

‖un‖
C

σ
2α ,σ

t,x ((T0,T )×RN )
≤ c18{‖un‖L∞((T0,T )×RN ) + sup

τ∈(T0,T )
‖un(τ, ·)‖L1(RN , ω̃dx)

+ ‖hn(·, un)‖L∞((T0,T )×RN )}

≤ c21T
− N

2α
0 ‖ν‖Mb(RN ) + c22(T

β + T β
0 )g(2c8T

−N/2α
0 ‖ν‖Mb(RN )).

(3.13)

Therefore, there exist a sub-sequence {unk
} and some u ∈ C

σ
2α

,σ
t,x locally in

QT such that unk
→ u in QT and then hnk

(·, unk
) → h(·, u) in QT .

For λ > 0, we denote Sλ = {(t, x) ∈ QT : |unk
(t, x)| > λ} and ω(λ) =∫

Sλ
tβdxdt. Then for any Borel set E ⊂ QT , we use (H) to obtain

∫

E
|hnk

(t, unk
)|dxdt ≤

∫

E∩Sc
λ

g(|unk
|)tβdxdt+

∫

E∩Sλ

g(|unk
|)tβdxdt

≤ g(λ)

∫

E
tβdxdt+

∫

Sλ

g(unk
)tβdxdt

≤ g(λ)

∫

E
tβdxdt−

∫ ∞

λ
g(s)dω(s),

where ∫ ∞

λ
g(s)dω(s) = lim

M→∞

∫ M

λ
g(s)dω(s).

By (3.11), we have ω(s) ≤ c23s
−p∗

β and then

−

∫ M

λ
g(s)dω(s) = −

[
g(s)ω(s)

]s=M

s=λ

+

∫ M

λ
ω(s)dg(s)

≤ g(λ)ω(λ) − g(M)ω(M) + c23

∫ M

λ
s−p∗

βdg(s)

≤ g(λ)ω(λ) − g(M)ω(M) + c23

(
M−p∗

βg(M) − λ−p∗
βg(λ)

)

+
c23

p∗β + 1

∫ M

λ
s−1−p∗

βg(s)ds.

By (1.7) and Lemma 4.1 in [12], we have limM→∞M−p∗
βg(M) = 0. Since

ω(s) ≤ c23s
−p∗

β , we obtain g(λ)ω(λ) ≤ c23λ
−p∗

βg(λ) and then

−

∫ ∞

λ
g(s)dω(s) ≤

c23
p∗β + 1

∫ ∞

λ
s−1−p∗

βg(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when
λ → ∞. The conclusion follows: for any ǫ > 0 there exists λ > 0 such that

c23
p∗β + 1

∫ ∞

λ
s−1−p∗

βg(s)ds ≤
ǫ

2
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and there exists δ > 0 such that
∫

E
tβdxdt ≤ δ =⇒ g(λ)

∫

E
tβdxdt ≤

ǫ

2
.

This means that {hnk
(·, unk

)} is uniformly integrable in L1(QT ). Combin-
ing (3.12), we have hnk

(·, unk
) → h(·, u) in L1(QT ) by Vitali convergence

theorem. Letting nk → ∞ in the identity

∫

QT

[−unk
∂tξ + unk

(−∆)αξ + ξhnk
(t, unk

)] dxdt

=

∫

RN

ξ(0, x)νnk
dx−

∫

RN

unk
(T, x)ξ(T, x)dx, ∀ξ ∈ Yα,T ,

which infers that u is a weak solution of (1.1).

Existence for general ν. For ν ∈ M
b(RN ), a sequence {νn} in C2

0 (R
N )

converge to ν in the dual sense of (3.9). From the monotonicity of hn(t, ·)

−Hα[|νn|] ≤ u−|νn| ≤ uνn ≤ u|νn| ≤ Hα[|νn|].

Then by above analysis, the sequence {hn(·, u−|νn|)} and {hn(·, u|νn|)} are
compact in L1(QT ) for any T > 0 and (3.11) holds for {uνn}. Therefore
{uνn} is compact in L1(QΩ

T ) and there exist some subsequence {uνnk
} and

uν ∈ L1(QT ) such that

uνnk
→ uν as k → ∞ in QT

and
∫

QT

[−uν∂tξ + uν(−∆)αξ + ξh(t, uν)] dxdt

=

∫

RN

ξ(0, x)dν −

∫

RN

uν(T, x)ξ(T, x)dx, ∀ξ ∈ Yα,T .

Uniqueness. Let u1, u2 be two weak solutions of (1.1) with the same initial
ν and w = u1 − u2. Then

∂tw + (−∆)αw = h(t, u2)− h(t, u1) in QT .

Since h(t, u2) − h(t, u1) ∈ L1(QT ), then by (2.11), for ξ ∈ Yα,T , ξ ≥ 0, we
have

∫

QT

|w|[−∂tξ + (−∆)αξ]dxdt+

∫

RN

|w(T, x)|ξ(T, x)dxdt

+

∫

QT

[h(t, u1)− h(t, u2)]sign(w)ξdxdt ≤ 0.
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Together with
∫
QT

[h(t, u1)− h(t, u2)]sign(w)ξdxdt ≥ 0, then

w = 0 a.e. in QT .

To prove that the mapping ν 7→ uν is increasing. Let ν1, ν2 ∈ M
b(RN ) and

ν1 ≥ ν2, then there exist two sequences {ν1,n} and {ν2,n} in C2
0 (R

N ) such
that ν1,n ≥ ν2,n, converge to ν1 and ν2 respectively in the sense of (3.9). Let
ui,n be the corresponding unique solution of (1.1) with initial νi,n and uνi
be the unique solution of (1.1) with initial νi for i = 1, 2. Then u1,n ≥ u2,n.
Moveover, by uniqueness, ui,n convergence to uνi in L1(QT ) for i = 1, 2.
Then we have uν1 ≥ uν2 .

To prove (1.9). We make Jordan decomposition of ν ∈ M
b(RN ) by the

positive part ν+ and the negative part ν−. For ν±, it is able to find two
sequences of nonnegative functions {νn±} in C2

0 (R
N ) which converge to ν±

in the dual sense of (3.9) respectively. Then the sequence functions νn =
νn+ − νn− converge to ν in the dual sense of (3.9). From the monotonicity
of h(t, ·),

−Hα[νn− ] ≤ u−νn−
≤ uνn ≤ uνn+

≤ Hα[νn+ ],

which, together with the uniqueness of uν , implies that

−Hα[ν−] ≤ uν ≤ Hα[ν+]. (3.14)

Therefore, by monotonicity of h(t, ·),

uν = Hα[ν]−Hα[h(·, uν)]

≤ Hα[ν]−Hα[h(·,−Hα[ν−])]

and

uν = Hα[ν]−Hα[h(·, uν)]

≥ Hα[ν]−Hα[h(·,Hα[ν+])],

which imply (1.9). The proof is complete. �

4 Initial Dirac mass

In this section, we will consider the properties of solutions to (1.1) in the
particular case of h(t, r) = tβrp and the initial data ν = kδ0, where β > −1
and p ∈ (0, p∗β).

Proposition 4.1 Let p ∈ (0, p∗β) and uk be the solution of (1.10), then there
exists c24 > 0 such that

lim
t→0+

uk(t, 0)t
N
2α = c24k. (4.1)
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Proof. By (1.9) it follows that

uk(t, 0) ≤ kHα[δ0](t, 0) = kΓα(t, 0), t > 0. (4.2)

We claim that there exists c25 > 0 independent of k such that

uk(t, 0) ≥ kΓα(t, 0) − c25k
pt−

N
2α

p+1+β, t ∈ (0, 1/2). (4.3)

Indeed, from (1.9), it infers that

uk(t, 0) ≥ kΓα(t, 0) − kpW (t, 0), t ∈ (0, 1/2),

where
W (t, x) = Hα[t

β(Hα[δ0])
p](t, x), (t, x) ∈ Q∞.

For t ∈ (0, 1/4), there exists c26, c27 > 0 such that

W (t, 0) ≤ c26

∫ 1

t

∫

RN

(s− t)−
N
2α sβ

1 + |(s − t)−
1
2α y|N+2α

(
s−

N
2α

1 + |s−
1
2α y|N+2α

)p

dyds+ c27

≤ c26

∫ 1

t

∫

RN

(s− t)−
N
2α s−

N
2α

p+β

1 + |(s−t
s )−

1
2α y|N+2α

dyds + c27

≤ c26

∫ 1

t
(s− t)−

N
2α s−

N
2α

p+β(
s− t

s
)

N
2α ds+ c27

≤ c26t
− N

2α
p+1+β + c27.

Combining (1.14) and − N
2αp+ 1 + β > − N

2α , we obtain that

lim
t→0+

t
N
2αW (t, 0) = 0.

Therefore, (4.1) holds. �

In what follows we consider the limit of the solution {uk} of (1.10) as
k → ∞ for p ∈ (0, 1].

Proposition 4.2 Assume that p ∈ (0, 1] and uk is the solution of (1.10),
then

lim
k→∞

uk = ∞ in Q∞.

Proof. We observe that Hα[δ0] and Hα[t
β(Hα[δ0])

p] are positive in (0,∞)×
R
N . By (1.9), for p ∈ (0, 1) and (t, x) ∈ (0,∞)× R

N , we have that

uk ≥ kHα[δ0]− kpHα[t
β(Hα[δ0])

p]

→ ∞ as k → ∞.

For p = 1, it is obvious that uk = ku1 and u1 > 0 in (0,∞) × R
N , then

lim
k→∞

uk = ∞ in Q∞.

The proof is complete. �

Now we deal with the range p ∈ (1, p∗β).
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Lemma 4.1 Let p ∈ (1, p∗β) and uk be the solution of (1.10), then for any
k > 0,

0 ≤ uk ≤ Up in Q∞, (4.4)

where Up is given by (1.16).

Proof. Let {fn,k} be a sequence of nonnegative functions in C1
0 (R

N ) that
converge to kδ0 in the distribution sense as n → ∞, denote by un,k the
corresponding solution of (1.12) with initial data by fn,k.

We claim that
un,k ≤ Up in Q∞. (4.5)

Now we assume this claim holds at this moment, then it follows that

uk ≤ Up in Q∞,

where uk is the solution of (1.10), since limn→∞ un,k = uk in (0,∞)× R
N .

Step 1. To prove lim|x|→∞ un,k(t, x) = 0 for any t > 0. From [10, 14], there

exists c8 > 0 such that for any x, y ∈ R
N and t ∈ (0,∞),

0 < Γα(t, x− y) ≤
c8t

− N
2α

1 + (|x− y|t−
1
2α )N+2α

.

Then for |x| > 1,

0 ≤ Hα[fn,k](t, x) ≤ c8t
− N

2α

∫

RN

fn,k(y)

1 + (|x− y|t−
1
2α )N+2α

dy

= c8

∫

RN

fn,k(x− zt
1
2α )

1 + |z|N+2α
dz

= c8

(∫

RN\BR

fn,k(x− zt
1
2α )

1 + |z|N+2α
dz +

∫

BR

fn,k(x− zt
1
2α )

1 + |z|N+2α
dz

)
,

where R = 1
2 |x|t

− 1
2α and BR = {z ∈ R

N : |z| < R}. It is obvious that

|x− zt
1
2α | ≥ |x| − |z|t

1
2α ≥ |x|/2 for all z ∈ BR.

Then

∫

BR

fn,k(x− zt
1
2α )

1 + |z|N+2α
dz ≤ sup

|y|≥
|x|
2

fn,k(y)

∫

BR

1

1 + |z|N+2α
dz

≤ sup
|y|≥ |x|

2

fn,k(y)

∫

RN

1

1 + |z|N+2α
dz

= c25 sup
|y|≥

|x|
2

fn,k(y)
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and

∫

RN\BR

fn,k(x− zt
1
2α )

1 + |z|N+2α
dz ≤

∫

RN\BR

‖fn,k‖L∞(RN )

1 + |z|N+2α
dz ≤ c26R

−2α =
c27t

|x|2α
,

for some c27 > 0 independent of x, t and R. Since fn,k ∈ C1
0 (R

N ), we have
lim|x|→∞ sup

|y|≥
|x|
2

fn,k(y) = 0 and then 0 ≤ un,k(t, x) ≤ Hα[fn,k](t, x) → 0

as |x| → ∞ for t > 0.

Step 2. To prove (4.5). If (4.5) fails, there exists (t0, x0) ∈ (0,∞)×R
N such

that
(Up − un,k)(t0, x0) = min

(t,x)∈(0,∞)×RN
(Up − un,k)(t, x) < 0,

since Up(t) > 0 = lim|x|→∞ un,k(t, x) for any t ∈ (0,∞), Up(0) = ∞ >

fn,k(x) = un,k(0, x) for x ∈ R
N and limt→∞ Up(t) = limt→∞ un,k(t, x) = 0

for x ∈ R
N . Then ∂t(Up − un,k)(t0, x0) = 0, (−∆)α(Up − un,k)(t0, x0) ≤ 0

and

∂t(Up − un,k)(t0, x0) + (−∆)α(Up − un,k)(t0, x0) + tβ0U
p
p (t0)− tβ0u

p
n,k(t0, x0) < 0,

which is impossible with

∂t(Up − un,k)(t0, x0) + (−∆)α(Up − un,k)(t0, x0) + tβ0U
p
p (t0)− tβ0u

p
n,k(t0, x0)

= ∂tUp(t0) + tβ0U
p
p (t0)− {∂tun,k(t0, x0) + (−∆)αun,k(t0, x0) + tβ0u

p
n,k(t0, x0)}

= 0.

The proof is complete. �

Proposition 4.3 (i) Assume that p ∈ (0, p∗β) and uk is the solution of
(1.10). Then uk is a classical solution of (1.12).

(ii) Assume that p ∈ (1, p∗β) and u∞ is defined by (1.11). Then u∞ is a
classical solution of (1.12).

Proof. (i) Since uk ≤ kHα[δ0], then it infers that uk is bounded in (T0,∞)×
R
N with T0 > 0. Let {gn,k} be a sequence of nonnegative functions in

C1
0 (R

N ) that converge to kδ0 in the distribution sense as n → ∞ and un,k
the corresponding solution of (1.12) with initial data gn,k. Then Hα[gn,k] →
kHα[δ0] as n → ∞ uniformly in [T0,∞) × R

N for any T0 > 0 and by Com-
parison Principle, there exists c28 > 1 such that

0 ≤ un,k(t, x) ≤ kHα[gn,k] ≤ c28kHα[δ0] in [T0,∞)× R
N

and there exists σ ∈ (0, 1) such that {un,k} are uniformly bounded with

respect to n in C
σ
2α

,σ
t,x ((T0,∞)×R

N ) with T0 > 0. Therefore, by the Arzela-

Ascoli theorem, un,k converges to uk in C
σ′

2α
,σ′

t,x ((T0,∞)×R
N ) with σ′ ∈ (0, σ)
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and then uk is a viscosity solution of (1.12) in (T0,∞) × R
N . By estimate

(A.1) in [7], uk is in C1+σ′,2α+σ′

t,x ((T0,∞)×R
N ) and uk is a classical solution

of (1.12) in (T0,∞)× R
N .

(ii) The proof is the same as part (i) just replacing uk ≤ kHα[δ0] by
u∞ ≤ Up. �

5 Self-similar solution when p ∈ (1, 1 + 2α(1+β)
N )

5.1 Non-flat self-similar solution for p ∈ (1+ 2α(1+β)
N+2α

, 1+ 2α(1+β)
N

)

By Theorem 1.1 and (4.4), we see that {uk} are a sequence of nonnegative
and increasing functions and controlled by function Up defined in (1.16),then
for p ∈ (1, p∗β), the limit of uk as k → ∞ exists and unique, then we denote
it by u∞, see (1.11). By Proposition 4.3 (ii) and (4.4), u∞ is a classical
solution of (1.12) and

u∞ ≤ Up in Q∞. (5.1)

Proposition 5.1 Assume that p ∈ (1, p∗β) and u∞ is defined in (1.16).
Then u∞ is a self-similar solution of (1.12).

Proof. For λ > 0, we denote

ũλ(t, x) = λ
2α(1+β)

p−1 uk(λ
2αt, λx), (t, x) ∈ Q∞.

By direct computation, we have

∂tũλ(t, x) + (−∆)αũλ(t, x) + tβũpλ(t, x)

= λ
2αp(1+β)

p−1 [∂tuk(λ
2αt, λx) + (−∆)αuk(λ

2αt, λx) + tβupk(λ
2αt, λx)]

= 0. (5.2)

Moreover, for f ∈ C0(R
N )

〈ũλ(0, ·), f〉 = λ
2α(1+β)

p−1 lim
t→0+

∫

RN

uk(λ
2αt, λx)f(x)dx

= λ
2α(1+β)

p−1
−N

lim
t→0+

∫

RN

uk(λ
2αt, z)f(

z

λ
)dz

= λ
2α(1+β)

p−1
−N

kf(0), (5.3)

where 2α(1+β)
p−1 −N > 0 by the fact of p ∈ (1, p∗β). Thus,

ũλ(0, ·) = λ
2α(1+β)

p−1
−Nkδ0 in R

N .

26



By (5.3), u
kλ

2α(1+β)
p−1 −N

is a unique solution of (1.12) with initial data λ
2α(1+β)

p−1
−Nkδ0,

then by (5.2) it infers that for (t, x) ∈ Q∞,

λ
2α(1+β)

p−1 uk(λ
2αt, λx) = ũλ(t, x) = u

kλ
2α(1+β)

p−1 −N
(t, x) (5.4)

and letting k → ∞ we have that

u∞(t, x) = λ
2α(1+β)

p−1 u∞(λ2αt, λx), (t, x) ∈ Q∞,

which implies that u∞ is a self-similar solution (1.12). �

Let us denote
U∞(z) = u∞(1, z), z ∈ R

N

and we observe that U∞ is a classical solution of (1.15). It is obvious that the

constant (1+β
p−1 )

1
p−1 is a trivial positive classical solution of (1.15). We observe

that N < 2α(1+β)
p−1 < N + 2α for p ∈ (1 + 2α(1+β)

N+2α , p∗β). To be convenient, we
introduce the auxiliary function

wλ(t, x) = λt−
1+β

p−1w(t−
1
2α |x|), , (t, x) ∈ Q∞, (5.5)

where w(s) = log(e+s2)
1+sN+2α with e is the natural number.

Lemma 5.1 Assume that p ∈ (1 + 2α(1+β)
N+2α , p∗β) and wλ is defined by (5.5).

Then there exists Λ0 > 0 such that for λ ≥ Λ0,

∂twλ(t, x) + (−∆)αwλ(t, x) + tβwp
λ(t, x) ≥ 0, ∀(t, x) ∈ Q∞. (5.6)

Proof. By direct computation,

∂twλ(t, x) = −
λ(1 + β)

p− 1
t
− 1+β

p−1
−1

w(t−
1
2α |x|)−

λ

2α
t
− 1+β

p−1
−1

w′(t−
1
2α |x|)|t−

1
2αx|

and
(−∆)αwλ(t, x) = λt−

1+β

p−1
−1(−∆)αw(t−

1
2α |x|),

which implies that

∂twλ(t, x) + (−∆)αwλ(t, x) + tβwp
λ(t, x) (5.7)

= λt
− 1+β

p−1
−1
[
(−∆)αw(s)−

1

2α
w′(s)s−

1 + β

p− 1
w(s) + λp−1wp(s)

]
,

where s = |z| with z = t−
1
2αx.

For s > 0, by the direct computation, we obtain that

−
1

2α
w′(s)s−

1 + β

p− 1
w(s) =

[
N + 2α

2α

sN+2α

1 + sN+2α
−

1 + β

p− 1
−

s2(e+ s2)−1

α log(e+ s2)

]
w(s).
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Since N+2α
2α > 1+β

p−1 , lims→∞
sN+2α

1+sN+2α = 1 and lims→∞
1

log(e+s2)
= 0, then

there exists R0 > 0 and σ0 > 0 such that

−
1

2α
w′(s)s−

1 + β

p− 1
w(s) ≥ σ0w(s), s ≥ R0. (5.8)

For |z| > 2, by the definition of fractional Laplacian, we have that

−(−∆)αw(|z|) =
1

2

∫

RN

log(e+|z+ỹ|2)
1+|z+ỹ|N+2α + log(e+|z−ỹ|2)

1+|z−ỹ|N+2α − 2 log(e+|z|2)
1+|z|N+2α

|ỹ|N+2α
dỹ

=
w(|z|)

2|z|2α

∫

RN

Iz(y)

|y|N+2α
dy, (5.9)

where

Iz(y) =
1 + |z|N+2α

1 + |z|N+2α|ez + y|N+2α

log(e+ |z|2|ez + y|2)

log(e+ |z|2)

+
1 + |z|N+2α

1 + |z|N+2α|ez − y|N+2α

log(e+ |z|2|ez − y|2)

log(e+ |z|2)
− 2

and ez =
z
|z| .

To estimate that there exists c29 > 0 such that

∫

B 1
2
(−ez)∪B 1

2
(ez)

Iz(y)

|y|N+2α
dy ≤

c29
w(|z|)|z|N

. (5.10)

In fact, for y ∈ B 1
2
(−ez), there exists c30 > 0 such that

1 + |z|N+2α

1 + |z|N+2α|ez − y|N+2α

log(e+ |z|2|ez − y|2)

log(e+ |z|2)
≤ c30

and then

∫

B 1
2
(−ez)

Iz(y)

|y|N+2α
dy ≤ ωN

∫ 1
2

0

1 + |z|N+2α

1 + (|z|r)N+2α

log(e+ |z|2r2)

log(e+ |z|2)
rN−1dr + c31

≤
ωN

w(|z|)|z|N

∫ ∞

0

tN−1 log(e+ t2)

1 + tN+2α
dt+ c31

≤
c32

w(|z|)|z|N
,

where c31, c32 > 0 and the last inequality holds since w(|z|)|z|N → 0 as
|z| → ∞.

∫

B 1
2
(ez)

Iz(y)

|y|N+2α
dy =

∫

B 1
2
(−ez)

Iz(y)

|y|N+2α
dy ≤

c32
w(|z|)|z|N

.
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To estimate that there exists c33 > 0 such that
∫

B 1
2
(0)

Iz(y)

|y|N+2α
dy ≤ c33. (5.11)

Indeed, since function Iz is C2 in B̄ 1
2
(0) such that

Iz(0) = 0, Iz(y) = Iz(−y),

then ∇Iz(0) = 0 and there exists c34 > 0 such that

|D2Iz(y)| ≤ c34, y ∈ B 1
2
(0).

Then we have
Iz(y) ≤ c34|y|

2, y ∈ B 1
2
(0),

which implies that

∫

B 1
2
(0)

Iz(y)

|y|N+2α
dy ≤ c34

∫

B 1
2
(0)

|y|2

|y|N+2α
dy ≤ c33.

To estimate that there exists c > 0 such that
∫

A

Iz(y)

|y|N+2α
dy ≤ c, (5.12)

where A = R
N \ (B 1

2
(0)∪B 1

2
(ez)∪B 1

2
(−ez)). In fact, for y ∈ A, we observe

that there exists c35 > 0 such that Iz(y) ≤ c35 and

∫

A

Iz(y)

|y|N+2α
dy ≤

∫

RN\B 1
2
(0)

c35
|y|N+2α

≤ c36,

for some c36 > 0. Therefore, by (5.7)-(5.12), there exists c37 > 0 such that

(−∆)αw(|z|) ≥ −
c37

1 + |z|N+2α
, |z| ≥ 2. (5.13)

By (5.8) and (5.13), there exists R1 ≥ R0 + 2 such that for |z| > R1,

(−∆)αw(|z|) −
1

2α
w′(|z|)|z| −

1 + β

p − 1
w(|z|) ≥ σ0w(|z|) −

c37
1 + |z|N+2α

= w(|z|)

(
σ0 −

c37
log(e+ |z|2)

)

≥ 0.

For |z| ≤ R1, it is obvious that there exists c38 > 0 such that

(−∆)αw(|z|) −
1

2α
w′(|z|)|z| −

1 + β

p− 1
w(|z|) ≥ −c38.
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Then there exists Λ0 > 0 such that for λ ≥ Λ0,

(−∆)αw(|z|) −
1

2α
w′(|z|)|z| −

1 + β

p− 1
w(|z|) + λp−1wp(|z|) ≥ 0, z ∈ R

N ,

(5.14)
which together with (5.7), implies that (5.6) holds. �

Lemma 5.2 Assume that p ∈ (1 + 2α(1+β)
N+2α , p∗β), wΛ0 is given in (5.5) and

u∞ is given in (1.11). Then

u∞(t, x) ≤ wΛ0(t, x), (t, x) ∈ Q∞. (5.15)

In particular,
u∞(0, x) = 0, x ∈ R

N \ {0}. (5.16)

Proof. Let us denote

f0(r) =
k0 log(e+ r2)

1 + rN+2α
, r ≥ 0 and fn,k(x) = knNf0(n|x|), x ∈ R

N ,

where

k0 =

[
ωN

∫ ∞

0

log(e+ r2)

1 + rN+2α
rN−1dr

]−1

.

Then for any η ∈ C0(R
N ), we have

lim
n→∞

〈fn,k, η〉 = k lim
n→∞

nN

∫

RN

f0(n|x|)η(x)dx

= k lim
n→∞

∫

RN

f0(|x|)η(
x

n
)dx

= kη(0).

Let tn = n−2α and then

wΛ0(tn, x) = Λ0t
− 1+β

p−1
n

log(e+ (t
− 1

2α
n |x|)2)

1 + (t
− 1

2α
n |x|)N+2α

= Λ0n
2α(1+β)

p−1
log(e+ (n|x|)2)

1 + (n|x|)N+2α

=
Λ0

k0
n

2α(1+β)
p−1

−N
nNf0(n|x|)

≥
Λ0

k0
ñ

2α(1+β)
p−1

−N
nNf0(n|x|) = fn,kñ(x),

where ñ ≤ n and kñ = Λ0ñ
2α(1+β)

p−1
−N . We see that kñ = Λ0ñ

2α(1+β)
p−1

−N → ∞
as ñ → ∞, since 2α(1+β)

p−1 −N > 0. Let un,kñ be the solution of (1.12) with
the initial data fn,kñ. By Lemma 5.1, wΛ0(· + tn, ·) is a super solution of
(1.12) with the initial data wΛ0(tn, ·), that is, for (t, x) ∈ Q∞,

∂twλ(t+ tn, x) + (−∆)αwλ(t+ tn, x) + (t+ tn)
βwp

λ(t+ tn, x) ≥ 0.
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By Comparison Principle,

un,kñ(t, x) ≤ wΛ0(t+ tn, x), (t, x) ∈ Q∞,

for any ñ ≤ n. Then taking n → ∞, implies that

ukñ(t, x) ≤ wΛ0(t, x), (t, x) ∈ Q∞, (5.17)

where ukñ is the solution of (1.12) with kñδ0 initial data. We derive (5.15)
by taking ñ → ∞.

In particular, the argument (5.16) follows by the fact of

lim
t→0+

wΛ0(t, x) = 0, x ∈ R
N \ {0}.

The proof is complete. �

Lemma 5.3 Assume that p ∈ (1, p∗β), then there exists c39 > 0 such that

u∞(t, x) ≥
c39t

− 1+β

p−1

1 + |t−
1
2αx|N+2α

, ∀(t, x) ∈ (0, 1) × R
N . (5.18)

Proof. We divide the proof into several steps.
Step 1. Let σ0 = 1 + β − N

2α (p− 1) > 0,

η(t) = 2− tσ0 , t > 0

and denote
vǫ(t, x) = ǫη(t)Γα(t, x),

where Γα is the solution of (1.13).
In this step we prove that there exists ǫ0 > 0 such that

uk0 ≥ vǫ0 in (0, 1) ×R
N , (5.19)

where k0 = 2ǫ0 and uk0 is the solution of (1.12) with initial data k0δ0.
Indeed,

∂tvǫ(t, x) = ǫη′(t)Γα(t, x) + ǫη(t)∂tΓα(t, x)

and
(−∆)αvǫ(t, x) = ǫη(t)(−∆)αΓα(t, x),

Let Γ1(t
− 1

2αx) = Γα(1, t
− 1

2αx), then there exists ǫ0 > 0 such that for any
ǫ ≤ ǫ0 and (t, x) ∈ (0, 1) × R

N

∂tvǫ(t, x) + (−∆)αvǫ(t, x) + tβvpǫ (t, x)

= ǫη′(t)t−
N
2αΓ1(t

− 1
2αx) + ǫpηp(t)t−

N
2α

p+βΓp
1(t

− 1
2αx)

≤ −ǫσ0t
− N

2α
−1+σ0Γ1(t

− 1
2αx) + 2pǫpt−

N
2α

p+βΓp
1(t

− 1
2αx)

≤ 0,

31



the last inequality holds since − N
2α − 1+σ0 = − N

2αp+ β and Γ1 is bounded.
In particular, we have that

∂tvǫ0(t, x)+ (−∆)αvǫ0(t, x)+ tβvpǫ0(t, x) ≤ 0, ∀(t, x) ∈ (0, 1)×R
N . (5.20)

Let fn(x) = vǫ0(tn, x) with tn = n−2α. Since limt→0+ η(t) = 2, then we
have that fn ⇀ 2ǫ0δ0 as n → ∞ in the distribution sense. There exists
N0 > 0 such that tn ∈ (0, 18) for n ≥ N0. Let wn be the solution of (1.12)
with initial data fn, then it infers that

wn(t, x) ≥ vǫ0(t+ tn, x), (t, x) ∈ (0, 1 − tn)× R
N

By the uniqueness of uk0 , we have

wn → uk0 as n → ∞ in (0, 1) ×R
N

and
lim
n→∞

vǫ0(t+ tn, x) = vǫ0(t, x), (t, x) ∈ (0, 1) × R
N ,

which imply (5.19).

Step 2. To prove (5.18). Since

vǫ0(t, x) ≥ ǫ0t
− N

2αΓ1(t
− 1

2αx), (t, x) ∈ (0, 1) × R
N ,

then, along with (5.4), we observe that for any λ > 0,

u
k0λ

2α(1+β)
p−1 −N

(t, x) = λ
2α(1+β)

p−1 uk0(λ
2αt, λx)

≥ λ
2α(1+β)

p−1 vǫ0(λ
2αt, λx)

≥ ǫ0λ
2α(1+β)

p−1
−N

t−
N
2αΓ1(t

− 1
2αx).

Let ̺ = λ
2α(1+β)

p−1
−N

, t̺ = (2̺)

1
N
2α−

1+β
p−1 and T̺ = ̺

1
N
2α−

1+β
p−1 , then

0 < t̺ < T̺ → 0 as ̺ → ∞.

For (t, x) ∈ (t̺, T̺)× R
N ,

uk0̺(t, x) ≥ ǫ0̺t
− N

2αΓ1(t
− 1

2αx) ≥
ǫ0
2
t−

1+β

p−1Γ1(t
− 1

2αx),

then
u∞(t, x) ≥

ǫ0
2
t
− 1+β

p−1Γ1(t
− 1

2αx), (t, x) ∈ (t̺, T̺)× R
N .

which, choosing a sequence {̺n} such that (0, 1) ⊂ ∪(t̺n , T̺n), infers (5.18).
The proof is complete. �

Proof of Theorem 1.2. By Proposition 5.1 and Lemma 5.2, we have that
u∞ is a nontrivial self-similar solution of (1.12) and (1.17) follows by (5.15),

(5.18) and log(e+ |t−
1
2αx|2) ≤ 2 log(2 + |t−

1
2αx|). The proof is complete. �
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5.2 Trivial self-similar solution for p ∈ (1, 1 + 2α(1+β)
N+2α

)

For p ∈ (1, 1 + 2α(1+β)
N+2α ), it derive from Lemma 5.3 that

lim
t→0+

u∞(t, x) = ∞, ∀x ∈ R
N . (5.21)

Proof of Theorem 1.4 (i). Let f0 : R
N → R be a nonnegative continuous

function such that

suppf0 ⊂ B1(0) and max
x∈B1(0)

f0 = 1.

Denote
fn,k(x) = knθNf0(n

θ(x− x0)),

where k ≤ nτ with τ = 1
2(

2α(1+β)
p−1 −N−2α) > 0, θ = τ

N and x0 ∈ R
N . Since

fn,k(x) ≤ nτ for x ∈ B1(x0), fn(x) = 0 for x ∈ Bc
1(x0) and

vǫ0(tn, x) ≥
c38n

2α(1+β)
p−1

−N−2α

(2 + |x0|)N+2α
, x ∈ B1(x0),

where tn = n−2α. Then there exists N0 > 0 such that for any n ≥ N0

fn,k(x) ≤ vǫ0(tn, x), x ∈ B1(x0).

Since nθNf0(n
θ(x − x0)) ⇀ c41δx0 , as n → ∞ in the distribution sense, for

some c41 > 0.
Let wn,k be the solution of (1.12) with initial data fn and then

wn,k(0, x) = fn,k(x) ≤ vǫ0(tn, x) ≤ u∞(tn, x), x ∈ R
N .

Therefore, by comparison principle

wn,k(t, x) ≤ u∞(t+ tn, x), (t, x) ∈ Q∞.

We observe that

lim
k→∞

[ lim
n→∞

wn,k(t, x)] = u∞(t, x− x0), (t, x) ∈ Q∞.

Thus, we derive that

u∞(t, x− x0) ≤ u∞(t, x), (t, x) ∈ Q∞. (5.22)

By changing the role of x0 and 0 in (5.22), we have that

u∞(t, x− x0) = u∞(t, x), (t, x) ∈ Q∞,
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which implies that u∞ is independent of x. Combining (5.1) and (5.18),
implies that

u∞ = (
1 + β

p− 1
)
1+β

p−1 t−
1+β

p−1 .

The proof is complete. �

In the case of p = 1 + 2α(1+β)
N+2α , it derive from Lemma 5.3 that

lim inf
t→0+

u∞(t, x) ≥ lim
t→0+

c39t
− 1+β

p−1

1 + |t−
1
2αx|N+2α

=
c39

|x|N+2α
, ∀x ∈ R

N .

Proof of Theorem 1.4 (ii). We note that u∞ is a self-similar solution of
(1.12). Moreover, we derive (1.19) by (5.18), ends the proof. �

6 Uniqueness of self-similar solution when p ∈ (1+
2α(1+β)
N+2α , 1 + 2α(1+β)

N )

Theorem 1.3 will be proved by contradiction. We first introduce some aux-
iliary lemmas.

Lemma 6.1 Assume that p ∈ (1 + 2α(1+β)
N+2α , 1 + 2α(1+β)

N ) and ũ is a positive
self-similar solution of (1.18). Then either

ũ > u∞ in Q∞ (6.1)

or
ũ ≡ u∞ in Q∞. (6.2)

Proof. For any r > 0, we have that
∫

Br(0)
ũ(t, x)dx = t

− 1+β

p−1

∫

Br(0)
ũ(1, t−

1
2αx)dx

= t
− 1+β

p−1
+ N

2α

∫

B
t
− 1

2α r

(0)
ũ(1, z)dz

≥ t−
1+β

p−1
+ N

2α

∫

B1(0)
ũ(1, z)dz

→ +∞ as t → 0+,

where last inequality holds for t ∈ (0, r2α]. Let {ǫn} be a sequence positive
decreasing numbers converging to 0 as n → ∞. For ǫn and k > 0, there
exists tn,k > 0 such that

∫

Bǫn (0)
ũ(tn,k, x)dx = k.
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We observe that for any fixed k, tn,k → 0 as n → ∞ since limn→∞ ǫn = 0.
Let η0 : RN → [0, 1] be a C2 function such that suppη0 ⊂ B̄2(0), η0 = 1 in
B1(0) and ηn(x) = η0(ǫ

−1
n x) for x ∈ R

N . Choosing {fn,k} be a sequence of
C2 functions such that

0 ≤ fn,k(x) ≤ ηn(x)ũ(tn,k, x), x ∈ R
N

and

fn,k ⇀ kδ0 as n → ∞.

Let un,k be the solution of (1.1) with initial data fn,k, then

un,k(t, x) ≤ u(tn,k + t, x), (t, x) ∈ Q∞

and by uniqueness of uk, limn→∞ un,k = uk, where uk is the solution of (1.1)
with initial data kδ0. Then for any k, we have uk ≤ ũ in Q∞, which implies
that

ũ ≥ u∞ in Q∞.

Now we assume there exists (t0, x0) ∈ Q∞ such that

ũ(t0, x0) = u∞(t0, x0).

Since ũ and u∞ are self-similar, then

ũ(t, x0) = u∞(t, x0), t > 0.

Now for any t > 0, w(t, ·) = ũ(t, ·) − u∞(t, ·) achieves the minimum at x0.
Combining with ∂tw(t, x0) = 0 and tβũp(t, x0) = tβup∞(t, x0), we derive that
(−∆)αw(t, x0) = 0, which implies that

ũ(t, ·) = u∞(t, ·) in R
N .

Then ũ ≡ u∞ in Q∞. The proof is complete. �

Lemma 6.2 Assume that p ∈ (1 + 2α(1+β)
N+2α , 1 + 2α(1+β)

N ) and ũ is a positive
self-similar solution of (1.18). Then for any ǫ > 0, there exists λǫ ≥ 1 such
that for any λ ≥ λǫ,

ũ ≤ λu∞ + ǫ in [1,∞) × R
N =: Q1. (6.3)

Proof. For ǫ > 0, there exists Rǫ > 0 such that

ũ(1, x) ≤ ǫ, x ∈ Bc
Rǫ
(0).

Then there exists σ0 > 0 such that u∞(1, x) ≥ σ0 for x ∈ BRǫ(0). By
continuity of ũ(1, ·), there exists λǫ ≥ 1 such that ũ(1, x) ≤ λǫu∞(1, x) for
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x ∈ BRǫ(0). Then ũ(1, x) ≤ λǫu∞(1, x) + ǫ for x ∈ R
N . By the definition of

self-similar solution,

ũ(t, x) ≤ λǫu∞(t, x) + ǫt
− 1+β

p−1

≤ λǫu∞(t, x) + ǫ, (t, x) ∈ Q1,

which ends the proof. �

Proof of Theorem 1.3. Let ũ be a positive self-similar solution of (1.18).
By Lemma 6.1, ũ > u∞ in Q∞ or ũ = u∞ in Q∞. Our aim is to rule out
the case ũ > u∞ in Q∞. To this end, for ǫ ∈ (0, 1] we denote

λǫ = min{λ ∈ [1,∞) : ũ ≤ λu∞ + ǫ in Q1}.

It follows by Lemma 6.2 that λǫ is well-defined and λǫ ≤ λǫ.
We first claim that

λǫ = 1 for any ǫ ∈ (0, 1]. (6.4)

In fact, if (6.4) fails, then there exists ǫ0 ∈ (0, 1] such that λǫ0 > 1.
Step 1. To prove λǫ0u∞+ ǫ0 > ũ in Q1. By continuity, we see that λǫ0u∞+
ǫ0 ≥ ũ in Q1. If there exists (t0, x0) ∈ Q1 such that

λǫ0u∞(t0, x0) + ǫ0 = ũ(t0, x0).

Let w = λǫ0u∞+ ǫ0− ũ. Since ǫ0 > 0, there exists R0 such that ũ(t0, x) < ǫ0
for x ∈ Bc

R0
, then w achieves the minimum at (t0, x0) then ∂tw(t0, x0) = 0,

tβ0 (λǫ0u∞(t0, x0) + ǫ0)
p = tβ0 ũ

p(t0, x0) and

(−∆)αw(t0, x0) = −

∫

RN

w(t0, x0 + y)

|y|N+2α
dy < 0.

Thus, we obtain a contradiction, since λǫ0u∞ + ǫ0 is a super solution of
(1.12) and ũ is a solution of (1.12).

Step 2. To prove that there exists σ ∈ (0, λǫ0−1) such that (λǫ0−σ)u∞+
ǫ0 ≥ ũ in Q1.

For ǫ0 > 0, there exists R0 such that ũ(1, x) < ǫ0 for x ∈ Bc
R0

(0). By Step

1, ũ(1, x) < λǫ0u∞(1, x) + ǫ0 for x ∈ R
N , then there exists σ ∈ (0, λǫ0 − 1)

such that

ũ(1, x) ≤ λǫ0u∞(1, x) + ǫ0 − σu∞(1, 0), x ∈ B̄R0(0).

Then we have

ũ(1, x) ≤ (λǫ0 − σ)u∞(1, x) + ǫ0, x ∈ R
N .

By Comparison Principle, we have

ũ(t, x) ≤ (λǫ0 − σ)u∞(t, x) + ǫ0, (t, x) ∈ Q1,
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which contradicts the definition of λǫ0 . Therefore, (6.4) holds.
By (6.4), we have ũ ≤ u∞ + ǫ in Q1 for any ǫ > 0. Taking ǫ → 0, we

derive that
ũ ≤ u∞ in Q1

and then it follows by Lemma 6.1 that ũ = u∞ in Q∞. �
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[23] M. Marcus and L. Véron, Initial trace of positive solutions to semilinear
parabolic inequalities, Advanced Nonlinear Studies 2, 395-436 (2002).
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