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Abstract

This paper presents a continuum damage model based on two mechanisms: decohesion between fillers and
matrix at a micro-scale followed by a crack nucleation at a macro-scale. That scenario was developed
considering SEM observations and an original experimental procedure based on simple shear and tension
specimens. Damage accumulation is related to fatigue life using the continuum damage mechanics (CDM).
The material behavior is investigated using the statistical framework introduced by Martinez et al. (2011).
A Finite Element implementation is proposed and some numerical examples are provided.
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1. Introduction

Elastomeric materials are widely used by many industries: automotive, aeronautic... In many applica-
tions, elastomeric parts are closely linked to security and require specific qualification tests which impact
product costs and safety of end-users. Therefore a perfect knowledge of the mechanical behavior and robust
constitutive models are needed. Modern elastomeric components are composed of more and more complex
rubber systems including different fillers and rubber bases (natural or synthetic or both). In many applica-
tions, these materials are subjected to cyclic loadings and are designed to damp energy. For these materials,
it is mainly observed a damage initiation at a micro level by filler/matrix decohesion or by cavitation growth
inside matrix. These phenomena give rise to a propagation at a macro level by the help of coalescence of
voids or by crack propagation leading at the end to the failure of part. Identifying the physical phenomenon
that takes place during high cycle fatigue test is a very hard task because multi-physics and multi-scale
effects are occurring. For instance, temperature, crystallization, stress triaxiality, stress ratio, hydrostatic
pressure, chemical aging are playing important roles on fatigue.

In the literature, one can distinguish at least three approach to model the damage due to cyclic loadings
for rubber materials:

• The first one relates to prediction of crack growth. These approaches often assume that initial defects
are pre-existing in the material but no information on defects localization or size is required. Starting
from experimental curves that plot the value of a predicting quantity upon the log of number of cycles
(so called Whöler curves or Haigh’s diagrams) many predictor or criteria have been proposed. These
criteria can be based on a mechanical quantity that is not directly related to local mechanisms caused
by damage: maximum principal strain (e.g. Cadwell et al. (1940)), strain energy density (e.g. Beatty
(1964)), strain based phenomenological model (e.g. Robisson (2000)), stress based with Dang Van
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sphere (e.g. Brunac et al. (2009)), dissipated energy density (e.g. Lacroix et al. (2005); Poisson et al.
(2011)). Other approaches try to embed more information on real local-mechanisms or idealized ones.
Saintier et al. (2006) have proposed a multi-axial criteria based on principal stresses with a reinforcing
term linked to crystallization. In Mars (2002) a new criteria has been introduced, an incremental
strain energy, which is defined on an unknown material plane that represents the cracking plane, is
computed (see also Zine et al. (2011)). Verron et al. (2005) have proposed a promising approach
using a criteria based on the Eshelby tensor (configurational mechanics). This criteria shows very
interesting results in multi-axial conditions (see also Verron and Andriyana (2008); Andriyana et al.
(2002)). Interesting comparisons of criteria can be found in Poisson et al. (2011) for a polychloroprene
rubber in multi-axial conditions and in Previati and Kaliske (2012) for an application on truck tires.
A more complete review of criteria can be found in Mars (2001); Mars and Fatemi (2002).

• The second one, consists on using fracture mechanics to predict crack initiation and propagation.
One can find, for instance, power laws that describe the evolution of the crack length upon cycles
as a power function of the energy release rate, see Lake and Lindley (1965) for experimental results.
Fracture mechanics based models require a knowledge of initial defects which is very restrictive for
rubber because these defects are very difficult to identify.

• The last approach is based on continuum damage mechanics (CDM) and consists in the introduction
of, at least, one internal variable in the material behavior that represents the normalized quantity
of damage (cracks, voids, etc) in the material. This approach has been firstly used for elastomeric
materials to described short time history effect like the Mullins effect (see Chagnon et al. (2004)).
For high cycle fatigue, the ideas of Lemaitre (1985) can be applied to rubber. A cumulative rule for
damage is assumed (e.g. linear) and the damage evolution is integrated cycle by cycle. Therefore,
the damage evolution can be directly related to the number of cycles. This approach has been used
in Wang et al. (2002); Ayoub et al. (2011, 2012). To the authors knowledge only hyperelasticity has
been considered in previous works, however the mechanical dissipation plays a fundamental role on
the fatigue life in rubber materials.

In the present work a silicone rubber filled with silica is considered. This material is used in aeronautic
structures to damp a mechanical energy due to vibrations. In industrial applications, rubber is mainly
loaded in simple shear and the prediction of a stiffness loss is critical for the safety of the structure. It is
proposed to use the CDM approach to predict this stiffness loss and the fatigue life. Starting from micro-
mechanical observations and from an original experimental campaign of fatigue tests on simple shear and
tension specimens, we propose a two scale model: the first scale aims at representing the voids or cracks
initiation near the agglomerate of fillers and the second scale represents the voids or cracks growth in the
rubber matrix. The main originality of this paper is that the proposed driving force for damage is defined
from a returnable energy rate which is integrated over a cycle. This energy represents the difference between
the given energy and the dissipated one for a stabilized cycle. The effect of stress multi-axiality or the effect
of the mean stress are embedded in this energetic damage rule.

The constitutive behavior developed in this paper is based on the statistical framework of Martinez et al.
(2011). In this framework, the Cauchy stress is viewed as the sum of a matrix part (hyperelastic) and a
continuous contribution due to agglomerates (visco-hyperelastic). A statistical variable and a probability
function are introduced to represent a continuous number of relaxation mechanisms. The statistical variable
is related to the activation energy of each dissipation mechanisms (related to each population of agglom-
erates). The main advantage of this approach lies in its ability to cover a large range of strain rates and
amplitudes with a small number of material parameters. The connection between the damage model and
the constitutive model is straight-forward, the micro scale of damage is taken into account in the probabil-
ity function as damage in agglomerates tends to decrease the relaxation mechanisms. The macro scale is
classically related to the cracks grow in the matrix.
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A classical variational formalism is adopted and a finite element implementation is derived. The mechan-
ical flow rules are integrated following the proposal of Lejeunes et al. (2011). Damage is only post-treated
by computing the returnable energy rate over one stabilized cycle.

The paper is organized as follows. In a first part, the micro-mechanical observations and the main
results of the experimental characterization are presented and discussed. In a second part, a new statistical
constitutive model is introduced to represent the mechanical behavior. The CDM approach is then detailed
in a third section. The finite elements implementation is briefly exposed and some numerical results are
shown in the last section.

2. Experimental results

2.1. micro-mechanical observations

(a) Virgin material (large agglomerate of silica) (b) After fatigue: void near a filler (probably due to ma-
trix/filler decohesion)

(c) After fatigue: micro-crack normal to the load direc-
tion

(d) After fatigue: zoom on micro-crack with ligaments
between filler and matrix.

Figure 1: SEM observations of Silica agglomerates in a silicone rubber.

To identify micro-mechanisms that take place during cyclic fatigue test, we made some SEM observations
at the ”Centre des Materiaux” of the ”Ecoles des Mines de Paris”. Figure 1(a) shows a large agglomerate of
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(a) matrix/filler decohesion at 100% of uniaxial-tension:
the tension direction is in the same direction as the one
of loading (horizontal direction for this image)

(b) matrix/filler decohesion at 0% of uniaxial-tension:
cavitation at the poles of the agglomerate

Figure 2: SEM observations of silica agglomerates in a silicone rubber after fatigue: In-Situ tension test. Due to the metalic
agent to deposit on the surface of the specimen prior to In-Situ testing, the cracks observed can not be directly related to the
rubber matrix.

silica inside the matrix for a virgin sample, at this scale (20µm) the matrix is dense, no voids are observed.
The figure 1(b) shows a smaller agglomerate for a sample which has been cut inside a uni-axial tension
specimen. This specimen has been previously submitted to 100000 cycles of fatigue (frequency is 1Hz and
the strain amplitude is 150%± 50%). A decohesion of the filler-matrix interface can be observed. On figure
1(c) and 1(d), one can observed the initiation of a micro-crack (5 µm length on figure 1(c)) which is normal
to the direction of the fatigue loading. This micro-crack contains a filler at its center and it seem quite
natural to postulate that the filler can be viewed as a defect that originated the crack, however we have no
proof that the crack was not previously here.
The SEM also provide the availability to do In-situ observations (while applying a mechanical loading).
Figures 2 show a result of such an experiment. The micro sample, which has been cut in a previously
fatigued specimen, is submitted to an uni-axial tension test (the loading direction is as the one of fatigue).
A filler/matrix decohesion is seen, in the same direction as the one of loading. When the load is released a
void remains at the poles of the agglomerate (even after a long time to eliminate viscous effects).
From these observations we can conclude that filler/matrix interaction plays a fundamental role on the

fatigue behavior at the micro-scale for this material. Decohesion seems to be the principal micro-mechanism
that can lead to the formation of micro-cracks. For uni-axial loading and for a non-cristallizable matrix,
these micro-cracks propagate in the matrix in a direction which is normal to the load direction without
bifurcations. Furthermore, this decohesion phenomena leads to a volume variation because voids remain in
the unloading state. However, transposing these results at the macro-scale is not obvious. Therefore we
prefer to neglect it in the following as we believe that at the macro-scale damage due to fatigue is affecting
more the deviatoric part than the spherical one. To the authors opinion the investigation of volume variation
is a very hard topic as concurrent phenomena are taking place in rubber that affect the volume variation:
cavitation, crystallization, network reorganization or stress softening, thermal dilatation, etc.

2.2. fatigue characterization

The aim of the experimental campaign is to characterize the mechanical behavior after a given number
of cycles. Usually, damage is characterized through a loss of rigidity. However, rubber materials exhibit
other softening effects like the Mullins effect or thermal softening induced by self-heating for high dissipative
materials.

In fact, the increase of temperature during the fatigue test implies a softening of the material. If the
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(a) Triangular cyclic tension tests after N cycles of fatigue
(the fatigue configuration is 0.5Hz and 150% of mean strain
and ±150% of dynamic strain).
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(b) Relaxation tests in tension after N cycles of fatigue (the
fatigue configuration is 0.5Hz and 25% of mean strain and
±25% of dynamic strain).
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(c) Triangular cyclic simple shear tests with progressive am-
plitude, after N cycles of fatigue (the fatigue configuration is
15Hz and 12.5% of mean strain and ±25% of dynamic strain).
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(d) Triangular cyclic simple shear tests with progressive am-
plitude, after N cycles of fatigue (the fatigue configuration is
15Hz and 12.5% of mean strain and ±25% of dynamic strain).

Figure 3: Typical results obtained from the characterization tests after fatigue (step 4 of the experimental campaign)

acquisitions are done during fatigue tests, the thermal softening can hide the damage effect which also leads
to a softening. To clearly identify the evolution of damage with a remove of the thermal and the Mullins
softening, we have defined an original experimental protocol. The characterization of the behavior at a given
number of fatigue cycles N requires the following steps:

1. 20 cycles at a strain amplitude 10% higher than the maximum strain amplitude during fatigue to remove
Mullins effect,

2. N fatigue cycles with a regulated temperature (only the ambient temperature inside the climatic cham-
ber is controlled),

3. two rest days (the sample is stress free) to remove thermal and long time viscous effects,

4. mechanical characterization with: (i) a quasi-static test, (ii) triangular cyclic tests at various strain
rates and various strain amplitudes and (iii) relaxation tests.

All these tests have been performed on a hydraulic machine which can be equipped with an adiabatic chamber
in which internal temperature can be regulated. For shear specimens, displacement is controlled and load
is recorded. For tension specimen depending on the load case, the control can be done on displacement
or on load for the unloading phase. Therefore it can be avoided buckling due to relaxation. The signal is

5



sinusoidal. In the following, for each fatigue test it is provided the frequency of the signal, the maximum
strain amplitude, and the mean strain if it is not zero. Tension specimens are dumbbell shaped of type
H2 with a square rectangular cross-section of 5x2 mm2. For shear tests, it is used specific double shear
specimens. These specimen are composed of two blocks of rubber with a central rigid aluminum layer and
two external rigid aluminum layers. The rubber blocks are 96 mm long, 5 mm high and 20 mm large.
Furthermore the end sections have a meniscus shape to ensure that cracks do not initiate at the interface
aluminum/rubber. Each specimen is submitted further time to the steps 1 to 4 with increasing value of N
(typically N=1000, 10000, 100000,...)

The previous procedure is time consuming and only a repeatability of two was achieved for simple shear
specimens and three for tension specimens. Figures 3, show an example of experimental results obtained
from the step 4 (characterization tests). In figure 3(a) and 3(d) we clearly see a loss of stiffness and a
decrease of the dissipated energy when N (the number of fatigue cycles) increases. More surprisingly, we
often observe during the first cycles of fatigue in simple shear tests an increase of the stiffness (see figure
3(b) and 3(c)) previously to damage phenomena. This observation will be discussed below.

To proceed further, it is defined global characteristics (stiffness and dissipation) from the figure 4. Figures
5 and 6 show a comparison of different fatigue configurations with tension and simple shear specimens. Each
point is obtained by following all the steps previously described. For each quasi-static characterization tests
after fatigue, we determine a global stiffness and a global dissipation on a stabilized cycle. The stiffness and
the dissipation values are normalized and it is observed the following behavior: in a first step the global
stiffness and the dissipation are increasing followed by a second step in which both stiffness and dissipation
are rapidly decreasing. Furthermore this effect is more pronounced for shear specimens. We propose the
following scenario to explain these observations:

Step 1 During the first cycles, fillers-matrix bonds begin to break and the filler-matrix decohesion is start-
ing. In the meantime, new chemical bonds are formed in the matrix due to the thermal aging that
results from the self-heating of the material. These effects are in competition but thermal aging takes
the lead and a global stiffening is observed.

Step 2 For a large number of cycles, damage is growing and propagates to the matrix. Thermal aging is
less sensitive due to the stabilization of the self-heating phenomena. A global decrease of the stiffness
is observed.

The previous scenario also furnishes an explanation to the fact that shear specimens are more sensitive
to thermal aging: in simple shear damage is more localized and less homogeneous than for tension and
self-heating phenomena is stronger.
Due to the competition between damage and thermal aging it is a very hard task to determine when initiation
of damage in the matrix takes place. To proceed further we propose to consider the intersection of the two
curves as an important characteristic number of cycles for which it can be clearly said that the mechanical
behavior is affected by damage. Different fatigue configurations are summed up in the table 1. The loss of
stiffness (and dissipation) is strongly dependent on the strain amplitude and it seems also sensitive to the
mean strain: increasing R-ratio leads to higher number of cycles. This effect may be related to previous
works: e.g. Legorju-jago and Bathias (2002); Saintier et al. (2011) show that life-time increases for positive
R-ratio on diabolo specimens. They show that cristallization plays an important role on it but Poisson et al.
(2011) also observed it for non-cristallizable rubber. Frequency does not seems to play a major role but
more tests are needed to study this effect.

Maximum strain amplitude (with zero
mean strain)

Maximum strain amplitude (with 12.5% of
mean strain)

12, 5% 25% 50% 12, 5% 25% 50%
6Hz > 1000000 168000 30000 > 1000000 190000 [30000, 50000]
15Hz > 1000000 148000 30000 > 1000000 191000 [30000, 50000]

Table 1: Number of cycles for which global stiffness and global dissipation start to decrease for the simple shear fatigue test
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global stiffness

global dissipation

Figure 4: Global characteristics: global stiffness (slope of the secant of the hysteresis) and global dissipation (area of the
hysteresis)
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Figure 5: Evolution of the global characteristics for quasi-static cyclic test in tension (+ : After fatigue at 10% of strain
amplitude, × :After fatigue at 15% of strain amplitude et ∗ : After fatigue at 30% of strain amplitude)
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Figure 6: Global characteristics of the mechanical response upon fatigue for simple shear specimens.
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Figure 7: Mechanical constitutive model

3. Constitutive model

3.1. Mechanical behavior

In this paper, we extend a previously developed approach for the modeling of the dynamical behavior
of filled rubbers (see Martinez et al. (2011)). This approach is micro-mechanically motivated and is based
on a statistical representation of agglomerates and aggregates of fillers. Each population of aggregate or
agglomerate is associated to a couple of thermodynamical potentials: a specific free energy and a pseudo-
potential of dissipation. A random variable ω, is introduced and relates to the energy of activation of a
micro-mechanism of relaxation. It is also introduced P (ω), a probability density function that describes the
range of energies of activation that is covered by the material. Therefore it is possible to take into account
of a large number of relaxation mechanisms without increasing the number of material parameters.

It is assumed that the global deformation of the matrix and of a representative volume element of filler
aggregates1 are the same (affine model). The global framework can be summarized by the figure 7. In this
work, the matrix is described by a visco-elastic model of Poynting-Thomson. This viscosity is introduced to
represent long time effects. Each population of agglomerate is described by an elasto-visco-plastic model.
Following Flory (Flory (1961)), the deformation gradient F is split into an isochoric part: F̄ and a volumetric
part: J1/31, where J = detF and 1 stands for the identity tensor (Cartesian metric is used). As no viscous
effects are generally observed for volumetric deformation in rubber, the isochoric deformation gradient is
split as follows:

F̄ = FeF̄i = f̄e(ω)̄fi(ω) (1)

where Fe and F̄i are elastic and inelastic isochoric deformation gradients in the matrix and f̄e(ω) and f̄i(ω)
are elastic and inelastic isochoric deformation gradient in the agglomerates. The themodynamical potentials

1the RVE of aggregates is assumed to be composed of fillers and gum (occluded gum and bound rubber).
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(free energy and pseudo potential of dissipation) are therefore functions of elastic and inelastic gradients
but also depend on ω as follows:






ψ = ψmatrix(B̄i, B̄e) +

∫
∞

0

ψ̃fillers

(
ω, b̄e(ω)

)
P (ω)dω + ψvol(J)

ϕ = ϕmatrix(D̄
o

i ) +

∫
∞

0

ϕ̃fillers

(
ω, d̄o

i (ω)
)
P (ω)dω

(2)

where B̄e = FeFe

T
, b̄e(ω) = f̄e(ω)̄fe(ω)

T , B̄i = F̄iF̄
T
i
are elastic and inelastic left Cauchy-Green tensors,

D̄o

i
and d̄o

i
(ω) are objective rates of the inelastic deformations defined from:

D̄o

i
= ReD̄iRe

T =
1

2
Re(

˙̄FiF̄
−1
i

+ F̄−T
i

˙̄Fi

T
)Re

T (3)

d̄o

i (ω) = re(ω)d̄i(ω)re
T (ω) =

1

2
re(ω)(

˙̄fi(ω)̄f
−1
i

(ω) + f̄−T
i

(ω)˙̄fi
T
(ω))re

T (ω) (4)

where Re and re(ω) are coming from the polar decomposition of Fe and f̄e(ω).
Neglecting thermal effect, the dissipation inequality (or Clausius Duhem inequality) in eulerian configuration
can be written as:

φ = σ : D− ρψ̇ ≥ 0 (5)

The variation of the free energy, eq. (2), is given by:

ψ̇ =
∂ψmatrix

∂B̄e

: ˙̄Be +
∂ψmatrix

∂B̄i

: ˙̄Bi +

∫
∞

0

∂ψ̃fillers

(
ω, b̄e(ω)

)

∂b̄e(ω)
: ˙̄be(ω)P (ω)dω +

∂ψvol

∂J
J̇ (6)

The time variation of elastic and inelastic Cauchy Green tensors and of volume variation are given by:

J̇ = J (1 : D) (7)

˙̄Bi = L̄iB̄i + B̄iL̄
T
i

(8)

˙̄Be = LB̄e + B̄eL
T − 2V̄eD̄

o

i
V̄e −

2

3
(1 : D)B̄e (9)

˙̄be(ω) = Lb̄e(ω) + b̄e(ω)L
T − 2v̄e(ω)d̄

o

i
(ω)v̄e(ω)−

2

3
(1 : D)b̄e(ω) (10)

where V̄e and v̄e(ω) are the pure deformations coming from the polar decomposition of Fe and f̄e(ω). Using
equations (10), (9), (8), (7) in (6) and reporting the result in (5), it is obtained the following expression of
the dissipation:

φ =


σ − ρ0J

−1

(
2B̄e

∂ψmatrix

∂B̄e

)D

− ρ0J
−1

∫
∞

0

(
2b̄e(ω)

∂ψ̃fillers

∂b̄e(ω)

)D

P (ω)dω − ρ0

(
∂ψvol

∂J
1

)
 : D

+

(
2ρ0J

−1V̄e

∂ψmatrix

∂B̄e

V̄e − 2ρ0J
−1V̄−1

e FeB̄i

∂ψmatrix

∂B̄i

Fe

T
V̄−1

e

)
: D̄o

i

+ 2ρ0J
−1

∫
∞

0

(
v̄e(ω)

∂ψfillers

∂b̄e

v̄e(ω)

)
: d̄o

i
(ω)P (ω)dω ≥ 0

(11)

From equation (11), it is deduced the following constitutive equation for stress:

σ =

σmatrix︷ ︸︸ ︷(
2ρ0J

−1B̄e

∂ψmatrix

∂B̄e

)D

+

σfillers︷ ︸︸ ︷
∫

∞

0

(
2ρ0J

−1b̄e(ω)
∂ψ̃fillers

∂b̄e(ω)

)D

︸ ︷︷ ︸
σ̃filler(ω)

P (ω)dω+

σvol︷ ︸︸ ︷
ρ0
∂ψvol

∂J
1 (12)
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It remains two part in the dissipation which are assumed to be independently positives. A quadratic pseudo-
potential is chosen for the matrix:

ϕmatrix(D̄
o

i ) =
η

2
(D̄o

i : D̄o

i ) (13)

Where η is a viscosity parameter of the matrix. Therefore, using the concept of normality, the thermody-
namical force that drives inelastic effects in the matrix is defined from the variation of the pseudo-potential.
Assuming the isotropy of the free energy function, the first complementary equation is obtained:

D̄o

i =
2ρ0
Jη

(
B̄e

∂ψmatrix

∂B̄e

− 2V̄−1
e

(
ψmatrix,1B̄− ψmatrix,2B̄eB̄

−1B̄e

)
V̄−1

e

)D

(14)

In the previous equation, ψmatrix,1 and ψmatrix,2 stands for the variations of the isotropic free energy upon
the inelastic invariants:

ψmatrix,1 =
∂ψmatrix

∂I1(B̄i)
ψmatrix,2 =

∂ψmatrix

∂I2(B̄i)
(15)

Concerning the second part in the residue of dissipation, as P (ω) is a positive function the following condition
is sufficient to fulfill the Clausius-Duhem inequality:

(
v̄e(ω)

∂ψfillers

∂b̄e

v̄e(ω)

)
: d̄o

i
(ω) ≥ 0 ∀ω ∈ [0,∞[ (16)

We define an elastic domain:
E(ω) = {σ̃filler|f(σ̃filler , ω) ≤ 0} (17)

where f is a yield stress function for which the yield depends on ω. We assume the following form for the
dual2 pseudo-potential of dissipation:

ϕ∗ =
〈f(σ̃filler , ω)〉

2

2β(ω)
with f(σ̃filler , ω) = ‖σ̃filler‖ − χ(ω) (18)

where β(ω) is a viscosity function, < . > are the Mac-Cauley brackets3, χ(ω) is the yield parameter. Using
the normality principle, we obtain the following expression:

d̄o

i (ω) =
∂ϕ∗

∂σ̃filler
=

〈f(σ̃filler)〉

β(ω)

σ̃filler

‖σ̃filler‖
(19)

To proceed further, we make the following choices for the free energies:





ρ0ψmatrix = C1

(
I1(B̄e)− 3

)
+ C2 Ln

(
I2(B̄e)

3

)
+A

(
I1(B̄i)− 3

)

ρ0ψ̃fillers

(
ω, b̄e(ω)

)
= a(ω)

(
I1(b̄e(ω))− 3

) (20)

where C1, C2, A are material parameters. Concerning the statistical functions, we choose a Gaussian form
for the density of probability, a linear form for the yield parameter and the viscosity of the fillers, the shear
modulus of the fillers follows an exponential decay:





P (ω) =
1

P0
exp(−(

ω

Ω
)2)

with P0 =

∫
∞

0

exp
[
−
(ω
Ω

)2]
dω

χ(ω) = χ̄ ω
ω0

, a(ω) = a0 exp
(
− ω

ω0

)
, β(ω) = β̄ ω

ω0

(21)

2Dual pseudo-potential (which depend on force) can be obtained from a Legendre-Fenchel transformation of the primal
pseudo-potential (which depend on flux)

3Operator < . > is defined by < f >= (f + |f |)/2
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Virgin state

Initiation of the decohesion
mechanism at the filler-matrix
interface (described by d)

Crack initiation and propaga-
tion in the matrix (described
by D)

Figure 8: Supposed damage senario

To resume, the constitutive model is defined from the following set of constitutive equations and flow rules:

σ = σmatrix +

∫
∞

0

σ̃fillerP (ω)dω + p1

σmatrix = 2J−1

(
C1B̄e +

C2

I2(B̄e)
(I1(B̄e)1− B̄e)

)D

σ̃filler = 2J−1a(ω)b̄e(ω)
D

p = ρ0
∂ψvol

∂J

˙̄Be = LB̄e + B̄eL
T −

2

3
(1 : L)B̄e −

2

η
σmatrixB̄e +

4A

Jη

(
B̄−

1

3
(B̄ : B̄−1

e
)B̄e

)

˙̄be(ω) = Lb̄e(ω) + b̄e(ω)L
T −

2

3
(1 : L)b̄e(ω)− 2

〈f(σ̃filler)〉

β(ω)

σ̃filler

‖σ̃filler‖
b̄e(ω)

(22)

There are 9 material parameters to identify, 7 are deterministic (C1, C2, A, η, a0, β̄ and χ̄) and 2 are
statistical (Ω and ω0).

3.2. Continuum fatigue damage model

We start from the following hypothesis: (1) the damage is isotropic, (2) the damage is accumulated in a
linear manner and (3) the damage is composed by two contributions: (i) a microscopic one, that corresponds
to the fillers/matrix de-cohesion observed with the SEM and (ii) a macroscopic one which is activated upon
reaching a yield damage that corresponds to cracks propagation in the matrix leading to a stiffness loss.

In the constitutive model the statistical parameter Ω controls the probability to activate a micro-
mechanism of dissipation in the aggregates. A larger value of Ω leads to a larger standard deviation.
Therefore when matrix/fillers decohesion occurs the stress contribution of agglomerates decreases which can
be represented by a smaller standard deviation. The micro damage d is then defined from the following
relation:

Ω = (1 − d)Ω̃ (23)

where Ω̃ is the parameter of a virgin material. The macro damage D which concern only the matrix is
classically defined from:

σmatrix = (1 −D)σ̃matrix (24)

where σ̃matrix is the effective stress (which correspond to a virgin material). The figure 8 shows a schematic
representation of the supposed damage scenario.

The internal variable rates ḋ and Ḋ can be derived from a pseudo-potential of dissipation defined from the
thermodynamical forces associated to damage, however in the following we consider the damage increment
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over one cycle such as:
δd

δN
=

∫

cycle

ḋdt and
δD

δN
=

∫

cycle

Ḋdt (25)

In this approach we postulate that the accumulation of damage is related to the difference between the
power of internal forces and the dissipated energy integrated over a cycle. This energetic quantity is referred
as a returnable cyclic energy. We define Rmatrix and Rfillers, respectively the returnable cyclic energy of
matrix and agglomerates such as:






Rmatrix =

∫

cycle

〈
ρψ̇matrix

〉
dt =

∫

cycle

〈
σmatrix : D− φmatrix

〉
dt

Rfillers =

∫
∞

0

(∫

cycle

〈
ρ
˙̃
ψfillers(ω)

〉
dt

)
P(ω)dω =

∫

cycle

〈
σfillers : D− φfillers

〉
dt

(26)

where < x > denotes the positive part of x. Starting from these energies, we state a power law evolution
for the micro damage over a cycle:

δd

δN
=

dα

1− α

(
Rfillers

R0
fillers

)β

with α < 1 (27)

where α, β and R0
fillers are material parameters. For the macro damage over a cycle we also assume a power

law evolution but with a yield function depending on the level of micro-damage. Therefore, we assume that
a macro damage could not initiate if a micro-damage do not have reached the yield limit d0:

δD

δN
= H(d− d0)

Dζ

1− ζ

(
Rmatrix

R0
matrix

)ν

with ζ < 1 (28)

with H(x) a Heaviside function and ζ, ν, d0, R
0
matrix material parameters. The integration of the equation

(27) and (28) over cycles leads to the following:

d =



N
(
Rfillers

R0
fillers

)β




1

1−α

(29)

D = H(d− d0)

(
N

(
Rmatrix

R0
matrix

)ν) 1

1−ζ

(30)

From the previous equations, it can be computed two maximum number of cycles Nmicro
limit and Nmacro

limit , which
are defined from d = 1 and D = 1:





Nmicro
limit =

(
Rfillers

R0
fillers

)
−β

Nmacro
limit =

(
Rmatrix

R0
matrix

)
−ν

if Nmacro
limit > d1−α

0

(
Rfillers

R0
fillers

)
−β

Nmacro
limit = ∞ otherwise

(31)

The end of life is reached when D = 1 which corresponds to the occurence of a macro crack in the matrix.
The propagation of these macro cracks must be described by fracture mechanics and are not considered in
this paper.
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4. Parameters identification

4.1. Undamaged behavior

We use the same strategy as proposed in Martinez et al. (2011). This strategy consists in three steps:
(1) Quasi-static experimental tests (tension and simple shear) allow to determine C1, C2 and to estimate
A, a0, χ̄, Ω and ω0; (2) Relaxation tests (tension and simple shear) allow to identify A, H and ω0, and
to correct a0, χ̄, η̄, Ω and (3) triangular cyclic tests, at different rates (simple shear) allow to correct the
prediction of a0, χ̄, η̄ and Ω.

Each step of identification is realized with an heuristic algorithm of minimization of the sum of the
squared distances between the experimental data and the analytical or semi-analytical responses. The
material parameters obtained are presented in table 2.

Figures 9 show the responses of the identified model compared to experimental tests. Some tests have
been used in the identification strategy, this is the case for figures 9(a), 9(b) and 9(c). Others are used for
validation purpose, this is the case of figure 9(d). Comparatively to the previous version of the statistical
approach that has been presented in Martinez et al. (2011), the present model exhibits a better agreement
to the experimental tests.
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(a) Quasi-static triangular shear test: progressive ampli-
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(c) Dynamic triangular shear test with progressive ampli-
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(d) Uni-axial triangular tension test (λ̇ = 1s−1)

Figure 9: Comparison of the identified model and some experiments in shear and tension.

4.2. Damage parameters

To identify the damage parameters, only uni-axial tension tests are used because we assume that the
central zone of the specimen sees a uniform damage which is clearly not the case of the simple shear specimen.
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C1 C2 A η a0 β̄ χ̄ Ω ω0

1.28 Mpa -2.67 Mpa 2.95 Mpa 50.13 Mpa.s 5.12 Mpa 0.5 Mpa.s 1.69 Mpa 3.11e−2 0.40

Table 2: Material parameters

Therefore, for each fatigue test in tension it is identified a set of material parameters as explained in the
previous section. Using the definition of eqs. (23) and (24), it is computed the value of d, D, Rmatrix and
Rfillers for each configuration of fatigue. Taking logarithmic value of eqs. (27) and (28), one can separate
the identification of α and A from the others parameters. Figures 10(a) and 11(a) show the evolution of the
damage rate upon the current value of damage computed after each characterization test done after a fixed
number of cycles (repeated for each configuration of fatigue). The parameters α and A can be identified
from these curves. Figures 10(b) and 11(b) show the dependance of damage upon returnable cyclic energy.
The parameters β, B, R0

fillers and R0
matrix can be computed from these curves. The last parameter, d0, is

determined by computing a mean of d values for which D starts to increase. The parameters are given in
table 3.
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Figure 10: Micro damage identification

α ζ β ν R0
fillers R0

matrix d0
-1.84 -0.25 1.07 0.62 2.81e5 7.74e8 0.085

Table 3: Damage parameters

5. Finite elements simulations

5.1. Variational Formulation

To resolve the equilibrium equations in a quasi-static context with a nearly-incompressible constitutive
behavior it has been chosen a perturbed Lagrangian weak form. This formulation is based on the introduction
of a Lagrange multiplier, p which stands for the hydrostatic pressure. Therefore, the equilibrium solution
is defined by the couple (u, p) which have to cancel the following integral form for all the test functions
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Figure 11: Macro damage identification

(δu, δp):





∫

Ω0

(Πmatrix +Πfillers + pJF−T) : ▽δudΩ−

∫

Ω0

δu · fvoldΩ−

∫

δΩ0f

δu · fsurfdS = 0
∫

Ω0

(
g(J)−

p

K

)
δpdΩ = 0

(32)

where Ω0 is the initial domain (in the reference configuration), δΩ0f is the initial boundary where current
surface forces fsurf are applied, fvol are the current volumetric forces. TensorsΠmatrix and Πfillers stand for
the first Piola-Kirchof stress respectively in the matrix and in the fillers, they are defined from the following
relations:

Πmatrix = JσmatrixF
−T and Πfillers = JσfillersF

−T (33)

The parameter K is the compressibility modulus and its inverse plays a role of a perturbation parameter.
The compressibility function g(J), is defined from the following relation:

g(J) = ρ0
1

K

∂ψvol

∂J
(34)

in this paper, the classical linear compressibility law is used leading to the following free energy potential:

ρ0ψvol =
K

2
(J − 1)2 (35)

5.2. Numerical Implementation

The integration of the constitutive model defined by eqs (22), requires to compute the statistical integral
form and the integration of the local flow rules. The statistical integration is realized by a classical trapezoidal
scheme such as:

σfillers =
n−1∑

k=1

1

2
(σ̃fillers(ωk)P (ωk) + σ̃fillers(ωk+1)P (ωk+1)) (ωk+1 − ωk) (36)
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where ωk is defined from the number of integration points n such as: ωk = k(ωe)/n, ωe is an activation
energy limit associated with a probability of 0.01P0:

ωe =
√
−ln(0.01)Ω2 (37)

Therefore, the computation of σfillers requires the resolution of n flow rules. Each flow rule, is integrated
with a specific backward Euler scheme which is detailed in Lejeunes et al. (2011). In practice, these com-
putations are easy to parallelize as the flow rules are not dependent from each other. Therefore, it has
been chosen the following strategy: at each gauss point the sum defined by eq. (36) is parallelized using an
OpenMP framwork. Each cpu core solves a flow rule with its own copy of be(ω). The computing time is
directly related to the stiffness of the differential system of equations obtained for each flow rule. Therefore
this strategy is not optimal but it is very easy to implement.
The computation of a local state of damage requires the evaluation of the returnable cyclic energy Rmatrix

and Rfillers, as for the statistical integration, a trapezoidal integration rule is used to compute the integrals
of equation (26).
The space discretization is realized with classical stable mixed elements with a linear interpolation for the
pressure and a quadratic one for the kinematic field.

5.3. Simulation of the simple shear test

As mentioned previously, the simple shear test leads to an inhomogeneous state of damage, therefore
it is proposed to use the results of this test as a validation purpose. As mentioned previously, the shear
specimens used in this work, exhibit a specific shape with a meniscus on each lateral faces to enforce an
initiation of damage in rubber and not in the interface rubber/aluminum (see figure 12(a)). Experimentally
it was observed a macroscopic crack initiation near the center of the meniscus which propagates with an
approximate angle of 45o. In some pathological tests the crack rapidly attains the aluminum layer and a
decohesion of the aluminum/rubber interface is observed (see figure 12(b)).

For the finite elements simulation we assumed plane strain conditions, the aluminum is supposed to
be perfectly rigid and not modelized. The mesh comprises 1183 nodes and 265 quadratic elements. To
ensure that the numerical response corresponds to a stabilized response it is done five cycles of shear loading
(transversal displacements with no vertical displacements are imposed on the top edge). The returnable
cyclic energies are computed on the last cycle and the maximum number of cycles (lifetime) is deduced.

The figure 13 shows the evolution of the two damage variables, d and D in the shear specimen for a
fatigue configuration of ±50% of shear strain at 6Hz. It can be observed first that the maximum of macro
damage is located near the center of the meniscus which is in good accordance to experimental observations.
Furthermore, it can be also seen that the macro damage seems more inhomogeneous than the micro damage.
Figure 14 shows a comparison of the global response of the numerical shear specimen and the experimental
data. The stiffness loss seems well predicted by the model. It can also be computed a predicted life
time (Nmacro

limit ) which is given by the minimum number of cycles for which D = 1 in a sufficiently large
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(a) Simple shear specimen with meniscus (b) Decohesion of rubber/aluminum interface

Figure 12: Shear specimen
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(a) d at 10000 cycles (b) D for 10000 cycles

(c) d for 32000 cycles (d) D for 32000 cycles

(e) d for 60000 cycles (f) D for 60000 cycles

(g) d for 160000 cycles (h) D for 160000 cycles

Figure 13: Evolution of the two damage fields for the shear specimen near the meniscus. Sinusoidal shear fatigue test at γ = 0.5
and f = 6Hz.

zone of the specimen (here it has been considered that 90% of the specimen area was a sufficiently large
zone.). The table 4, presents some results of predicted life time for different fatigue configurations. As
already seen experimentally it is observed a non linear dependence upon the solicitation amplitude and a
weak influence of the frequency, at least in the experimental range. Unfortunately, these results cannot be
confronted to experimental one as we do not have made enough tests in simple shear to be representative
(the aluminum/rubber interface has broken suddenly in many tests).

17



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

exp 1000 c.
exp 180000 c.
FE 100000 c.
FE 170000 c.
FE 180000 c.

Π
1
2

γ
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at γ = 0.5 and f = 6Hz.

Frequency (Hz) Shear amplitude (%) Nmacro
limit (number of cycles)

6 12.5 2044793
6 25 931663
6 50 400564
15 25 931779
15 50 401318

Table 4: Predicted life time (D = 1) for different fatigue configuration in simple shear

6. Concluding remarks

The use of continuum damage mechanics for rubber seems promising for at least two reasons. First,
the experimental campaign for such an approach is less time consuming than approaches that are based
on Whöler curves or Haigh’s diagram. Furthermore, interlaying characterization tests in a fatigue test
allows to separate thermal softening from damage softening. Second, the model is not restricted to only one
damage mechanism or one physical criteria to predict the fatigue behavior. In the present paper, it has been
considered two damage mechanisms which are micro-mechanically motivated: filler agglomerates decohesion
and matrix voids or cracks growth. Therefore, these models can propose a link between micro-mechanical
observations and fatigue behavior.

The silicon rubber that is considered in this paper exhibits a complex behavior. We have observed a
thermal aging previously to damage softening. We assume that this effect is due to a chemical activity
(cross-liking) during the fatigue test. However, a systematic chemo-physical characterization is needed to
study this effect.

The proposed model is based on a micro-motivated approach with a statistical representation of agglom-
erates populations. It allows a continuous representation of the characteristic times of viscosity. Therefore,
the introduction of a micro damage variable that affects fillers/matrix interface behavior is straight forward:
only one statistical variable has to be considered. The main originality of this model resides in the intro-
duction of the returnable cyclic energy to build damage evolution laws. This energy takes into account of
dissipation and free energy. In this paper, it is only considered mechanical dissipation as thermal effects has
been neglected. However, the proposed criteria can be extended to a thermo-mechanical case.

The finite element implementation of the proposed model has allowed to confront some numerical results
in simple shear to experimental ones for a model which has been identified in tension. First results are
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encouraging but more experimental tests have to be done. In a future work, we will looking at diabolo
specimens to do tension/torsion or compression/torsion tests.
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