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Abstract

We propose a simple decoding algorithm for CSS codes taking into account the cor-
relations between the X part and the Z part of the error. Applying this idea to surface
codes, we derive an improved version of the perfect matching decoding algorithm which
uses these X/Z correlations.

1 Introduction

Low Density Parity–Check (LDPC) codes are linear codes defined by low weight parity-check
equations. It is one of the most satisfying construction of error-correcting codes since they are
both capacity approaching and endowed with an efficient decoding algorithm. It is therefore
natural to investigate their quantum generalization.

Besides their use for quantum communication, quantum LDPC codes could play a central
role in quantum computing. A striking difference between classical and quantum information
is the fact that every manipulation of quantum bits (qubits) is very noisy. Quantum gates
must therefore be implemented in a fault-tolerant way. This is realized by applying operations
on qubits encoded by a quantum error-correcting code. These qubits can then be regularly
corrected. Some recent work of Gottesman [18] has shown that quantum LDPC codes are
well-suited for fault-tolerance. These codes, which are defined by low weight constraints on
qubits, naturally limit the propagation of errors.

The first difficulty in the generalization of LDPC codes is that most of the constructions
have bounded distance (see [26] and references therein). The rare families of quantum LDPC
codes equipped with a growing distance are derived from Kitaev’s construction. Kitaev’s toric
code is defined by local interactions between qubits placed on a square tiling of the torus.
Similar constructions were proposed, based on tilings of surfaces [5, 28], 3-colored tilings
[4, 9], Cayley graphs [8] or other geometrical objects [26, 22, 15, 2].

The belief propagation decoding algorithm is an essential ingredient of the success of LDPC
codes. Unfortunately, it is much less effective in the quantum setting due to two facts (i) the
unavoidable presence of 4-cyles in the Tanner graph [7] and (ii) the low weight generators can

1



be considered as low-weight errors which are not detected by the belief propagation decoder
but which are harmful for its convergence [23]. To circumvent this obstacle, some techniques
originating from classical coding theory were imported in quantum information recently [19, 1].
Another direction to avoid the 4-cycles, is to consider the error, which is a quaternary vector,
as a pair of binary vectors. These two binary vectors can then be decoded separately. The
main problem of this point of view is that it does not consider the correlations between the
two binary components of the error. In this work, we present a simple and general strategy
to take into account these correlations. To illustrate this idea, we focus on surface codes
equipped with the perfect matching decoding algorithm. This algorithm is usually unable to
consider the correlations. Applying our method to a family of surface codes constructed from
triangular tilings of a torus, we observe a clear improvement of the performance of the decoding
algorithm. The depolarizing error threshold of these triangular codes is approximately 13.3%
while it is close to 9.9% without considering the correlations.

This article is organised as follows. The definition of surface codes and the geometrical
description of errors and syndrome over these codes are recalled in Section 2. Section 3 explains
how decoding can be performed by using the aforementioned correlations. Section 4 is devoted
to the description of the perfect matching decoding algorithm and its improvement to take
into account the correlations.

2 Definitions and basic properties

Error model. We deal here with the depolarizing channel model which is one of the most
natural quantum error model and the quantum analog of the binary symmetric channel. Over
the depolarizing channel of probability p, each qubit is subjected, independently, to an error
X,Y or Z with probability p/3 or is left unchanged with probability 1− p where X,Y and Z
denote the usual Pauli matrices. An error E over n qubits is therefore a tensor product ⊗ni=1Ei
where Ei ∈ {I,X, Y, Z}. Errors are considered up to the phase {±1,±i}, since quantum states
are defined up to a phase.

Stabilizer and CSS codes. A quantum code is a subspace of dimension 2k of (C2)⊗n. This
code encodes k qubits into n qubits. A very useful way of constructing such codes is through
the stabilizer code construction [17] where the code is described by the set of fixed states of
a family of commuting Pauli operators {S1, . . . , Sr}. In other words, the Si’s are generators
of the stabilizer group of the quantum code. A particular case of this construction is the CSS
construction due to Calderbank, Shor [6] and Steane [25]. It consists in choosing some of these
Pauli operators in {I,X}⊗n and the rest of them in {I, Z}⊗n. This brings several benefits,
first it simplifies the commutation relations and helps in constructing such codes and second
decoding of such codes can be achieved by decoding two binary codes as will be explained in
the next paragraph.

Syndrome measurement and decoding of CSS codes. For a stabilizer code with stabilizer
generators {S1, . . . , Sr} subjected to a Pauli error E, it is possible to perform a measurement
which reveals the vector s(E)

def
= (E?Si)1≤i≤r where E?Si is equal to 0 if E commutes with Si

and is equal to 1 otherwise. In the case of a CSS code, the syndrome splits into two parts, one
corresponding to the commutation with the generators belonging to {I,X}⊗n and the other
one corresponding to the commutation relations with the generators in {I, Z}⊗n. Moreover, if
we decompose the error E as E = EXEZ where EX ∈ {I,X}⊗n and EZ ∈ {I, Z}⊗n and if we
let S1, . . . , SrX be the generators which are in {I,X}⊗n and SrX+1, . . . , Sr be the generators
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which are in {I, Z}⊗n, then the syndrome part sX which corresponds to the generators in
{I,X}⊗n verifies sX

def
= (E?Si)1≤i≤rX = (EZ ?Si)1≤i≤rX whereas the syndrome part sZ which

corresponds to the generators in {I, Z}⊗n verifies sZ
def
= (E?Si)rX+1≤i≤r = (EX ?Si)rX+1≤i≤r.

Notice that if we bring in the binary matrices HX and HZ whose rows are formed for HX ,
respectively HZ , by the generating elements belonging to {I,X}⊗n, respectively {I, Z}⊗n
(and replacing I by 0 and X by 1, respectively replacing I with 0 and Z with 1), then sX
is nothing but the syndrome HXe

T
Z of the binary error eZ (obtained from EZ by replacing

I by 0 and Z by 1), whereas sZ is nothing but the syndrome HXe
T
Z of the binary error eZ

(obtained from EZ by replacing I by 0 and Z by 1). In other words decoding a CSS code
amounts to decode two binary codes. This is how decoding a CSS code is usually performed.
We call this decoding technique the standard CSS decoder.

Tiling of a surface. A surface code is a CSS code associated with a tiling of surface.
Let us recall the definition of a tiling of surface. A tiling of surface is defined to be a cellular
embedding of a graph G = (V, E) in a 2-manifold, that is, a surface. Without loss of generality,
we can assume that the surface is smooth. We assume that the graph G contains neither loops
nor multiple edges. This embedding defines a set of faces F . Each face is described by the
set of edges on its boundary. This tiling of surface is denoted G = (V, E ,F). The dual graph
of G is the graph G∗ = (V∗, E∗) of vertex set V∗ = F such that two vertices are linked by an
edge if and only if the two corresponding faces of G share an edge. There is a clear bijection
between the edges of G and the edges of G∗. This graph G∗ is endowed with a structure of
tiling of surface and its faces correspond to the vertices of G: these faces are induced by the
set of edges of G incident to a vertex v ∈ V.

Surface Codes. Surface codes are a special case of CSS codes. They have been introduced
by Kitaev [20]. Assume that qubits are placed on the edges of a tiling of surface G = (V, E ,F).
The space of the system is

⊗
e∈E He, with He = C2 for every edge e ∈ E . The Pauli operators

acting on this space are the tensor products ⊗e∈EPe such that Pe ∈ {I,X, Y, Z}. For every
edge i ∈ E , denote by Xi = ⊗ePe the Pauli operator which is the identity on every edge
except on edge i, where Pi = X. The operators Zi are defined similarly for all i ∈ E . The site
operators Xv and the plaquette operators Zf are the Pauli operators defined by

Xv =
∏
v∈e

Xe and Zf =
∏
e∈f

Ze,

for every vertex v ∈ V and for every face f ∈ F . Then, the surface code associated with the
tiling of surface G is the CSS code fixed by the site operators and the plaquette operators.
The commutation between these operators follows from the structure of the tiling. Note that
HX is in this case the incidence matrix of the graph G and HZ the incidence matrix of its dual
G∗. The site operators and the plaquette operators of Kitaev’s toric codes are represented in
Figure 1 (a).

Syndrome of a surface code. In the case of a surface code, the syndrome has a graphical
interpretation that we recall now. Consider the surface code associated with a tiling of surface
G = (V, E ,F). Assume that an error EZ acts on a path γ ⊂ E of G. In other words, we
have EZ =

∏
e∈γ Ze. Then, the syndrome sX = (EZ ? Xv)v∈V of this error is indexed by the

vertices of the graph and is non-trivial if and only if the vertex v is an end-point of the path
γ. This follows from the fact that EZ commutes with all the operators Xv, except the two
operators centered on the end-points of γ. More generally, the support of the error EZ can
be decomposed as a union of disjoint paths and its syndrome indicates the end-points of the
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Figure 1: A plaquette operator and a site operator acting on a square tiling of the torus
in Fig. (a) and on a triangular tiling of the torus in Fig. (b). The opposite boundaries are
identified.

support of EZ . In what follows, we denote ∂(U) ⊂ V the set of end-points of a set U ⊂ E .
To obtain an analogous description of the error EX and its syndrome, replace the graph

by its dual. Indeed, this transformation exchanges the roles of X and Z in the definition of
the code.

The following well known lemma summarizes the graphical description of the error.

Lemma 1. Let G = (V, E ,F) be a tiling of surface and let G∗ = (V∗, E∗,F∗) be its dual. An
error acting on the surface code associated with G corresponds to a pair (EX , EZ) such that
EX ⊂ E∗ and EZ ⊂ E, and its syndrome is the pair (sX , sZ) such that sX ⊂ V is the set
∂(EZ) of end-points of EZ and sZ ⊂ V∗ is the set ∂(EX) of end-points of EX .

3 Decoding by using correlations between errors in X and Z

Virtually all decoders of CSS codes try to recover the EX and EZ part of the error inde-
pendently by decoding two binary codes as explained in Section 2. There is however some
correlation between the X part of the error and the Z part as shown by the following con-
ditional probabilities computed for a single error E = EXEZ generated by the depolarizing
channel of depolarizing probability p:

P(EZ = I|EX = X) = 1/2 (1)
P(EZ = Z|EX = X) = 1/2 (2)

whereas

P(EZ = I|EX = I) =
1− p

1− 2p/3
(3)

P(EZ = Z|EX = I) =
p/3

1− 2p/3
· (4)

When EX = X, we recognize an erasure channel and in the second case this corresponds to a
binary symmetric channel of probability p′′ def

= p/3
1−2p/3 . This can be exploited by the following

strategy for decoding. First, decode the X component of the error. Then, erase the coefficients
of EZ corresponding to the X errors. Finally, decode the Z component of the error, which
is subjected to a combination of errors and erasures. We call such a decoder a CSS decoder
using X/Z correlations.
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It is insightful to calculate the capacity of the two classical channels that both decoders
face. The X decoder has to work for a binary symmetric channel of crossover probability
p′

def
= 2p/3 whereas the Z decoder has to work for a binary error and erasure channel, where a

bit gets erased with erased with probability p′ and corrupted with probability (1− p′)p′′. The
capacity of the first channel is equal to 1− h(p′) whereas the capacity of the second channel
is equal to (1− p′)(1− h(p′′)). It can be readily observed that the second capacity is always
larger than the first one.

This suggests two things

(i) if the two binary codes have the same rate (that is if the number of X generators is
the same as the number of Z generators), then we may expect that the second decoder
behaves much better than the first decoder and that the probability of the whole decoding
is essentially the probability that the first decoder fails instead of being essentially twice
this probability as is usually the case for the standard CSS decoder described in the
previous section.

(ii) In order to fully use this decoder, the best strategy for choosing the CSS code (without
using the possible degeneracy of the code) is to choose an asymmetric CSS code where the
number of Z generators of the CSS code is chosen such that the binary code associated
toHZ has rate slightly below 1−h(p′) whereas the X generators are chosen such that the
rate of the binary code associated to HX has rate slightly below (1−p′)(1−h(p′′)). This
strategy of decoding is able to reach the hashing bound, which is equal to 1 + p log p

3 +
(1− p) log(1− p) for a depolarizing channel as explained by the following theorem.

Theorem 2. For any ε > 0, there exists a family of CSS codes of quantum rate ≤ 1+p log p
3 +

(1− p) log(1− p)− ε for which the error probability after decoding with the CSS decoder using
X/Z correlations goes to 0 as the length goes to infinity.

This theorem is proved by random coding techniques and will be given in the full version
of this paper. Notice that the hashing bound is significantly bigger than 1 − 2h(p′) which is
the biggest quantum rate that random CSS codes may have in order to be decoded succesfully
by the standard CSS decoder.

4 Improvement of the Perfect Matching Decoding

In this section, we recall the perfect matching decoding algorithm [11] for surface codes,
we discuss about its two main weakness and improve its performance by using the strategy
outlined in Section 3.

4.1 The Perfect Matching Decoding Algorithm

We consider that a surface code is subjected to a random error (EX , EZ) generated by a
depolarizing channel of probability p. The goal of this algorithm is to determine a most likely
error EZ which corresponds here to an error of minimum weight (since in general we are in a
situation where p′ ≤ 1/2) which has syndrome sX . The component EX is decoded similarly
in the dual graph.

To determine an error EZ ⊂ E of minimum weight, given its end-points sX = ∂(EZ) ⊂ V,
we are looking for a set of paths whose end-points are exactly sX and whose size is minimum.
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Algorithm 1 computes such a set using Edmonds’ minimum weight perfect matching algorithm
[13, 14, 21]. This decoding algorithm first computes the distance graph associated with a
syndrome s ⊂ V. It is the weighted complete graph K(s), with vertex set s = {s1, s2, . . . , sm},
such that the weight of the edge {si, sj} is the distance d(si, sj) in G. The second step of the
algorithm is the determination of a minimum weight perfect matching M in K(s). Recall that
a perfect matching in a graph H is a set of edges of H meeting all the vertices of H exactly
once. With each edge {vi, vj} ∈ M , we associate a geodesic of G joining the vertices vi and
vj . Denote by G(vi, vj) this geodesic. The algorithm returns the symmetric difference of all
the geodesics corresponding to the edges of M . It is the support of a most likely error of
syndrome s.

Algorithm 1 Perfect Matching Decoding
Require: A graph G = (V, E), a subset s ⊂ V of odd size.
Ensure: A subset x ⊂ E of minimum size with end-points ∂(x) = s.
1: Construct the distance graph K(s) associated with s.
2: Determine a minimum weight perfect matching M
3: return the symmetric difference of all the geodesics G(vi, vj) for {vi, vj} ∈M .

4.2 Degeneracy and Correlations

We now discuss of two cases of failure of the perfect matching decoding algorithm and their
effect on the performance.

First, by definition, surface codes are fixed by the plaquette operators of the tiling. Thus
two errors which differ in a sum of plaquettes (or faces) have exactly the same effect on the
quantum code. We should thus look for the most likely error coset up the sums of faces instead
of the most likely error. This phenomenon is called degeneracy. The threshold of the toric
code obtained by taking account optimally of the degeneracy has been estimated using an
Ising model interpretation of the decoding problem [11]. This threshold is close to p = 0.163
whereas the perfect matching algorithm reaches its threshold at approximately p = 0.155.
Note that the renormalization group approach of [12] is one of the rare decoding algorithm of
the toric code which is able to make use of the degeneracy of the code.

The second possibility of improvement of the decoding algorithm is the most important
potential gain in the performance. It is the correlation between the 2 components, EX and
EZ , of the error and consists in using the decoding strategy explained in Section 3. The
threshold of the toric code using the X/Z correlations has been estimated close to 0.189
with the Ising model correspondence [3] and is approximately 0.185 with the non-efficient
Metropolis decoding algorithm [27].

These two remarks are generally true for all surface codes.

4.3 A Correlated Perfect Matching Algorithm

To implement the decoding strategy of Section 3 we need to be able to correct errors and
erasures when decoding the EZ part. The correction of combinations of errors and erasures
for topological codes has been considered by Stace, Barrett, and Doherty [24]. We choose here
to adapt Algorithm 1 to find a most likely error for this error model.
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Figure 2: An example of error correction using Algorithm 3. (a) An error for Kitaev’s toric
code. (b) The component EX computed at Step 1. of Algorithm 3. (c) The syndrome sX of
EZ is given by the vertices marked with ’1’. The dashed edges form the erasure defined from
EX . (d) The Z component estimated in Step 2. of Algorithm 3. It is the an error of syndrome
sX which has minimum weight on the non-erased qubits.

Denote by EeZ the restriction of EZ to the erased positions, that is the positions (or edges)
such that EX = X, and denote by E ēZ its restriction to the non-erased positions. To find
the error EZ of syndrome sX such that the weight of EXEZ is minimum, we just have to
modify the distance function in Algorithm 1. We introduce the e-distance de, associated with
an erasure e. The usual distance between two vertices of a graph G is the length of a shortest
path joining these two vertices. The distance de is defined similarly but the length of a path is
its number of non-erased edges. An e-geodesic between two vertices u and v of G is a path of G
of length de(u, v) joining these two vertices. This provides us a version of the perfect matching
algorithm to correct combinations of errors and erasures. It is presented in Algorithm 2. The
distance graph based on the e-distance de is denoted Ke(s). The notation Ge(u, v) represents
a e-geodesic between u and v.

Algorithm 2 Perfect Matching Decoding for errors and erasures
Require: A graph G = (V, E), a subset s ⊂ V of odd size, a set of erased edges e ⊂ E .
Ensure: A subset x ⊂ E with end-points ∂(x) = s such that the cardinality of x\e is mini-

mum.
1: Construct the e-distance graph Ke(s) associated with s.
2: Determine a minimum weight perfect matching M ⊂ E(Ke(s)).
3: return the symmetric difference of all the e-geodesics Ge(vi, vj) for {vi, vj} ∈M .

Combining Algorithm 1 and Algorithm 2, we obtain Algorithm 3, which is an improved
version of the Perfect Matching Decoding algorithm taking partially account of the X/Z
correlations.

An example of error over the toric code that can not be corrected with the usual perfect
matching decoding but that is corrected with Algorithm 3 is represented in Figure 2.

For Kitaev’s toric codes, we obtain a slight improvement of the decoding performance
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Algorithm 3 Correlated Perfect Matching Decoding
Require: A tiling G = (V, E ,F), a syndrome (sX , sZ) ⊂ V × V ∗.
Ensure: An error (EX , EZ) ⊂ E∗ × E of syndrome (sZ , sX), such that |EX | is minimum and
|EXEZ | is minimum given EX .

1: Compute EX by applying Algorithm 1 to sZ in the dual graph G∗.
2: Compute EZ by applying Algorithm 2 to sX and e = EX in the graph G.
3: return (EX , EZ).
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Figure 3: Phase decoding performance of Algorithm 1 and depolarizing decoding performance
of Algorithm 3 for triangular toric codes of length 3.22m

using Algorithm 3, but we cannot overcome the usual threshold since the EX part of the
error is decoded using a standard perfect matching algorithm. Nevertheless, as explained in
Section 3, the use of the X/Z correlations is well appropriate to asymmetric CSS codes. To
define asymmetric surface codes, it suffices to consider non-self dual tilings.

A natural construction of asymmetric surface codes is the family derived from triangular
lattices of the torus. For example, the Cayley graph of the group Z/mZ × Z/mZ and the
generating set {±(1, 0),±(0, 1),±(1,−1)}, described in Figure 1 (b), clearly defines a trian-
gular tiling of the torus. Using Algorithm 1, we remark a threshold for the correction of
phase errors at p′ = 0.066 in Figure 3, whereas the bit-flip error threshold, observed in the
dual graph (which is a hexagonal lattice), is very high (more than p′ = 0.14 for this family
of tiling). This implies a depolarizing error threshold at p = 3p′/2 = 0.099 for the standard
perfect matching algorithm, while Algorithm 3 leads to a depolarizing error threshold at ap-
proximately p = 0.133. This good performance is explained by the fact that, while the phase
error threshold is low, the error correction in the dual graph exhibits a very good performance
and the bit-flip error threshold is high. This allows Algorithm 3 to take into account the X/Z
correlations.

5 Concluding remarks

We proposed a decoding algorithm for CSS codes partially taking into account the correlations
between the X component and the Z component of the error for a depolarizing channel.
Applied to triangular toric codes, this algorithm exhibits a good performance and clearly
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improves the threshold. It could be applied to other classes of codes, for instance for color
codes, where the decoding algorithm by projection onto 3 surface codes can be adapted to
take into account the correlations between the 3 surface codes [10].
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