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Smart cards are the safer device to execute cryptographic algorithms. Applications are verified before being loaded in the card. Recently, the idea of combined attacks to bypass byte code verification has emerged. Indeed, correct and legitimate Java Card applications can be dynamically modified on-card using a laser beam to become mutant applications or fault enabled viruses. We propose a framework for manipulating binary applications to design viruses for smart cards. We present development, experimentation and an example of this kind of virus.

Introduction

Nowadays, a new deployment model has taken place and provides the ability to load third tiers applications in the SIM card through an application store controlled by the network operator. Unfortunately, these applications are subject to fault attacks as it is possible to design inoffensive applications, made hostile once hit by a laser beam. We call them fault enabled viruses. Our contribution is twofold, first we propose an architecture as tool and we provide a set of constraint to choose an instruction which will be subjects to a laser attack.

Context

Software attacks against smart card can be classified in two categories: ill-typed applications or well-typed applications. But the second category can also be split into permanent well-typed applications or transient welltyped applications. In ill-typed applications [START_REF] Iguchi-Cartigny | Developing a trojan applets in a smart card[END_REF][START_REF] Bouffard | Combined software and hardware attacks on the java card control flow[END_REF] the input file has been modified in order to illegally obtain information. Permanent well-typed application [START_REF] Hubbers | Transactions and non-atomic API calls in Java Card: specification ambiguity and strange implementation behaviours[END_REF], relies on some weakness of the specification. Transient well-typed applications is a new research field [START_REF] Barbu | Attacks on java card 3.0 combining fault and logical attacks[END_REF][START_REF] Vetillard | Combined attacks and countermeasures[END_REF][START_REF] Bouffard | Combined software and hardware attacks on the java card control flow[END_REF] where an application mutes when a fault occurs. In this way, we have fault enabled viruses. Ill-typed applications and transient well-typed applications need to apply byte code transformation engineering at the CAP file level.

State of the Art about smart card attacks

Physical attacks. As explained by [START_REF] Aumiiller | Fault attacks on RSA with CRT : Concrete results and practical countermeasures[END_REF], a modification of the input current may modify the execution flow as the card is not self-powered as described in [START_REF] Agoyan | When clocks fail: On critical paths and clock faults[END_REF][START_REF] Kömmerling | Design principles for tamper-resistant smartcard processors[END_REF]. We also have attacks, explained by S. Skorobogatov and R. Anderson in [START_REF] Skorobogatov | Optical fault induction attacks[END_REF], that use the light (LED, laser, etc.) and focus on a specific part of the chip, and the light provides enough energy in the memory-cell to change its value. Electromagnetic attack, as presented by [START_REF] Quisquater | Eddy current for magnetic analysis with active sensor[END_REF] and [START_REF] Schmidt | Optical and em fault-attacks on crt-based rsa: Concrete results[END_REF], like the inducted current provides a way to modify the memory value, and it also helps in characterizing the chip area used during a critical operation. Logical Attacks. In E. Hubbers et al.'s paper [START_REF] Hubbers | Transactions and non-atomic API calls in Java Card: specification ambiguity and strange implementation behaviours[END_REF], they presented a quick overview of the available classical attacks and gave some countermeasures. There are different way to get type confusion: CAP file manipulation after the building step to bypass an off-card Byte Code Verifier (BCV). Using fault injection to bypass the on-card one (difficult and expensive). There is also the use of the shareable interface mechanism, but on recent cards this attack is no longer possible. And finally, we have the transaction mechanism, that consists in making a set of atomic operations. By definition, the rollback mechanism should also deallocate any objects allocated during an aborted transaction and reset references to such objects to null. However, the authors found some cases where the card keeps the reference to objects allocated during transaction even after a rollback. The idea of EMAN attack [START_REF] Iguchi-Cartigny | Developing a trojan applets in a smart card[END_REF], explained by J. Iguchi-Cartigny et al., is to abuse the firewall mechanism with the unchecked static instructions (as getstatic, putstatic and invokestatic) to call malicious byte codes. In a malicious CAP file, the parameter of invokestatic instruction may redirect the control flow graph (CFG) of another installed applet in the targeted smart card. At CARDIS 2011, G. Bouffard et al. described, in [START_REF] Bouffard | Combined software and hardware attacks on the java card control flow[END_REF], two methods to change the Java Card CFG. The EMAN2 attack will be further explained in the subsection 3.1.

The CAP File

As described by S. Hamadouche in [START_REF] Hamadouche | Étude de la sécurité d'un vérifieur de Byte Code et génération de tests de vulnérabilité[END_REF], the CAP (Convert APplet) file format is based on the notion of interdependent components that contain specific information from the Java Card package. For instance, the Method component contains the methods byte code, and the Class component has information on classes such as references to their super-classes or declared methods.

3 The CapMap

Modification of a CAP File

CapMap has been developed [START_REF] Noubissi | Cartes à puce: Attaques et contremesures[END_REF] with the aim of having a handy and a friendly way to parse and modify a CAP file. It is very useful and very convenient while designing a logical attack to test Java Cards security. There are three steps to modify a CAP file using the CapMap: identifying in which CAP file's standard components are located our target, getting the right set of elements, and then applying changes thanks to setters provided by the CapMap over each CAP file elements. This is a simple example that makes the use of CapMap clearer: it is a reference to the EMAN2 attack. We are going to use the CapMap to particularly manipulate the instruction sstore to perform our attack. First, we need to target our method within the Method Component, interdependent to the others components. Element within it are indexed. A method is a set of instructions, and an instruction is a set of byte-values. They both are indexed in structures provided by CapMap. Secondly, we have to target the sstore instruction, and we are going to change its operand's value. We are going to change the operand's value to write in return function address as listing 1.1.

C a p F i l e E d i t a b l e c a p F i l e = new C a p F i l e E d i t a b l e ( ) ; c a p F i l e . l o a d (MY CAP FILE) ;

// Load t h e cap f i l e A r r a y L i s t <MethodInfo> methods = // Get methods c a p F i l e . getMethodComponent ( ) . getMethods ( ) ;

// S e t t h e i n s t r u c t i o n you want t o r e p l a c e methods . g e t (METHOD INDEX) . g e t B y t e c o d e s ( ) . s e t (SSTORE OPERAND INDEX, RETURN ADDRESS REGISTER) ;

Listing 1.1. CAP File modification with CapMap

Stack Evaluation

If the byte code of a java program is dedicated to be a fault enabled virus it needs to avoid the software counter-measures embedded into the card. This type verification is performed for each method present in the package. The type checking ensures that no disallowed type conversion is performed. For example, an integer cannot be converted into an object reference. A downcast can only be performed using the checkcast instruction, and arguments provided to methods have to be of compatible types. The most complicated step and quite expensive (both time and memory), is to retrieve the type of local variables by analyzing the byte code. It requires computing the type of each variable and stack element for each instruction and each execution path, accepting programs (set of instructions) where each stack element and local variable have the same type whatever the path taken to reach an instruction. This also requires that the stack size is the same for each instruction and for each path that can reach this instruction. Another constraint is that the stack must never reach a maximum size which allows checking if we are not overflowing or underflowing the stack. So, each time we modify a method we can verify the correctness type of the modification. The most important thing for virus implementation is to define the set of instructions eligible to be added to the byte array: only instructions that are compatible with the previous instruction execution can be added to the method. The type information associated to an instruction corresponds to the type of the local variables and of the runtime stack before the instruction is executed. The post conditions generated by the execution of the instruction must be checked as pre-condition for the next instruction. This defines a set of constraints that must be guaranteed by each byte code sequence.

Constraint Solving

To design a fault enabled virus we have to hide the real operation as a part of the operands of the preceding instruction. Thus, when the preceding instruction is hit by the laser and transformed as a NOP instruction: its operand becomes an instruction. Within this fault model, we need to find an instruction which needs one operand and satisfies several constraints, or an instruction which needs two operands. In such a case, the first operand becomes either the first instruction of the virus, or an instruction without operand and the second operand becomes the first instruction of the virus. We need to be able to select an instruction that satisfies several constraints, hence we will be able to hide viruses in a well-typed program. We try to build a sequence of instructions prog, empty at the beginning, such that it exists an instruction ins, with an operand number greater than one, for which the consumption of the stack is empty and the production on the stack is lower than the maximum value of the stack.

If such an instruction exists, we can concatenate the sequence prog with the sequence virus minus its head. Executing the new sequence prog must lead to an empty stack at the end of execution. Unfortunately, the resulting program may be a non valid Java program: not all sequences of byte code can be generated by a compiler. But the certification scheme proposed by GlobalPlatform [START_REF]Global Platform: Composition Model Security Guidelines for Basic Applications[END_REF] do not imply to provide source code. The certification process must be done at the CAP file level.

Java Card Code Reverser

The complete process of generating a fault enabled virus needs four steps using CapMap. Firstly, finding a sequence of instructions which hides the virus code that satisfies a set of constraints. The resulting CAP File represents a valid Java program in term of stack typing. Next, evaluating the resulting CAP file using an off-card BCV. If it is rejected, it means that either stack evaluation goes wrong, or the constraint solver failed. If the off-card BCV evaluation succeeds, the third step is going to be using our Cap2Class tool to reversed code. Finally, converting to Java file. This step is performed as a lot of existed tools if the generated code is a valid. --------------------------------------------------------------// any code can be p l a c e d h e r e DES keys . getKey ( apduBuffer , ( short ) 0 ) ;

Evaluation of the Threat Capacities

B2 -------------------------------------------------------------- apdu . setOutgoingAndSend ( ( short ) 0 , 1 6 ) ; B3 } Listing 1.2

. The unwanted code

The listing 1.2 explains how to build the virus. It aim is to send in clear text the value of an encrypted key container. Of course any analysis will reject this code as the secret key is sent to the external world. This code can be split into three parts. The first one (B1) is mandatory and corresponds to the APDU reception. The second block (B2) corresponds to the code to obfuscate and which should only be executable once a fault occurs. It decrypts the key container and put the value in the APDU buffer at offset 0. The last one (B3) sends the content of the apdu buffer from offset 0 for 16 elements (a 3-DES key) to the reader. If we can replace the B2 block by an inoffensive code, it is said to be a fault enabled smart card virus. This code corresponds to the following byte code listed in 1.3. ------------------------------------------------------------ -------------------------------------------------------------/ The B1 block is the preamble, a correct code that must be executed. The B2 block corresponds to the code that must be obfuscated, and the last one B3 is the postamble. After the execution of the B1 block the state of the stack is {ref, ref, value}. Obfuscating B2 will consist in inserting an instruction before, in a such a way the constraints explained in the previous section are verified. But prior to select an instruction, we need to link statically the B2 code fragment. The final linking process is done inside the card and we can not rely on this process to resolve automatically the addresses. For that purpose, we have developed an attack, presented in [START_REF] Hamadouche | Subverting Byte Code Linker service to characterize Java Card API[END_REF], that provides us the way to retrieve (for most of the current cards) the linking information. For this card the linked address of the getKey method is 0x023C. Then the code to hide becomes: / * 00 db * / i n v o k e i n t e r f a c e n a r g s : 3 , @023c , method : 4 / * 00 e0 * / pop // pop t h e r e t u r n b y t e o f t h e method Listing 1.4. Resolved address of the B2 block

If we consider the single fault model then one of the selectable instructions is ifle (Ox65) . It uses a short value and its operand is an offset to the branching instruction. The B2 code fragment to be loaded into the card becomes like in the listing 1.5. If the byte at the offset 0x00D6 becomes 0x0000 (thanks to the laser hit) the original B2 code will be executed. The starting point of this study was the development of SmartCM [START_REF] Machemie | SmartCM A Smart Card Fault Injection Simulator[END_REF], a simulator that detects such attack, and aims to analyze the effect of a fault on a Java Card program using different modules : the code mutation engine, the risk analysis tool, and a last one the mutants reducer.

Conclusion

We have presented in this paper a complete CAP file engineering tool to modify each component of the CAP file in a coherent way. Within this tool, we have the possibility to design a very efficient attack using ill-typed application but also fault enabled viruses. It includes a stack checker to avoid embedded counter-measures and a minimalist constraint solver to generate the hiding sequence. We demonstrated the efficiency of the constraint solver to built a valid program which hides a fault enabled virus. We have developed a static analyzer SmartCM that is able to detect such a fault enabled virus. Recently, it appears that the single fault model is out of date and we must consider the possibility of a dual fault attack as a valid hypothesis. Thus, the CapMap tool is able to build such a second order virus by simply applying twice the process. But the constraints for the second pass must be different to not reveal the hidden code. This is a new research direction on which we are working now.

4. 1

 1 Building a fault enabled virus with the CapMap public void p r o c e s s (APDU apdu ) { short l o c a l S ; byte l o c a l B ; byte [ ] a p d u B u f f e r = apdu . g e t B u f f e r ( ) ; // g e t t h e APDU b u f f e r i f ( s e l e c t i n g A p p l e t ( ) ) { return ; } B1 byte r e c e i v e d B y t e = ( byte ) apdu . s e t I n c o m i n g A n d R e c e i v e ( ) ;

  -/ * 00 d6 * / g e t f i e l d a t h i s 1 // DES keys / * 00 d8 * / a l o a d 4 // L4=>a p d u b u f f e r / * 00 da * / s c o n s t 0 / * 00 db * / i n v o k e i n t e r f a c e n a r g s : 3 , i n d e x : 0 , B2 const : 3 , method : 4 // g e t k e y / * 00 e0 * / pop // r e t u r n e d Le b y t e -

/ 1 . 5 .

 15 * 00 d6 * / [ 6 5 ] i f l e @0x8D 0x8D c o r r e s p o n d s t o i n v o k e s t a t i c / * 00 d8 * / [ 0 3 ] s c o n s t 0 // c o r r e s p o n d s t o t h e n a r g s / * 00 d9 * / [ 0 2 ] s c o n s t m 1 // c o r r e s p o n d s t o t h e a d d r e s s h i g h / * 00 da * / [ 3 c ] pop2 // c o r r e s p o n d s t o t h e a d d r e s s low / * 00 db * / [ 0 4 ] s c o n s t 1 // c o r r e s p o n d s t o t h e method number / * 00 dc * / [ 3 b ] pop // r e s y n c h r o n i z e d w i t h t h e o r i g i n a l code Listing The hiding code 4.2 Detecting a fault enabled virus with SmartCM