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Abstract

While the role of microboring organisms, or euendoliths, is relatively well known in dead
coral skeletons, their function in live corals remains poorly understood. They are sug-
gested to behave like ectosymbionts or parasites, impacting their host health. However,
the species composition of microboring communities, their abundance and dynamics5

in live corals under various environmental conditions have never been explored. Here,
the effect of phosphate enrichment on boring microorganisms in live corals was tested
for the first time. S. pistillata nubbins were exposed to 3 different treatments (phosphate
enrichments of 0, 0.5 and 2.5 µmol l−1) during 15 weeks. After 15 weeks of phosphate
enrichment, petrographic thin sections were prepared for observation with light mi-10

croscopy, and additional samples were examined with scanning electron microscopy
(SEM). Euendoliths comprised mainly autotrophic Ostreobium sp. filaments. Rare fila-
ments of heterotrophic fungi were also observed. Filaments were densely distributed in
the central part of nubbins, and less abundant towards the apex. Unexpectedly, there
was a visible reduction of filaments abundance in the most recently-calcified apical15

part of phosphate-enriched nubbins. The overall abundance of euendoliths significantly
decreased, from 9.12±1.09 % of the skeletal surface area in unenriched corals, to
5.81±0.77 % and 5.27±0.34 % in 0.5 and 2.5 µmol l−1-phosphate enriched corals re-
spectively. SEM observations confirmed this decrease. Recent studies have shown
that phosphate enrichment increases coral skeletal growth and metabolic rates, while20

it decreases skeletal density and resilience to mechanical stress. We thus hypothesize
that increased skeletal growth in the presence of phosphate enrichment occurred too
fast for an effective euendolith colonization. They could not keep up with coral growth,
so they became diluted in the apex areas as nubbins grew with phosphate enrichment.
The possible advantages and downsides of the reduction of euendoliths associated25

with phosphate eutrophication in live corals are discussed in this article.
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1 Introduction

Euendoliths are boring autotrophic and heterotrophic microorganisms that include
cyanobacteria, chlorophytes, rhodophytes, and fungi (Tribollet, 2008a). They develop in
a large variety of carbonate substrates, including crustose coralline algal thalli and coral
skeletons (Tribollet and Payri, 2001; Tribollet and Golubic, 2005), in which they actively5

penetrate through the active process of dissolution (Golubic et al., 1981; Garcia-Pichel
et al., 2010). They colonize live and dead substrates, although colonization has been
shown to be more intense in dead ones (Le Campion-Alsumard et al., 1995a; Tribollet
and Payri, 2001). In live coral skeletons, euendoliths grow from the inside of the skele-
ton towards the surface, trying to keep up with coral growth (Le Campion-Alsumard et10

al., 1995a). In dead skeletons on the contrary, they penetrate from the outside and bore
towards the inside of the substratum (Tribollet, 2008b).

In dead corals, euendoliths have been shown to be important primary producers,
and major agents of reef bioerosion and sediment production (Schneider and Torun-
ski, 1983; Chazottes et al., 1995; Perry, 2000; Tribollet et al., 2002, 2006; Tribollet and15

Golubic, 2005). Various environmental factors have been reported to affect rates of dis-
solution by euendoliths in dead substrates. Zubia et al. (2001), Chazottes et al. (2002),
and Carreiro-Silva et al. (2005, 2009) reported enhanced rates of dissolution under
eutrophicated conditions, while Tribollet and Golubic (2005) showed that terrigenous
inputs can mitigate the effects of eutrophication by limiting settlement and penetration20

of euendoliths. Moreover, it was shown recently that rates of bioerosion by euendolithic
communities are positively affected by elevated pCO2 (Tribollet et al., 2009).

In live corals, besides their role as skeleton bioeroders, euendoliths are known to
have different activities. Boring heterotrophic fungi appear to inflict damages to their
live hosts (Bentis et al., 2000; Alker et al., 2001; Domart-Coulon et al., 2004) while25

autotrophic euendoliths may provide benefits, especially in cases of bleaching events,
through the release of nutrients and organic compounds (Odum and Odum, 1955; Fer-
rer and Szmant, 1988; Schlichter et al., 1995; Fine and Loya, 2002). The metabolism
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of euendoliths and the balance between damages and benefits in live corals remain
however poorly known (Ferrer and Szmant, 1988; Tribollet, 2008a). In particular, the
role of environmental factors on bioerosion of live coral skeletons has been seldom
addressed. It was shown that elevated light leads to a photoacclimation of phototrophic
euendoliths when increased progressively, and makes them more susceptible to ther-5

mal photoinihibition and photodamages when increased rapidly, while concomitant in-
creases in light and temperature lead to a decrease of their photosynthetic efficiency
(Fine and Loya, 2002; Fine et al., 2004, 2005). But the roles of other factors such as
nutrient concentrations have never been formally examined. Since corals are becom-
ing increasingly impacted by eutrophication due to continuous nutrient release from10

sewage discharges, rainfall, rivers and ground waters (Tomascik and Sander, 1985;
Bell and Tomascik, 1993; McCook, 1999), the impact of nutrients on boring euendolithic
communities of live corals deserves more attention. Based on studies carried out on
dead coral skeletons, we hypothesize that nutrient enrichment stimulates euendoliths
in live corals and thus, rates of dissolution.15

The aim of the present study was to test the impact of enrichment by a single nutrient,
phosphate, under controlled conditions in aquaria, using the tropical coral S. pistillata.
Phosphate was chosen because it has been reported to affect the skeletal composi-
tion and structure of corals (Godinot et al., 2011a; Dunn et al., 2012). Indeed, a recent
study showed that phosphate decreased skeletal density in the coral Acropora muri-20

cata, which was suggested to possibly cause live corals to be more colonized by eu-
endoliths (Dunn et al., 2012). S. pistillata was selected for the present study because
in this species, phosphate was already shown to increase tissue and skeletal growth,
phosphate incorporation into the mineral fraction of the skeleton, as well as zooxanthel-
lae specific growth rate, photosynthetic efficiency and phosphorus content (Godinot et25

al., 2011a). The study of the impact of phosphorus on euendoliths in live S. pistillata
will thus improve the understanding of the effects of nutrients on live corals.
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2 Methods

2.1 Experimental design

The experimental setup used in this study has already been described in a previous
paper (Godinot et al., 2011a). Briefly, live nubbins (initial size of 1.3±0.4 cm long and
0.6±0.3 cm in diameter) of S. pistillata were cultured in duplicated aquaria under three5

continuous phosphate enrichments (0, 0.5 and 2.5 µmol l−1). The 0.5 µmol l−1 enrich-
ment represented a phosphate concentration which has been reported on some eu-
trophicated reefs (Kinsey and Davies, 1979), whereas the 2.5 µmol l−1 enrichment was
used to highlight the effect of phosphate on coral physiology. Corals were kept unfed to
control for phosphorus enrichment, and light, temperature, salinity, algal development10

and nutrient concentrations were controlled in each aquarium (Godinot et al., 2011a).
Three nubbins per treatment (9 nubbins in total) were sampled for euendolith obser-
vations after 15 weeks of phosphate enrichment, and were immediately fixed in a 4 %
solution of formaldehyde in buffered seawater.

2.2 Sample treatment15

Nubbins were cut transversally in two halves for observation of euendoliths with light
microscopy and scanning electron microscopy (SEM) respectively.

The first halves were used to prepare longitudinal petrographic thin sections for light
microscopy observations. The samples were dehydrated in a series of ethanol and
acetone baths, then embedded in araldite as described by Tribollet (2008b). Several20

millimeter thin slabs of skeleton were cut using a diamond circular saw, and were then
mounted on microscope slides, ground to the quality of petrographic thin sections,
briefly etched with 5 % HCl, rinsed carefully, and stained with 5 % toluidine blue to re-
veal the euendolithic filaments (a total of 5 slides of good quality were finally obtained
per phosphate treatment). Sections were observed with a Nikon Eclipse LV100 micro-25

scope, on which a Nikon DS-RI1 camera was mounted.
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The second halves of samples were used to prepare SEM sections. Samples were
bleached with sodium hypochlorite before embedding, then cut longitudinally, shortly
etched with 5 % HCl, rinsed and dried carefully, and then platinum-coated. Three sam-
ples per treatment were observed with a ZEISS Evo.LS.15 environmental SEM.

2.3 Analyses5

2.3.1 Petrographic slides

Two semi-quantitative methods were selected to (i) determine if phosphate had an
effect on the overall distribution of microboring filaments in the skeletons, and to (ii)
quantify the abundance of filaments in each treatment. In this latter technique, only
non-porous areas of the skeleton (i.e. microscopic fields fully covered by skeleton)10

were selected for repeatability and accuracy of the abundance quantifications. This
choice was made because of the highly porous structure of S. pistillata skeletons, which
was of ca. 50±8 % (estimated on pictures of the petrographic slides with the software
ImageJ).

The first semi-quantitative method consisted in selecting one representative slide out15

of the five per phosphate treatment to map in details the spatial distribution of filaments
across the entire sections of skeleton, i.e. porous and non porous areas. For this new
approach of euendoliths distribution, pictures of the entire thin sections selected were
taken and assembled using the software NIS-Elements D (Nikon). These pictures were
converted to binary black and white pictures with ImageJ. The outlines of the skeletons20

were recovered with the software Adobe Illustrator, and colored distribution maps were
drawn within those outlines. Maps were based on estimations of the abundance of eu-
endolithic filaments, visually ranked from 1 to 5 by the same observer (respectively
lowest and highest filament abundances encountered across all the samples). Abun-
dances were estimated on 0.14 mm2 fields, at ca. 500 µm intervals across the whole25

thin sections (i.e. ca. 150±25 measures per sample).
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The second semi-quantitative method consisted in ranking the abundance of fila-
ments on 30 randomly selected non-porous microscopic fields of 0.14 mm2 per slide (5
slides, thus 150 measurements per phosphate treatment), in order to quantify and to
compare the abundance of filaments among phosphate treatments. We thus observed
a total surface area of 0.041 cm2 per slide out of 0.85 cm2 on average, with a porosity5

of 50±8 %. Thus, quantifications were performed on ca. 10 % of the total surface area
of the samples. The same scale as described above (ranks from 1 to 5) was used.
To statistically compare the abundance of filaments between phosphate treatments,
ranks were matched to percentages of surface area covered by euendoliths. These
percentages were determined for each rank of abundance as a preliminary step, using10

5 representative photographs per rank which were analyzed with the software ImageJ.
The minimum and maximum values found for each rank gave the range of percent-
ages of bioeroded surface area attributed to that rank (presented in Table 1). The 30
abundance observations performed per slide were thus used to calculate the range
of surface area covered by euendoliths on each slide. Medians of these ranges were15

compared among the three treatments using non-parametric Kruskal-Wallis tests, fol-
lowed by U Mann-Whitney post-hoc paired tests, performed with the software StatView.
Non-parametric tests were selected since the normality assumption was not respected.

2.3.2 SEM sections

SEM sections were observed to confirm (iii) the specific diversity of euendoliths ob-20

served on petrographic slides, and (iv) the semi-quantitative analyses performed. For
that latter part, ten pictures were randomly taken per section (30 pictures per phosphate
treatment) to quantitatively measure the surface area bioeroded by euendoliths using
the software ImageJ (expressed in percent of the total surface area of the picture). The
effect of phosphate enrichment was tested using a Kruskal-Wallis test followed by U25

Mann-Whitney post-hoc paired tests, performed with the software StatView.
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3 Results

Nubbins measured on average ca. 0.8±0.3 cm in diameter at the end of the experi-
ment, with a length of 3.3, 3.5, and 3.7±1.0 cm long (respectively for the 0, 0.5 and
2.5 µmol l−1 treatments).

Euendolithic communities observed in the skeletons of live S. pistillata were mainly5

made of Ostreobium sp. filaments (Fig. 1), with possibly fungi filaments as well. No
other species were observed.

Those filaments were rather densely distributed in the middle part of the nubbins
(yellow to red colors on Fig. 2), while they were less abundant at the apex of the corals
(blue to yellow colors on Fig. 2). Differences were observed between the unenriched10

and the two phosphate-enriched corals (Fig. 2a): in the latter, filaments were even less
abundant towards the most recently-calcified apical part of the nubbins (large blue and
green areas on the right of Fig. 2b and c).

The abundance of euendoliths significantly decreased with phosphate enrichment on
the petrographic thin sections, from 9.12±1.09 % of the non-porous surface area bio-15

eroded in unenriched corals to 5.81±0.77 % and 5.27±0.34 % in 0.5 and 2.5 µmol l−1-
phosphate enriched corals respectively (Fig. 3; Kruskal-Wallis test, df =2, H = 7.58,
p = 0.02). Differences between the two phosphate-enriched treatments were not sig-
nificant (Mann-Whitney test, U = 10, p = 0.60). Bioeroded surface area estimated with
SEM confirmed the decrease of abundance with phosphate enrichment (Kruskal-Wallis20

test, df =2, H = 6.25, p = 0.04). Mann-Whitney post-hoc tests showed that, with the
SEM technique, only the highest phosphate enrichment was significantly different from
the other two phosphate treatments (U = 280, p = 0.018).

4 Discussion

This study is, to the best of our knowledge, the first to report on the distribution and25

abundance of euendoliths colonizing skeletons of live corals in a controlled experiment
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testing phosphate inputs. Species composition of euendolithic communities observed
in S. pistillata is in agreement with the previous few observations made in skeletons of
other live corals (Porites; Le Campion-Alsumard et al., 1995a), in which the ubiquitous
chlorophyte Ostreobium quekettii dominated assemblages, with occasional filaments
of fungi and of the cyanobacterium Plectonema terebrans. In S. pistillata however, fila-5

ments of the cyanobacteria P. terebrans were not observed, but may have been over-
looked or confounded with fungi hyphae. The low diversity of euendoliths in S. pistillata
confirms that only a few species can penetrate into skeletons of live corals. Euendoliths
in S. pistillata were however distributed differently than in Porites colonies. They were
localized across the skeletons of S. pistillata (unenriched treatment) while they were10

condensed in a green band beneath the surface of Porites colonies. The above vari-
ations in distribution probably result from differences in structure and porosity among
coral species. This strongly suggests that all coral species are not colonized the same
way by euendoliths, as is also the case for dead carbonate substrates (Perry, 1998;
Tribollet, 2008a).15

The decrease of euendolithic filament abundance, and thus bioerosion, reported
here was somewhat unexpected, as it was in contradiction with the assumption of
Dunn et al. (2012). These authors indeed suggested that bioerosion by euendoliths
increases with phosphate eutrophication. If skeletal microdensity decreased in S. pis-
tillata corals due to the continuous 15 weeks phosphate enrichment, as was the case20

of A muricata corals enriched for 16 weeks with phosphate (Dunn et al., 2012), this
decrease did not lead to a faster colonization of the skeleton by euendoliths. On the
contrary, euendoliths abundance decreased in phosphate-enriched corals, especially
in the apexes (Fig. 2). This result may be linked to the increase in skeletal growth
rates observed with phosphate enrichment in S. pistillata (Godinot et al., 2011a). An25

inverse relationship was found between the abundance of euendoliths (expressed as
percentages of surface area bioeroded) reported in the present study and the skeletal
growth rates reported by Godinot et al. (2011a) (Fig. 4). We hypothesize that increased
skeletal growth in the presence of added phosphate was too fast for the euendoliths to
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actively follow coral growth, and that euendoliths became diluted as nubbins grew with
phosphate enrichment.

Contrary to the negative effect of phosphate enrichment on euendoliths growth ob-
served in the present study in live corals, eutrophication has been reported to increase
bioerosion by euendoliths in dead substrates (Zubia and Peyrot-Clausade, 2001; Cha-5

zottes et al., 2002; Carreiro-Silva et al., 2005, 2009). Chazottes et al. (2002) and
Carreiro-Silva et al. (2005) highlighted the confounding roles of grazing and organic
matter release in this positive response, which led to changes in euendolithic communi-
ties with eutrophication in dead substrates. They hypothesized that increased nutrients
can initiate a feedback loop, where bioerosion by euendoliths and by grazers reinforce10

one another, leading to accelerated bioerosion of the reef framework. However, the lat-
ter confounding roles of grazing and organic matter release were absent in the present
controlled study on live corals. Furthermore, the processes of bioerosion in dead sub-
strates and live coral skeletons are likely to be very different (Le Campion-Alsumard
et al., 1995a). Indeed, in dead substrates, euendoliths are in contact with the ambi-15

ent seawater, where they can possibly benefit from high nutrient concentrations. In live
corals, polyps and their zooxanthellae form a protective barrier and actively take up the
nutrients (D’Elia, 1977; D’Elia et al., 1983; Bythell, 1990; Godinot et al., 2009, 2011a,
b). Even though phosphate did reach the skeleton in the present study, as evidenced
by the higher P:Ca ratio and phosphorus content of the mineral fraction of the skeleton20

of phosphate-enriched nubbins (Godinot et al., 2011a), it is not granted that this phos-
phate was available to euendoliths. In fact, phosphate was incorporated as calcium
phosphate in the crystal lattice of the skeleton, and was probably not accessible by
euendoliths. Another source of phosphate for euendoliths might have been localized
within the pores of the skeleton. Indeed, skeletal pore water has been reported to be25

nutrient rich in some massive corals (Risk and Müller, 1983; Ferrer and Szmant, 1988),
with phosphate concentrations elevated by 0.39 µmol l−1 above those encountered in
ambient seawater. However, the very poorly connected pore structure of S. pistillata
may have prevented this enrichment of skeletal water. Euendoliths in massive corals
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such as Porites colonies may however, respond completely differently as those corals
have a slow growth rate (Pätzold, 1984) and a structure allowing a better circulation of
seawater inside skeleton (Knackstedt et al., 2006). Results of the present study need to
be confirmed by carrying further enrichment experiments (with different nutrients, com-
bined nutrients, in various concentrations), with diverse coral species and over longer5

periods of time.
By addressing issues of bioerosion by euendoliths in the context of nutrient enrich-

ment in live corals, this study adds to the growing body of evidence on the impacts of
phosphorus on live corals, and adds to the understanding of euendoliths dynamics in
those live substrates. Results from the present study indicate that coral skeletons of10

S. pistillata will not be further weakened by euendoliths under phosphate enrichment.
A decrease of bioerosion rates in polluted areas could therefore be positive for living
corals facing eutrophication, as it would represent one less stressor to cope with. In-
deed, it was shown that when the corals Porites lobata, Pocillopora eydouxi, Acropora
cytherea, Acropora humulis, and Montipora studeri are attacked by fungi filaments,15

they actively resist fungal penetration by depositing conical structures of dense repair
aragonite in growing calices (Le Campion-Alsumard et al., 1995b; Bentis et al., 2000).
This process is energetically costly, but will likely be reduced if euendoliths become
diluted in skeletons of fast growing corals under phosphate enrichment. On the other
hand, such dilution of euendoliths in live coral skeletons may have a negative impact20

on corals during bleaching events as euendoliths partially replace zooxanthellae, by
providing food to their host, and thus a better resistance to thermal stress (Schlichter
et al., 1995; Fine and Loya, 2002). The delicate balance between benefits and disad-
vantages provided by euendoliths to the various species of live corals therefore needs
further investigations.25
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Table 1. Range of percentages of bioeroded surface area attributed to each abundance rank
for light microscopy measurements. Data are presented as the minimum and maximum value
measured out of 5 measurements per rank.

Rank of abundance Estimated bioeroded surface area
Min Max

1 0.0 % 1.0 %
2 1.0 % 3.0 %
3 3.0 % 7.0 %
4 7.0 % 12.0 %
5 12.0 % 16.0 %
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Fig. 1. Filaments of Ostreobium sp. boring inside the skeleton of the coral S. pistillata. (A)
Photograph of filaments sheet and boring traces taken with an environmental scanning electron
microscope. (B) Photograph of live filaments taken with light microscopy.
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Fig. 2. Effect of long-term phosphate enrichment (15 weeks) on the spatial distribution of eu-
endolithic filaments across the skeleton of S. pistillata nubbins: unenriched (A), 0.5 µmol l−1 P
(B), and 2.5 µmol l−1 P (C). Observations were performed with light microscopy on petrographic
thin sections of half-nubbins. Maps are based on estimations of the abundance of filaments,
visually ranked from 1 (blue, low abundance) to 5 (red, high abundance). The portions on the
left of the dashed lines represent the length of the skeletons at the beginning of the enrichment,
and on the right the portion grown over the course of the 15 weeks-enrichment (estimated from
differences in nubbins length between the beginning and the end of the enrichment).
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Fig. 3. Abundance of euendoliths estimated through the percentages of surface area bioeroded
in each phosphate treatment. Data are presented as Tuckey boxes calculated on n = 150 mea-
surements per treatment. The star indicates treatments significantly different from the others.
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Fig. 4. Relationship between coral skeletal growth rates and the abundance of euendoliths.
Skeletal growth rates are from Godinot et al. (2011a) and were measured over 8 weeks of
phosphate enrichment. Abundance of euendoliths was estimated based on the percentages
of surface area bioeroded in each phosphate treatment after 15 weeks of exposure to phos-
phate treatments. Data are presented as the means±SE, with n = 5 samples per phosphate
treatment for the abundance, and n = 10 for growth rates.
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