Fault Tolerant Strategy for Semi-Active Suspensions with LPV Accommodation
Juan C. Tudon-Martinez, Sébastien Varrier, Olivier Sename, Ruben Morales Menendez, John Jairo Martinez Molina, Luc Dugard

To cite this version:

HAL Id: hal-00937234
https://hal.science/hal-00937234
Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fault Tolerant Strategy for Semi-Active Suspensions with LPV Accommodation *

Juan C. Tudón-Martínez¹, Sébastien Varrier¹, Olivier Sename¹
Ruben Morales-Menendez², John-Jairo Martínez¹ and Luc Dugard¹

Abstract—A novel fault tolerant strategy to compensate multiplicative actuator faults (damper oil leakages) in a semi-active suspension system is proposed. The compensation of the lack of damping force caused by a faulty damper is carried on by the remaining three healthy semi-active dampers. Once a faulty damper is detected and isolated by a Fault Detection and Isolation strategy based on parity-space, an estimator is activated to compute the missing damping force to compensate. In order to fulfill the semi-active damper constraints, the fault accommodation is based on the Linear-Parameter Varying (LPV) control strategy. Thus, each corner has a fault estimator and an LPV controller oriented to comfort and road holding. Simulation results show that the proposed fault tolerant semi-active suspension improves the vehicle comfort up to 60% with respect to a controlled suspension without fault-tolerant strategy and 82% with respect to a passive suspension.

I. INTRODUCTION

Because the automotive industry demands safer and more comfortable vehicles constantly, the development of intelligent suspension systems has gained importance during last years. Semi-active dampers are efficient actuators to improve passengers comfort and car road holding as well [1]. However, as it shown in recent studies [1], [2], the control design for such dampers is complex due to the dissipativity constraint on the damper (which is indeed a state dependent saturation [3]).

Semi-active dampers allow the development of novel techniques to model, monitor and control an intelligent suspension system with fault-tolerance features to improve the process reliability. A Fault-Tolerant Controller (FTC) in a suspension system is designed to maintain the desired comfort and road holding performances as much as possible when a fault occurs. There are two main groups of FTC: passive (off-line designed) and active (on-line control reconfiguration mechanism); this study is focused on an active FTC because of its lower conservatism than a passive approach.

Active systems on-line utilize some fault information to compensate the fault effect by using a Fault Detection and Isolation (FDI) strategy that can be model-based or data-based. FDI modules based on analytical redundancy are the most accepted strategies for fault estimation [4], in particular parity-space approaches, e.g. [5] presents a fault signature of an intelligent damper by using parity relations.

During last years, the Linear Parameter-Varying (LPV) systems have gained importance as a solution to develop embedded control strategies for complex systems, e.g. the non-linear vehicle dynamics, [6]. Recently, LPV-based techniques have been incorporated to FTC approaches, where additive faults are considered as a varying parameter to be accommodated by a scheduling reconfiguration approach, [7]. Based also on a scheduling reconfiguration, [8] proposed an active FTC using Sliding Mode observers. Both proposals lead to interesting results for a full vehicle but they are developed for active suspensions without actuator constraints. For semi-active suspensions, the authors have proposed in [9] an active FTC (LPV-based) for additive actuator faults in a Quarter of Vehicle (QoV) model. The reconfiguration depends on the fault estimation, but a saturation constraint is needed.

As an extension of [9], this paper proposes an active FTC for a full vehicle semi-active suspension, when one of the dampers suffers an oil leakage (multiplicative actuator fault). The main contribution is the development of a new 2-level reconfiguration strategy that compensates a damper leakage by using the healthy dampers; because the force is inherently limited by the shock absorbers, an LPV control design includes a saturation constraint on the compensation force used to the fault accommodation. At a higher level, 1) an FDI module identifies the faulty damper by using a parity-space approach and 2) the compensation forces are computed. At a lower level, each corner has a fault estimator and an LPV based controller which also satisfies the dissipativity constraint of a commercial Magneto-Rheological (MR) damper.

The paper is organized as follows: the problem statement is described in the next section. Sections III and IV describe the fault detection and estimation methodology and the FTC design, respectively. Section V presents the simulation results. Finally, conclusions are presented in section VI.

II. PROBLEM STATEMENT

A seven degrees of freedom model of the vertical dynamics of a full vehicle, including a semi-active suspension system, is considered as [10]:

\[m_s \ddot{z}_{s_i} = - (F_{s_1} + F_{s_2}) \] (1a)
\[I_{xx} \ddot{\theta} = (F_{s_1} - F_{s_2}) t_f + (F_{s_3} - F_{s_4}) t_r \] (1b)
\[I_{yy} \ddot{\phi} = (F_{s_4} + F_{s_3}) t_r - (F_{s_2} + F_{s_1}) t_f \] (1c)
\[m_{us_i} \ddot{u}_{us_i} = F_{s_i} - F_{t_i} \] (1d)

\[\theta = (F_{s_1} - F_{s_2}) \] (1b)
\[\phi = (F_{s_4} + F_{s_3}) \] (1c)
\[m_{us_i} = F_{s_i} - F_{t_i} \] (1d)
where the vertical suspension force at each corner \((F_{si}, \text{with } i = 1, \ldots, 4)\) is composed by the spring (stiffness \(k_{si}\)) and the semi-active damping force \((F_{sa_i})\), as:

\[
F_{si} = k_{si} (z_{si} - z_{usi}) + F_{sa_i}
\]

while the tire vertical force, with stiffness \(k_{ti}\), is given by:

\[
F_{ti} = k_{ti} (z_{usi} - z_{ri})
\]

The semi-active force is modeled following [11], [12], as:

\[
F_{sa_i} = b_1 (\dot{z}_{si} - \dot{z}_{usi}) + b_2 (z_{si} - z_{usi}) + F_{p_i}(I)
\]

where \(I\) is the electric current and \(F_{p_i}\) is the corresponding compensation force in the healthy damper \(j\) obtained by the equilibrium analysis of the dynamics (1) to accommodate the lack of force in the faulty damper \(i\) and, \(F_{nj}\) is the nominal damping force (suspension system free of faults). Thus, the semi-active damping force in the healthy dampers will be:

\[
F_{sa_j} = F_{p_j} + F_{nj} + F_{cj}
\]

where, \(F_{cj}\) is the corresponding compensation force in the healthy damper \(j\) obtained by the equilibrium analysis of the dynamics (1) to accommodate the lack of force in the faulty damper \(i\) and, \(F_{nj}\) is the nominal damping force (suspension system free of faults). The closed-loop system be:

\[
\dot{x} = A(\rho) \cdot x + B_1 \cdot (I_0 + I_c) + B_2 \cdot z_r
\]

where, \(A(\rho)\) is asymptotically stable for all parameter variations; two varying parameters are used in the controller design: \(\rho_1\) represents the nonlinearities of the \(MR\) damper and \(\rho_2\) is used for the actuator saturation that depends on the maximum damping force available for the compensation.

III. Fault Detection and Isolation

The isolation of the faulty damper and the estimation of the damper fault \(F_{d_i}\) is based on the parity-space approach because of its applicability to nonlinear systems, speed of detection, isolability property, robustness and computational complexity [4]. The aim is to synthesize a residual sensitive to the fault \(F_{d_i}\) and insensitive to bounded exogenous inputs, e.g. the road profile or load transfers on the vehicle.

A. Modeling of the system

By coupling the dynamics of the full vehicle model (1), (2), (3), (5) and (6) with the faulty damper (4) and (7), a state-space representation system with 14 states is handled as:

\[
x_f = A_f x_f + B_1 f + B_f z_r + B_{jy} F_{d_j}
\]

where, \(x_f = \begin{bmatrix} z_{d_1} \ z_{d_2} \ z_{d_3} \ z_{d_4} \ z_{r_1} \ z_{r_2} \ z_{r_3} \ z_{r_4} \ \dot{z}_{d_1} \ \dot{z}_{d_2} \ \dot{z}_{d_3} \ \dot{z}_{d_4} \ \dot{z}_{r_1} \ \dot{z}_{r_2} \ \dot{z}_{r_3} \ \dot{z}_{r_4} \end{bmatrix}^T\) are the full states system, the input is \(I = \begin{bmatrix} I_1 \ I_2 \ I_3 \ I_4 \end{bmatrix}^T\), \(z_r = \begin{bmatrix} z_{r_1} \ z_{r_2} \ z_{r_3} \ z_{r_4} \end{bmatrix}^T\) is the road profile and \(F_{d_j} = \begin{bmatrix} F_{d_1} \ F_{d_2} \ F_{d_3} \ F_{d_4} \end{bmatrix}^T\) is the fault vector. The measurement vector \(y_f\) is given by 8 accelerometers as:

\[
y_f = \begin{bmatrix} z_{a_1} \ z_{a_2} \ z_{a_3} \ z_{a_4} \ z_{a_5} \ z_{a_6} \ z_{a_7} \ z_{a_8} \end{bmatrix}^T\). A discrete version of the system (11) with a sampling period \(T_s\) is:

\[
x_{f,k+1} = A_f x_{f,k} + B_1 f_{k} + B_f z_{r,k} + B_{jy} F_{d_j,k}
\]

\[
y_{f,k} = C_f x_{f,k} + D_f I_k + D_rf z_{r,k} + D_{jy} F_{d_j,k}
\]
B. Fault detection
The system is nonlinear due to the parameters $\rho_{1i} = \tanh (a_1(z_{si} - z_{usi}) + a_2(z_{si} - z_{usi}))$ in the matrix B_{fI} and B_{fdI}. Since these varying parameters appear in a linear multiplicative way, they are extracted from the system and added to the control input as:

$$x_{f,k+1} = A_{fd}x_{f,k} + B_{fI}\rho_{1k} + B_{fd}z_{r,k} + B_{fdF}F_{d,k}$$

$$y_{f,k} = C_{f}x_{f,k} + D_{fI}\rho_{1k} + D_{fd}z_{r,k} + D_{fdF}F_{d,k}$$

(13)

The system (13) is linear and the classical parity space approach is handled to isolate and estimate the fault.

C. Fault isolation
The aim of the fault isolation part is to highlight which damper is faulty. For this purpose, 4 schemes are implemented, one for each corner of the vehicle. Each fault detector has to be sensitive to the fault related to its corner.

The parity-space approach aims at extending the outputs of the system along a horizon s. It leads to:

$$Y_s - G_{I}U_s = H x_{f,k} + G_{I}U_r + G_{F}F_{I}$$

(14)

where $Y_s = \begin{bmatrix} y_{f,k-s} \\ y_{f,k-(s-1)} \\ \vdots \\ y_{f,k} \end{bmatrix}$, $U_s = \begin{bmatrix} T_{k-s} \\ T_{k-(s-1)} \\ \vdots \\ T_{k} \end{bmatrix}$, $U_r = \begin{bmatrix} z_{r,k-s} \\ z_{r,k-(s-1)} \\ \vdots \\ z_{r,k} \end{bmatrix}$, $F_{I} = \begin{bmatrix} F_{d,k-s} \\ F_{d,k-(s-1)} \\ \vdots \\ F_{d,k} \end{bmatrix}$, $H = \begin{bmatrix} C_f \\ C_f A_{fd} \\ \vdots \\ C_f A_{fd}^{s-1} \end{bmatrix}$, and $G_{I} = \begin{bmatrix} D_1 \\ C_f B_1 \\ \vdots \\ C_f A_{fd}^{s-1} B_1 \end{bmatrix}$

This optimization problem guarantees that r_1 is receptive to the fault, maximizing the effect of the fault F_{d}, and minimizing the effect of the others, [9], [13]. Similarly, the approach is implemented into the other three corners.

D. Fault estimator
The last step of the FDI procedure is the estimation of the damper fault F_{d}. At each corner, a fault estimator is designed. The main advantage of this structure is that the fault estimator is locally activated and not affected by other signals. The parity-space approach leads to:

$$Y_s - G_{I}U_s = H x_{f,k} + G_{r}U_r + G_{F}F_{I}$$

(16)

where i specifies the faulty damper. Note that in this case, the horizon s could be mandatorily different in the isolation part.

The classical parity matrix $W_{is}e$ for estimation purpose is synthesized so that it is orthogonal to the matrix H and G_r, to be insensitive to the road profile.

The residual $r_{i,est,k} = W_{i}e(y_s - G_f U_s)$ will be sensitive to any fault $F_{d,i}$, such that the parity relation $r_{i,est,k} = W_{i}e G_{F_{i}} F_{i}$ be robust to the fault parameter α in eq. (7).

The fault estimator $F_{d,i}$ is performed by inverting the relation between the residual and the fault. Indeed, it can be written, thanks to the z-transform formalism:

$$r_{i,est,k} = W_{i}e G_{F_{i}} F_{i} = W_{i}e G_{F_{i}} [z^{-s} \quad \cdots \quad \cdots \quad z^{-1}] F_{d,i}$$

(17)

Inverting the system (17) leads to:

$$F_{d,i} = [W G_{F_{i}} (z)]^{-1} r_{i,est,k}$$

(18)

IV. FAULT TOLERANT SEMI-ACTIVE SUSPENSION

When an oil leakage occurs in one of the dampers and the car is moving, the lack of damping force increases the vertical vehicle body motion. To reduce the fault propagation into the vertical dynamics, eq. (1), an extra damping force is implemented at each corner to compensate for the faulty damper and thus maintain the comfort in the vehicle.

Figure 1 shows a block diagram of the proposed FTC. Each corner has an LPV controller for comfort and road holding; also, a fault estimator. Once a damper fault is detected and estimated, the reconfiguration module computes the compensation force that the healthy dampers must deliver; the LPV based controller design satisfies the MR damper constraints (semi-activeness and saturation).

A. Fault Tolerant Control Concept
Consider that only one actuator is faulty, e.g. the actuator 1 leading to the damping force:

$$T_{sa} = T_{sa1} - F_{d1} = F_{p1} + F_{n1} - F_{d1}$$

(19)

To compensate this lack of actuation, an additional force to the nominal one is demanded on the remainder of the healthy dampers, such that:

$$F_{sa1} = F_{p1,j} + F_{n1,j} + F_{r1,j}$$

(20)

where the capacity of compensation is limited by the maximum actuation value with a compromise between performance and compensation managed by the controller.

The vehicle dynamics in the COG, given in (1), become:
\[
\begin{align*}
\dot{m}_s z_s &= -(F_{p1} + F_{n1} - F_{\delta1} + F_{p2} + F_{n2} + F_{c2}) + (F_{p3} + F_{n3} + F_{c3} + F_{p4} + F_{n4} + F_{c4}) \\
\dot{t}_f \delta_z - t_f F_{\delta1} - t_f F_{c2} + t_r F_{c3} - t_r F_{c4} &= 0 \\
l_f F_{c4} + l_r F_{c3} - l_f F_{c2} + l_f F_{\delta1} &= 0
\end{align*}
\]

Based on eq. (21), the compensation of \(F_{\delta1} \) by the healthy dampers as \(F_{c_{j,k}} \neq 1 \) leads to:

\[
\begin{bmatrix}
F_{\delta1} \\
F_{c2} \\
F_{c3} \\
F_{c4}
\end{bmatrix} = M^{-1} N \hat{F}_{\delta1} = \begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1
\end{bmatrix} \begin{bmatrix}
\hat{F}_{\delta1} \\
\hat{F}_{\delta2} \\
\hat{F}_{\delta3} \\
\hat{F}_{\delta4}
\end{bmatrix} = 0
\]

\(M \) is invertible since \(\det (M) = -2 t_r (l_f + t_r) \neq 0 \). Since \(F_{\delta1} \) is not measured but estimated, this allows the straightforward computation of the compensating forces \(F_{c_{j,k}} \neq 1 \), as:

\[
\begin{bmatrix}
F_{c2} \\
F_{c3} \\
F_{c4}
\end{bmatrix} = -M^{-1} N \hat{F}_{\delta1} = \begin{bmatrix}
1 & t_f/t_r & -t_f/t_r \\
0 & 1 & -t_r/t_r \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\hat{F}_{\delta1} \\
\hat{F}_{\delta2} \\
\hat{F}_{\delta3}
\end{bmatrix}
\]

To expand the fault tolerance concept for other possible faulty dampers, the full matrix of compensation is given by:

\[
\begin{bmatrix}
F_{c2} \\
F_{c3} \\
F_{c4}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\hat{F}_{\delta1} \\
\hat{F}_{\delta2} \\
\hat{F}_{\delta3} \\
\hat{F}_{\delta4}
\end{bmatrix}
\]

B. LPV/\(H_{\infty} \) Control Design

The control of the vertical dynamics is ensured by the suspension system to achieve frequency specification performances, [2]. Based on [6] that embeds into the control design the constraints of dissipativity and saturation of a semi-active damper with two scheduling parameters, here an \(LPV/H_{\infty} \) controller is designed at each corner for: a) performances of comfort and road holding against road disturbances and unmodeled dynamics and, b) compensation of lack of damping force of a faulty damper.

1) Scheduling parameters: Two varying parameters are used in the \(LPV \) controller synthesis for each corner: \(\rho_1^a \) includes the nonlinearities of the damper and is given by,

\[
\rho_1^a = \tanh \left(a_1 z_{\delta f} + a_2 z_{\delta sa} \right) \cdot \frac{\tanh(t_f/t_r)}{t_{\text{max}}/t_{\text{min}}} \in [-1,1]
\]

where \(I_{\text{no}} \) and \(I_{\text{c0}} \) are the average of electric currents dedicated for the nominal control and compensation, \(I_f = I_{\text{no}} + I_{\text{c0}} \) is the electric current bounded by the saturation constraint:

\[
0 \leq I_{\text{min}} < I_f \leq I_{\text{max}}
\]

\(\rho_2^a \) is used directly to saturate the controller output, given by:

\[
\rho_2^a = \tanh \left(a_1 z_{\delta f} + a_2 z_{\delta sa} \right) \cdot \left(I_{\text{no}} + I_{\text{c0}} \right) \in [0, I_{\text{max}}]
\]

Note that there is a compromise between the control performances and the compensation because \(I_{\text{no}} + I_{\text{c0}} = I_{\text{max}}/2 \); the capability to compensate for a faulty damper is limited by:

\[
I_c = \begin{cases}
I_c = 2 \cdot I_{\text{c0}} + I_{\text{no}} & \text{if } I(F_c) \geq I_{\text{max}} \\
I_{\text{no}} < I_c < I_{\text{max}} & \text{if } 0 < I(F_c) < I_{\text{max}}
\end{cases}
\]

where, \(I(F_c) = [F_c \cdot \coth \left(a_1 z_{\delta f} + a_2 z_{\delta sa} \right)]/I_c \) is the inverse dynamics of the MR damper model, eq. (4b), that depends on the compensation force, eq. (25), and \(I_{\text{max}} = 2 \cdot I_{\text{c0}} + I_{\text{no}} \) is the maximum electric current available for compensation. If the faulty damper requires a greater force than the one that could be generated by \(I_{\text{max}} \), the fault will not be well accommodated. In the fault free case, \(I_{\text{c0}} = 0 \), and the nominal controller works inside the full saturation constraint given by (27). Figure 2 shows a scheme to represent the electric current used for the compensation and its interaction with the nominal control.
2) LPV model formulation: Following [6], an LPV controller of each QoV equipped with a semi-active damper is designed to handle the non-linearity of the damper model and the dissipativity constraint (represented by the maximum limit of the input electric current I_f). The considered model is given by [6]:

$$
\begin{align*}
\dot{x}_{lpv} &= A_{lpv}(\rho_1, \rho_2) x_{lpv} + B_{1lpv} u_c + B_{2lpv} z_f \\
y_{lpv} &= C_{lpv} x_{lpv} + D_{1lpv} u_c + D_{2lpv} \tilde{w}
\end{align*}
$$

where, $x_{lpv} = \begin{bmatrix} x \\ x_f \end{bmatrix}$, $A_{lpv}(\rho_1, \rho_2) = \begin{bmatrix} A + \rho_1^2 B_{10} C_{10} & \rho_1 B_1 C_f \\ \rho_1 B_{10} C_f & A_f \end{bmatrix}$.

x is the state vector of a QoV with matrices A, B_1, B_{10}, B_i, C and C_{10} that include the MR damper dynamics [6], with z_{def} and \dot{z}_{def} as output; x_f, A_f, B_f, C_f are the state and matrices of a representation of the low-pass filter $W_{filter} = \omega_f / (s + \omega_f)$, added to the plant to make the control input matrices parameter independent, [14].

Remark 1: The LPV model in (30) is based on the non-linearities introduced in eq. (1d), (2), (3) and (4) for a single corner, after some mathematical transformations as in [6].

3) LPV/H_{∞} control synthesis: The extension to the method in [6] lies into the parameter ρ_2^2 that incorporates the damping force used to compensate the faulty damper. The control design satisfies the actuator constraints. Indeed, depending on the value of the fault, the semi-active suspension is adapted to meet the required performances. The corresponding generalized plant $\Sigma(\rho_1, \rho_2)$ is given by:

$$
\begin{align*}
\dot{\xi}_{lpv} &= A_{lpv}(\rho_1, \rho_2) \xi_{lpv} + B_{1lpv} u_c + B_{2lpv} \tilde{w} \\
y_{lpv} &= C_{lpv} \xi_{lpv} \\
z &= \tilde{f}_{lpv} + D_{1lpv} u_c + D_{2lpv} \tilde{w}
\end{align*}
$$

where $z=[z_1, z_2]^T$, $\tilde{w}=W_{z_1}^{-1} z_1$, $y=[z_{def}, \dot{z}_{def}]^T$, $u_c=\nu H_{\infty}$ and ξ_{lpv} includes the state variables of the QoV model and weighting functions, see details in [6].

C. Problem solution

The LPV/H_{∞} controller is synthesized in the LMI framework for polytopic systems; all varying parameters are bounded in $\rho_1^2 \in [-1, 1]$ and $\rho_2^2 \in [0, 3]$.

The resulting global LPV/H_{∞} controller is a convex combination of the local controllers obtained by solving the set of LMIs only on each vertex of the polytope formed by the limit values of the varying parameters. The stability will be guaranteed for all trajectories of the varying parameters, even if an extra compensation force is demanded.

Remark 2: Since 2 varying parameters are used, each corner considers a polytope of 4 vertices (4 local controllers, more details on LPV robust control design in [15]).

V. SIMULATION RESULTS

Two scenarios have been considered to evaluate the proposed FTC in Matlab/Simulink™, by using the model (1).

A. Test #1: Without excitation of the roll angle.

The vehicle is driven at 30 km/h. The road profile is modeled as a Chirp signal (0.5 - 8 Hz) with magnitude 0.05 m on the left/right sides. Because the left and right wheels are synchronized, the roll angle is not excited. The fault at $t = 0$ s is a lack of force of 50% ($\alpha = 0.5$) on the front-left semi-active damper, Fig. 3a. By using the proposed FDI approach described in Section III, Fig. 3b shows that the fault estimation \hat{F}_{lpv} is perfectly insensitive to the road profile (an horizon $s = 1$ was used).

Figure 4 shows the performance of the proposed fault-tolerant semi-active suspension system depicted in Section IV versus an uncontrolled suspension (passive suspension) and a controlled suspension that does not include the fault compensation strategy (LPV nominal control); Susp. Free of Faults refers to the simulation of the LPV/H_{∞} suspension control when no fault is considered (in this case the roll angle is zero). By using the Root Mean Square (RMS) value of the roll angle of the vehicle as a comfort performance index, normalized w.r.t. the uncontrolled suspension, the proposed FTC improves the vehicle comfort by 82% and the nominal control by 22%, i.e. the reconfiguration strategy allows an improvement of 60% of comfort, see bar graph in Fig. 4.

Figure 5a shows how the semi-active damping force increases at the front-right actuator to compensate for the missing force of the faulty damper. The semi-activeness constraint of the MR damper is then ensured with the proposed FTC system. Figure 5b shows that the nominal LPV controller, whose performance is good when the suspension is free of faults, operates between 0 and 2 A without the compensation; when the compensation is used, the LPV controller utilizes...
When a fault occurs, such as oil leakages in a damper, the FTC system is designed to compensate for the lack of damping force by using the other three healthy shock absorbers. At a high level, a Fault Detection and Isolation module based on parity-space is used to detect and isolate the faulty damper, and a fault reconfiguration strategy computes the compensation force to be added to the healthy dampers. Each corner has a fault estimator and an LPV controller for comfort and road holding; the LPV control design considers the compensation force as a varying parameter in order to take into account the semi-active damper constraints.

Simulation results show the robust performance of the nominal LPV controller w.r.t. a passive suspension, when the system is free of faults. When an oil leakage in the front-left damper is present, the proposed FTC system improves the comfort up to 60% and 82% w.r.t. the controlled (without compensation) and uncontrolled suspension system, respectively.

REFERENCES