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Abstract: We consider the question of giving an upper bound for the first nontrivial eigenvalue of the
Ventcel-Laplace operator of a domain 2, involving only geometrical informations. We provide such an upper
bound, by generalizing Brock’s inequality concerning Steklov eigenvalue, and we conjecture a Faber-Krahn
type inequality which would improve our bound. To support this conjecture, we prove that balls are critical
domains for the Ventcel eigenvalue, in any dimension, and that they are local maximizers in dimension 2 and
3, using an order two sensitivity analysis. We also provide some numerical evidence.
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1 Introduction

Background. Let d > 2 and Q be a bounded domain in R? (i.e a bounded connected open set) supposed
to be sufficiently smooth (of class C?), and we denote A, the Laplace-Beltrami operator on ). Motivated
by generalized impedence boundary conditions, we consider the eigenvalue problem for Ventcel boundary

conditions
-Au = 0 in (1)
—BA;u+du = Au on 0f2

where 3 is a given real number and 0,, denotes the outward unit normal derivative.

The coefficient 5 appears as a surface diffusion coefficient arising in a passage to the limit in the thickness
of the boundary layer for coated object (see [21, 1, 15]). A general derivation of Ventcel boundary conditions
can be found in [14]. The coefficient can be either positive or negative. We first consider the case § > 0 where
the obtained boundary value problem is coercive.

This problem couples surface and volume effects through the Steklov eigenvalue problem in 2 with the
Laplace-Beltrami eigenvalue problem on 0f). Let us recall some known facts about these two problems. The
Steklov eigenvalue problem consists in solving

Au = 0 in Q (2)
ohu = Nu on 0f)

It has a discrete sprectrum consisting in a sequence
A () =0< A () <A(Q)... = +o0

where the A% are called Steklov eigenvalues. Brock-Weinstock inequality states that /\f is maximized by the
ball among all open sets of fixed volume |Q|. It was first proved in the case d = 2 by Weinstock and extented
by Brock to any dimension in [6] (Weinstock inequality is slightly stronger but restricted to simply-connected
domains: he proved indeed that the disk maximizes )\f among simply-connected sets of given perimeter). A
quantitative form of this inequality was recently obtained by Brasco, De Philippis and Ruffini who proved in
[5] that

[QAB(z90)|

(@) < A(B) a

1—6q4

Y

where d4 is an explicit nonnegative constant depending only on d, zsq is the center of mass of 9 and B(zsq)
is the ball centered in xq with volume || (the results in [5] are stated with the Fraenkel asymmetry, meaning
that the previous inequality is stated for the ball B of volume |Q2] that minimizes |2AB|, but from the proof
(see [5, Section 5]) we can conclude that the ball B(zaq) of volume |Q| and such that [, (z — zaq)do = 0 is
in fact valid as well). Let us emphasize that no additional topological assumption is needed.

It is well-known that the spectrum of the Laplace-Beltrami operator on 9f) is also discrete and
satisfies:

MNP (09) =0 < AP 00) < ALB0Q)... = 400



Again, one can ask if AP takes its maximal value on the euclidian sphere, among hypersurfaces of fixed
(d — 1)-dimensional volume. Here, the answer is more complicated than for the Steklov problem. It depends
on both the topology of the surface and the dimension. In [18], Hersch gave a positive answer if d = 3 for
surfaces homomorphic to the euclidian sphere. In the cases d > 3 or without topological restriction, the
answer is negative (see [3, 9, 10], and Section 2.1 for the 2-dimensional case)).

When 5 > 0, the spectrum of the Laplacian with Ventcel conditions consists in an increasing
countable sequence of eigenvalues

with corresponding real orthonormal eigenfunctions wug, u1, uo, ... As in the previous cases, the first eigenvalue
is zero with constants as corresponding eigenfunctions. As usual, we adopt the convention that each eigenvalue
is repeated according to its multiplicity. Hence, the first eigenvalue of interest is A1. A description of the
eigenvalues as Rayleigh quotient is available. To that end, we introduce the Hilbert space

H(Q) = {u € H(Q), Troa(u) € H(0Q)},

and we define on H(2) the two bilinear forms
Ag(u,v) = / Vu.Vv dx + V., u.Viv do, B(u,v) = / uv, (4)
Q onN o

where V, is the tangential gradient. Since we assume [ is nonnegative, the two bilinear forms are positive
and the variational characterization for the k-th eigenvalue is

Ag(v,v)
B(v,v)
In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions associated

to Ag = 0, i.e constant functions. To describe this spectrum, one can notice that the eigenvalue problem can
be rewriten purely on 0f) as:

Ax(€) = min { , v e H(Q), /mvui—o,i—o,...,k—l} (5)

—BA;u+ Au = du

where A denotes the Dirichlet-to-Neumann map, that is a selfadjoint, positive pseudodifferential operator of
order one. Therefore, this problem can be seen as a compact perturbation of the usual Laplace-Beltrami
operator. This point of view was used in [4] and justify that high order eigenvalues of the Laplace-Ventcel
problem look like those of the Laplace-Beltrami operator.

However, we are interested in this work, in studying low order eigenvalues and more precisely in giving
an upper bound for the second eigenvalue A; involving only geometrical informations. An important remark
at this point is that the bilinear form Ag is not homogeneous with respect to dilatation of the domain.
Therefore, the volume of € plays a crucial role in A;. As a surface term appears also in Ag (corresponding to
the Laplace-Beltrami operator), the perimeter of 2 (i.e. the volume of 9€) should also play a crucial role.

Notice that when S = 0 we retrieve the Steklov eigenvalues, and we recover the Laplace-Beltrami eigen-
values by considering %)\1 and letting 8 go to 4o0.

Note also that the close but distinct eigenvalue problem

{ —Au = Au in Q (6)

Au+adpu+yu = 0 on 0f2

was considered by J.B. Kennedy in [20]. He transforms this problem into a Robin type problem to prove a
Faber-Krahn type inequality when the constants «,y are non negative: the ball is the best possible domain
among those of given volume.



The results of the paper. We first apply the strategy of F. Brock for the Steklov eigenvalue problem to
the Ventcel eigenvalue problem and obtain a first upper bound of A1 (€2) in terms of purely geometric quantities
(we actually provide a refined version, using [5]):

Theorem 1.1 Let A[QY] be the spectral radius of the symmetric and positive semidefinite matriz P(Q2) =
(Pij)ij=1,..d defined as

pij = / (0i5 — niny), (7)
oN
where n is the outward normal vector to 02. Then if B > 0, one has:

1 dw, V0t 0AB[\
=3 5w T (”” @ ) ' )

i=1

where
Cd+12Y0-1 0
= ©)

and B is the ball of volume || and with the same center of mass than 0. Equality holds in (8) if Q is a ball.
A trivial consequence of Theorem 1.1 is the following upper bound for A; ().

Corollary 1.2 If 3 >0, it holds:

€2 + BA[Q]

2
d_l/d|Q’L-51 <1 %\&ZIAB‘ ’)

where B and 4 are as in Theorem 1.1. Equality holds in (10) if Q is a ball.

A1(Q) (10)

Note that the method used for the Ventcel eigenvalue problem also applies for the Laplace-Beltrami case
and provides an upper bound for )\fB without any topological assumption on {2.

Theorem 1.3 It holds

d duw; 40 4 [N
LB
SLB(9Q) g A <1+7d 9l ) (11)
and
AIQ
B (90) < i (12)

5
_ QAB
dl/dlﬁ\d%l (1 d| a |>

Equality holds in (11) and (12) if Q is a ball.

It is expected in this type of extremal eigenvalue problem that a Faber-Krahn result should hold. We are
not able to fully justify the natural following conjecture:

Conjecture: The ball mazimizes the first non-trivial Ventcel-Laplace eigenvalue among smooth open sets of
given volume and which are homeomorphic to the ball.



The topological restriction is motivated by the limit case 8 — +oo as we noticed before (see also Section
2.1). Except if 5 = 0, the upper bound (10) is larger than A;(B) (with equality for the ball) and hence does
not implies a Faber-Krahn result. To check if a Faber-Krahn inequality can be valid in our case, we then turn
our attention to a shape sensitivity analysis of A;.

Therefore, we first wonder if the ball is a critical shape in any dimension. With respect to shape sensitivity,
the main difficulty is to handle multiple eigenvalues which leads to a nonsmooth dependency of A; with respect
to Q. However, for a fixed deformation field V' € W3 (Q,R%), along the transport of Q by Ty = I +tV, we
prove the existence of smooth branches of eigenvalues and eigenfunctions associated to the subspace generated
by the group of eigenvalues and provide a characterization of the derivative along the branches: \; is then
the minimum value among these d smooth branches.

Theorem 1.4 We distinguish the case of simple and multiple eigenvalue.
o If A= \i(Q) is a simple eigenvalue of the Ventcel problem, then the application t — \(t)= \i.(Q4) (where
Q= (I +tV)(Q)) is differentiable and the derivative att =0 is
N(0) = / Vn(|V7u|2 — |Onul* = NH|uo|* + B(H I — 2D2b)VTu.VTu> do.
o0N

where u is the normalized eigenfunction associated to \, D?b is the Hessian of the signed distance
function (see (44)), H = Tr(D?b) is the mean curvature of 092, Iy is the identity matriz of size d, and
Vi, =V - nyq is the normal component of the deformation. Moreover, the shape derivative v’ att =0
of the eigenfunction satisfies

Au = 0 in 8,

“BAA A+ Ot — Mt = BAL(ViBou) + Bdiv, (Vo(HIg — 2D?b)Vu) (13)
+div, (Vo Viu) — Nu+ AV, (Opu + Hu) on ON.

o Let X be a multiple eigenvalue of order m > 2. Let (uk)g=1,..m denote the eigenfunctions associated to
AX. Then there exist m functions t — A\g(t),k = 1,...,m defined in a neighborhood of 0 such that

— Xe(0) = A,
— for every t in a neighborhood of 0, \,(t) is an eigenvalue of Q. = (I +tV)(R2),
— the functions t — \g(t),k = 1,...,m admit derivatives and their values at 0 are the eigenvalues of

the m x m matric M= Mq(V;,) of entries (M;;) defined by

Mij = /69 Va (Vrui-vﬂ'uj — OnuiOnuj — AHujuj + (HId N 2D2b) vTui'VTuj> do.

Notice that in the notations above and contrary to (3), the functions A\ (t) are no longer ordered. As a
byproduct of this result, notice that we can write the corresponding shape derivatives for the Steklov and
Laplace-Beltrami eigenvalue problem (see Appendix E). Another consequence of this result, regarding our
conjecture, is that we are able to check that balls are critical shapes for A\; by computing the trace of the
previously defined matrix M = Mp (recall that A1(B) is an eigenvalue of multiplicity d the dimension):

Proposition 1.5 Any ball B is a critical shape for A1 with volume constraint, in the sense that for every
volume preserving deformations V,

Tr(MB(Vn)) = 0.

In particular, 0 € O\ (B; V) the directional subdifferential associated to the first non trivial eigenvalue.
Moreover, this subdifferential reduces to {0} if V,, is orthogonal to spherical harmonics of order two: in
other words, in that case, the directional derivative exists in the usual sense and vanishes.



Remark 1.6 When dealing with first order considerations, the vector field V is said to be volume preserving
if it satisfies [4, Vado =0, indeed we have %|t:0‘9t‘ = [0 Vado.

When dealing with second order considerations as in Proposition 1.7 below, we need that the volume 1is
preserved at the second order, that is to say

d2
t 09

where V) denotes the derivative of V;, with respect to t at t = 0.

Two situations can now occur: either the subdifferential in direction V}, is not reduced to {0} and then
one can deduce from the previous statement that B locally maximizes A1 along t — Q; (see for example (c)
and (d) in Figure 5), or the subdifferential in direction V;, is {0} and then this first order shape calculus does
not allow us to conclude that the ball is a local maximizer of A\;. Hence, for the directions V,, in H defined
as the Hilbert space generated by spherical harmonics of order greater or equal to three, we now consider the
second order analysis to wonder if the ball satisfies the second order necessary condition of optimality, and
obtain the following result in dimension two and three.

Proposition 1.7 Let B be a ball in R? or R3 and t — By = (I+tV)(B) a volume preserving deformation (see
Remark 1.6). \1(B) is an eigenvalue of multiplicity d the dimension, and we denote t — \p(t), k=1,...,d
the branches obtained in Theorem 1.4. Then the functions t — \g(t), k =1,...,d admit a second derivative
and their values at 0 are the eigenvalues of the d x d matrizc E = Eg(Vy,) defined in Section 4. Moreover,
there exists a nonnegative number o such that

Tr(Ep(Va)) < —a /63 (IVVal? + Val?) do = —alVallfi o)
holds for or all V,, € H.

As a consequence of Propositions 1.5 and 1.7, we have the result:

Corollary 1.8 If B is a ball in R? orR3, andt — Ty € W3 (B, Rd) a smooth volume preserving deformation,
then
M(B) > M (Ty(B)),  fort small enough.

Plan of the paper. The paper is organized as follows: in section 2, we prove Theorem 1.1 by adapting the
strategy of Brock and present some numerical tests to illustrate the sharpness of the upper bound. The first
order shape analysis is presented in section 3, while the second order shape analysis is presented in section 4.
The background material for shape calculus and the proofs of technical intermediary results are postponed to
the annexes.

2 Upper bound for \;

2.1 Preliminary remarks and results.

Let us start by a few remarks on the proofs of Faber-Krahn type inequalities in the two limit cases 8 — +o0
(that is the Laplace-Beltrami eigenvalue problem), and 5 = 0 (that is the Steklov eigenvalue problem).



On the Laplace-Beltrami case The case d = 2 is trivial: it suffices to argue on each connected component
of 9. We introduce v : [0, L] a parametrization by the arclength of a connected component I of 92, then
for any v € H'(09), the Rayleigh quotient can be written as

Jo Vel _ ol )P
fF U,2 foL(uo’Y)Q

Hence, the )\ILB(F) is nothing but the infimum of |]u’||%2(07L)
ullr2(0,z) = 1, that is to say 472 /L2, Tt is a decreasing function of the length of the connected component
of the boundary. Then, if  is simply connected, combined with the isoperimetric inequality, the previous
computations leads to M2 (9Q) < MB(9B) where B is a disk of same area than ().

Moreover, if 99 has more than one connected component, then A® = 0 since the multiplicity of 0 as
eigenvalue is at least the number of connected component. To check that claim, it suffices to check that the
functions taking the value 1 on one of the connected component and 0 elsewhere are independent eigenfunctions
associated to the eigenvalue 0. We conclude that in dimension 2, M2 (9Q) < AB(9B), where B is a disk of
same area than €.

The case d = 3 is more complex. There is a classical result of J. Hersch [18]: if Q C R? is homeomorphic
to the ball, then

among the functions u with 0 mean value and

MB(00Q) < AB(9B), for all Q such that |09 = |9B. (14)

We first extend Hersch statement to domains of same volume by a classic homogenity argument.
Lemma 2.1 IfQ C R? is homeomorph to the ball, then
AP (09) < AP (0B) if 19 = | Bl.

Proof of Lemma 2.1.:
One easily checks that © — AP (9Q) is homogeneous of degree —2, so Q +— AB(0)]09]%/(4=1) is homogeneous
of degree 0. Then we get from Hersch’s inequality (14), that

LB Py LB =
AT7(0)]0Q) T < AP (0B)|0B| 41, for all Q such that |0Q| = [0B]. (15)
Thanks to the invariance by translation of /\fB and the perimeter, and using the 0-homogeneity of the previous
product, we get that the previous inequality is in fact valid for any ball B and any domain 2. We combine
with the isoperimetric inequality
d d
|0B|a-T < |0 a1
Bl 19

to conclude. n

An important remark for the sequel is the particular case when 2 is a ball By of radius R. The eigenspace
corresponding to A; is d-dimensional: it consists to the restrictions on the sphere S}f{l of the linear functions
in R? spanned by the coordinates functions. It follows, from the theory of spherical harmonic functions that

(d-1)5+R

)q(BR) = )\g(BR) = ... = )\d(BR) = R2

(16)
The Laplace-Beltrami operator on dBg and the Steklov operator also are diagonal on the basis of spherical
harmonics, hence

M (Bgr) = X{ (Br) + BAEB(8BR),



and more generaly the eigenvalue associated to spherical harmonics of order [ is

I(l+d—2)B+R

Aty(Br) = f2

But, this situation is specific to the ball: indeed, in general we only have the inequality
A1) > AT () + BATE(Q).

For example if d = 3, combining Brock-Weinstock inequality and Lemma 2.1, we obtain that the right-hand
side in the previous inequality is maximized by the ball, among domains of given volume and homeomorphic
to the ball. Unfortunately, this is not enough to obtain a Faber-Krahn type result for the Ventcel eigenvalue.

So in order to obtain an estimate of A1, we look into the strategies used for the extremal problems, which
are the Steklov (8 = 0) and the Laplace-Beltrami (8 — +o00) cases. The strategies of Brock and Hersch for
those cases are actually close but distinct: they use the coordinate functions as test functions in the Rayleigh
quotient characterization of eigenvalues. In the case of the Laplace-Beltrami operator though, J. Hersch had
an additional step: he first transports the surface 92 on the sphere by a conformal mapping, and use the
conformal invariance of the Dirichlet energy for 2-dimensional surfaces. In the following, we choose to follow
the ideas of Brock. This allows to obtain an estimate with no assumption on the topology or the dimension
of the domain. Indeed, the above mentioned phenomenon of decoupling between the different connected
components does not appear in the Steklov case, due to the volume term, and in fact Brock’s result is valid
for every (smooth enough) domain. The same volume term appears in the Ventcel case and the approach of
Brock is then the natural one. However, one expects from these topological considerations that it will not
provide an optimal result.

On the Steklov case. Since we will adapt the original Brock’s proof, we will use the main tool in its
original proof that is an isoperimetric inequality for the moment of inertia of the boundary 02 with respect to
the origin. The general form of the weighted isoperimetric inequality due to F. Betta, F. Brock, A. Mercaldo
and M.R. Postaro [2] is:

Lemma 2.2 Let Q C R? be an open set and let f be a continuous, nonnegative and nondecreasing function
defined on [0, 00]. Moreover, we suppose that

t— (f(té) - f(O)) 174 is convex for t>0

Then
/ f(j2))do > J(R) |0Bxl. (18)
o0

Let us remark that the function ¢ +— P satisfies the assumptions of the lemma as soon as p > 1 and in
particular for p = 2. In that case and in order to prove a refinement of Brock-Weinstein inequality, L. Brasco,
G. De Philippis and B. Ruffini established a qualitative refinement of this inequality (Theorem B of [5]):

Lemma 2.3 There exists an explicit dimensional constant ~vq such that for every bounded, open Lipschitz set
Q in R,

(19)

QABg[\
|Brl |’

/BQ |z|?do > R* |0Bg)| (1 + Y4

where Br is the ball centered at the origin such that |Br| = |Q] and 74 is the constant defined in (9).



2.2 Proof of Theorem 1.1

Our strategy to prove Theorem 1.1 is to use the following characterization for the inverse trace of eigenvalues
(stated by J. Hersch in [17] and proved by G. Hile and Z. Xu in [19])

d
1 B(Ui,vi)
i i S LY 2
2% T 2 g ) (20)

where the functions (v;);—1,.. 4 are non zero functions that are B-orthogonal to the constants and pairwise
Ag-orthogonal.
Before proving Theorem 1.1, we now present some preliminary results.

Lemma 2.4 The matriz P[Q]defined by (7) is symmetric, positive definite. Its spectral radius A[Q] satisfies

d—1
(d—1)]0Q > A[Q] > T\BQ\ (21)
In particular, among sets of given volume, the spectral radius is minimal for the ball.

Proof: The matrix P(Q) is symmetric by definition. For y = (y1,--- ,94) € R? with y # 0, we check that
d
> yildij—nimy)y; =y'y — (y'm)* >0
ij=1

by Cauchy-Schwarz inequality. By integration over 02, P[()] is positive semidefinite. Assume, by contradic-
tion, that P is not definite: then there is a vector y # 0 such that

d

0= Z Yi (/89 (0; — ni'ﬂj)) Yj = /8!2 (yTy - (yT")Q) )

i,j=1

The equality case of Cauchy-Schwarz inequality y”y — (y'n)? = 0 is therefore satisfied everywhere on 952,
this holds if and only if y and n are colinear. Hence, n is constant on 9€) which contradicts the boundedness
of Q.

The matrix P[] has positive eigenvalues. Their sum is the trace Tr(P[2]), hence

Tr(PQ]) d
Te(P[)) > AQ) > ——— with Tx(P[Q)) = ;/89(1 —n2) = (d - 1)|09.

Therefore ( ) ( )
d—1 d—1
onNl >
d 09 2 d

The last inequality is obtained by the usual isoperimetric inequality and assuming B is a ball such that
|2] = |BJ. Let us compute A[B]. From the invariance by rotation of the ball, there exists a real number a
such that P[B] = aly. In others words, we have

/ ninj:(),i;éjand/ (1—n§):/ (1-n?), i=1,...,d
oB OB oB

The real number a is determined using the trace of the matrix: we obtain that d A[B] = (d — 1)|0B]|, and so
A(Q) > A(B). m

(d—1)09] = AlQ] > 9B,



Remark 2.5 The inequalities in (21) are sharp. The lower bound is reached when Q is a ball and the upper
bound is the limit of the collapsing stadium Se (union of a rectangle and two half-disks) of unit area and width
€ when ¢ tends to 0: one checks by an explicit elementary calculus that:

2 e ) 2
|0Se| = —+ — while A[S:] = —.
e 2 €

Proof of Theorem 1.1:
We first translate and rotate coordinates x;, ¢ = 1,2, ...d such that

/xi:Oand/ rixj =05, 4, J =1,...,d.
o0 oQ

We now construct a family which is pairwise Ag-orthogonal, and B-orthogonal to R. We consider a
collection of a family of functions wy,ws,...,wy in the vector space spanned by the coordinates functions:
there is a matrix C such that

d
wz-:Zcijxj, i:1,2,...,d.
J=1

Brock used directly the coordinate functions to deal with Ag. Here, we need an Ag-orthogonal family, hence
the matrix C' will be chosen to that end. Since the coordinates functions are L? orthogonal to the constants,

each wj; is L2-orthogonal to the constants (that is to say the eigenfunctions associated to the smallest eigenvalue
Ao = 0).
Let us compute Ag(w;, wj). First, we get Vw; = (¢i1, o, - .- ,cig)’ then

d
[ vu = [ 37 cucm = l0l (©C7),
Q Qpmet
To compute the second term of the sum occuring in Ag, we recall that
Vrw; - Vywj = Vw; - Vwj — (Vw; - n)(Vw; - nj).
We therefore get

rd d d
Viw; - Vow; = / Z Cik Cjk — (Z Cik”k) (Z Cjk“k)]
2 |1 k=1

k=1

[ 4 d
= / g Cik Cjk — g CikCjiM My
o0 |1

k=1

o0

We introduce P[] the matrix defined in (7) to get

Vewi - Vow; =Y Cik Prm Cim = (CPIQICT);;.

Py o

Gathering all the terms, it comes that
Ag(wi,wy) = [Qf (CCT)y; + BCP[QCT); (22)

Since P[(2] is a real symmetric matrix, we can choose an orthogonal matrix C' such that CP[Q]C7 is diagonal.
Hence, CCT = I and finally w; and w; are Ag-orthogonal if 7 # j while

Ag(wi,wi) = Q] + BCPIQAICT)u < 19| + BA[Q). (23)

10



and we can apply Hile and Xu’s inequality (see [19]).
Since by assumption
/ aciacj =0
o0

when 4 # j, it comes that

and then

(]
tﬁ a
= —
3

o
N
—

d
2 2
/ f[fk> Zcik / ’$|2
o /i )

_ SN i=1 k=1 _ k=1 1 _
S(Q) = Z N(Q) T QLA QI+ BAQ] Q]+ BAQ)

Using first the isoperimetric weighted inequality (18) for p = 2, we get
/ «f? > R?|0Bg|.
oN

We have proved
_Z R?|0Bg| _ R?
2 @ > A AT~ T Al
|0Br|  |0Bg]

If Q = Bpg, we know that d|Br| = R|0Bg| and then

R R
|Br| | BAIBR] R d—1 X(Bg)

0B " 10Br 47 d

and prove the equality case. By the quantitative version of the isoperimetric inequality for the moment of
inertia of 92 with respect to the origin (19), we get the precised version:

2
i R?*|0Bg| 1 i [QQABR|
d
Ai(€2 |Q|+ﬁ/\[ ] | Br|

Using the definition of R and |Q| = |Bg|, we obtain R%|0Bgr| = dw_l/ d|Q|Ly and the desired inequality. m

Proof of Corollary 1.2:
Since A\1(Q2) < \(Q) fori=1,...,d, we get
d < d 1] + BA[Q]
S~ QABR[\" dwy 0
" By

() <

Proof of Theorem 1.3:

It is a direct adaptation of the previous proof to the Laplace-Beltrami case: it suffices to remplace the bilinear
form Ag(u,v) by A(u,v) = [, Vu.Vv. Then Equation (23) becomes A(w;,w;) = (CP[Q]CT);; < A[Q] and
the conclusion follows. m
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2.3 On the sharpness of the upper bound (10)

Testing the sharpness. Let us denote M;(£2) the upper bound (10). In order to emphasize the improvement
to the inequality of Brasco, De Philippis and Ruffini, we also plot the rougher upper bound
Ay < 121 BAI9] _ 101+ As[0)

w[;l/d‘Q’%l RQ‘({?BR‘

It is clear from the bound of A(2) stated in (21) that

d 2] + BA[Q)

QABg|\” R*10Br|
1+'7d7‘BR‘

AM(Bgr) = Mi(Br) < M1(Q2) =

This inequality means that a Faber-Krahn inequality would be strictly better that (10). Let us illustrate
this fact with some numerical illustrations. We compute A1(€2) and M;(Q2) (i = 1,2) for several parametrized
famillies of plane domains when 8 = 1. In Figure 1(a), we present the case of ellipses of area 7 (their semiaxis
are e! and e, t is in abscissa) while in Figure 1(b) and 1(c) we present the case of the star-shaped domains
) defined in polar coordinate by r(8) = a(t)(2 + cos(kf)) where a(t) is a constant chosen such that || = 7.

1 1.4 1
0 005 o1 015 02 02 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05

(a) Ellipses of area , (b) 5 branches star-shaped domains Q: (c) 7 branches star-shaped domains €

Figure 1: Comparison of A;(Q2) and M;(Q2). Here \i(B1) = 2.

From these graphs, it seems that the upper bound M; () lacks of precision when (2 is far from a ball and
that a Faber-Krahn property is possible and would improve the upper bound given in Corollary 1.2.

Some numerical tests of a Faber-Krahn inequality. It is natural to wonder if a Faber-Krahn type
inequality is valid for the Ventcel-Laplace eigenvalue. In others words, does the ball have the largest Ay
among all the domains of same volume that are homeomorph to the ball 7 This question cannot be solved
with estimate (10). Therefore, to conclude this section, we would like to present some numerical experiments
in favour of such property.

Let us start by computing the value of A1(2) when Q is an ellipse of fixed volume. We present here the
results of our numerical computations for 8 € {0.1,1,5,10} when |Q2] = w. Then when the volume of Q is
47. In both figures, the abscissa stands for the eccentricity of the ellipse. It seems that the ball maximizes Ay
among ellipses of fixed area.

Let us show some computations in dimension three. We consider families of ellipsoids with semi-axes
defined by (exp(ait))i:LZ3 where a1 + a2 + a3 = 0 to insure the volume constraint. The ball B corresponds
to t = 0. We remind that in this case, A\;(B) has multiplicity 3 at the sphere, we then have plotted the three
corresponding eigenvalues in two cases: first for the family such that o = (2, —0.8, —1.2) in Figure 3(a), then

12



(a) [ = (b) [Qf = 47

Figure 2: A\{(€2) when © is an ellipse of volume ||

Bz oz s 01 <05 0 o065 01 o o0z oz o 002 004 006 008 o1 012 o4
t

(a) a=(2,-0.8,-1.2) (b) a=(2,-1,-1)

Figure 3: (A1(%), A2(2), A3(£2¢)) when Q; is a parametrized ellipsoid of volume 47/3

for = (2,—1,—1) in Figure 3(b). In the last case, the defined ellipsoids are of revolution and we observe
that in this particular case A3 = A4. One can wonder if it is really the case.

Let E(a,b) be an ellipsoid of volume 47/3 where a is the larger semiaxis and b the middle one. We
now show in Figure 4 the surfaces z = X\;(E(a,b)) where i = 1,2,3. The pictures have been obtained by
interpolation after the computations of the eigenvalues on 2700 ellipsoids. Again one can attest that the ball
seems to maximize A\; among ellipsoids.

a: larger semiaxis b : middle semiaxis b : middle semiaxis

(a) M(E(a,b)) (b) A2(E(a,b)) (c) As(E(a,b))

Figure 4: (A1(2), A2(Q), A3(2)) when Q = E(a,b) is an ellipsoid of volume 47/3
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3 First order shape calculus

In order to go one step further, we adopt a shape optimization point of view and prove in this section that the
ball is a critical point. The main difficulty here is that the eigenvalue A1 (B) has multiplicity the dimension of
the ambient space. We need some technical material on shape derivative and tangential calculus on manifold
to justify the results stated in this section; to simplify the reading of this work, we postpone these reminders
in Appendix A.

Let us emphasize that from this point we do not make the assumption 5 > 0, and therefore all the results
of this section and the following are valid for any 5 € R.

3.1 Notations and preliminary result for shape deformation

We adopt the formalism of Hadamard’s shape calculus and consider the map ¢t — T3 = I 4+ tV where
V € W3*(Q,R%) and t is small enough. We denote by

Y =T(Q) ={z+tV(x),x € Q}.
Remark 3.1 More generally the results and computations from this section are valid if t — T} satisfies:
o Ty =Id,
e for every t near 0, Ty is a W3 -diffeomorphism from Q onto its image Q0 = T(Q2).
e The application t — Tj is real-analytic near t = 0.

We need to introduce the surface jacobian w; defined as
wi(x) = det(DTy(w)) | (DTy(x)") 'n(z) ||,
and the functions
Ay(z) = (DTy(2)) " (DT(2)") ™!, Ai(x) = det(DT(2)) Ar(w),  Col) = wi(a) Ay(2).

We have to study the transport of the considered eigenvalue problem on the deformed domain ;. Then, in
order to use the standard argument of Kato, we rewrite the deformed equation on the fixed domain €2 and
its boundary 0. The first job will consist to describe how are transported the Laplace-Beltrami and the
Dirichlet-to-Neumann operators.

Transport of the Dirichlet-to-Neuman map. Let us consider the Dirichlet-to-Neumann operator defined

on its natural space A; : HY/2(99y) — H~Y/2(8Q;). Tt maps a function ¢; in H'/?(9€) onto the normal

derivative of its harmonic expansion in Qy, that is to say A¢(¢¢) = On,ut, where u! solves the boundary values
problem:

—A’U,t = 0 in Qt,

{ U = gbt on 8Qt (24)

To compute the quantity D such that D(¢;oT;) = [Ai(¢¢)] 0Ty , we transport the boundary value problem

(24) back on the domain €. Setting u’ = u; o T}, we check from the variational formulation, that the function
u? is the unique solution of the transported boundary value problem:

{div(AtVut) =0 in Q,

W = ¢0T; on 0. (25)

Hence, setting y = Ty(z), = € Q we get formally

(DTi(x)") " 'n(z) _ Aa)n(z).Vu'(x)

Ao (0) = Ty mely) = (D)) Ty ()] ~ DT o)) (o)
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Here again, we can give a sense to the co-normal derivative A;n.Vu! thanks to the boundary value problem
(25): this quantity is defined in a weak sense as the previous Dirichlet-to-Neumann operator A;. To be more
precise, we have the following result proved in [11].

Lemma 3.2 Given ¢ € H1/2(8Q), we denote v the solution of the boundary value problem

T .
(s o e ®
and then define Dyp € H=1/2(9Q) as:
Du s f € HVH0%) = [ A@)T'(@) - VE()(a)d.
where E is a continuous extension operator from HY/2(9Q) to H' (). Then the relation
(App) o Ty =Dy [po T4 (27)

holds for all functions ¢ € HY/?(Q).

Transport of the Laplace-Beltrami operator. We recall now the expression of the transported Laplace-
Beltrami operator, relying on the relation

Vo € HX(00), (Arg)oT) = wiw)dm (Cy(2)V+ (0 0 T3)(x)) on O (28)

Let us denote by L£(t) the operator defined as
L(@)[po T (z) =
1

w(x)

div, {ctmv o) (o) - T <x)At<x)"(‘””)} )

for ¢ € H%/?(Q). In [11], we show the following lemma:

Lemma 3.3 The identity
[Ar¢] o Ty = L(t) [p o T}] (30)

holds for all functions o belonging to H®/?().

3.2 Regularity of the eigenfunctions and eigenvalues with respect to the parameter

The section is a slight variation of a theorem due to Ortega and Zuazua on the existence and regularity of
eigenvalues and associated eigenfunctions in the case of Stokes system [22]. The difficulty comes from the
possible multiple eigenvalues. The main result is, for a fixed deformation field V€ W3 (2, R9), the existence
of smooth branches of eigenvalue. In other words, the eigenvalues are not regular when sorted in the increasing
order, but can be locally relabeled around the multiple point in order to remain smooth. The restriction is
that this labeling depends on the deformation field V' hence one cannot hope to prove Fréchet-differentiability.

Theorem 3.4 Let Q be an open smooth bounded domain of R%. Assume that ) is an eigenvalue of multiplicity
m of the Ventcel-Laplace operator. We suppose that Ty = I +tV for some V. € W3>®(Q,R)? and denote
Qy = T,(2). Then there exists m real-valued continuous functions t — A\i(t), i =1,2,...,m and m functions

tul e H%(Q) such that the following properties hold
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1. X(0)=X,i=1,...,m,
2. the functions t — \i(t) and t — ul, i =1,2,...,m are analytic in a neighborhood of t = 0.

3. The functions u;; defined such that u;; o T; = uf are eigenfunctions associated to \i(t) on the moving

domain Q. If one consider K compact subset such that K C Qy for all t small enough, then t — Uit
is also an analytic function of t in a neighborhood of t = 0.

4. Let I C R be an interval such that I contains only the eigenvalue \ of the Ventcel problem of multiplicity
m. Then there exists a neighborhood of t = 0 such that \;(t) i = 1,...,m are the only eigenvalues of £
which belongs to I.

Proof: Let A be an eigenvalue of multiplicity m and let uq, . .., u,, the orthonormal eigenfunctions associated
to A. Let (A(t),u;) be an eigenpair satisfying
(P ) —Aut =0 in Qt,
¢ —BA;ug + Op,up = At)ug  on 9.

Setting u' = wuy o Ty, Lemma 3.2 (transport of the Dirichlet-to-Neuman map) and 3.3 (transport of the
Laplace-Beltrami operator) show that the system (P;) above is equivalent to the following equation set on the
boundary

(=BL: + Dy)ul = A(t)wsu! on ON. (31)

Consider the operator S(t) defined H*/2(992) by
V= S(t)v = —Bﬁtv + Div (32)

From their expressions computed for example in [16] and the regularity assumption on T}, all the operators
Cy, Ay and w; are analytic in a neighborhood of ¢ = 0 . Since det(D7T;) > 0 for ¢ small enough, we deduce
that all the expressions involved in C¢, £; and D; are analytic in a neighborhood of ¢ = 0. This enables us to
conclude that S(t) is also analytic in a neighborhood of zero.

To show that the eigenvalues and the corresponding eigenfunctions are analytic in a neighborhood of zero, we
apply the Lyapunov-Schmidt reduction in order to treat a problem on a finite dimensional space, namely the
kernel of S(0) — M. To that end, we rewrite the problem (P;) on the fixed domain 052 as

S(t)(u") — AM(t)wpu® = 0.
From the decomposition

(S(0) = M)(u') = [(5(0) = 5(1) + [(A(t) = Nwe + Mwe = 1)] | o',
u! is solution of the equation
(S(0) = M) (u') = W(t,A(t) — \u', (33)

where we have set R(t) = S(0) — S(¢) + Mw; — 1) and W (t,a) = R(t) + awl. From the Lyapunov-Schmidt
Theorem (see [22, Lemma 3-2, p. 999]), we obtain that S(0) — A has a right inverse operator denoted by
K. Hence the equation above implies that v’ = KW (¢, A(t) — A)u® + ¢ where ¢y € Ker (S(0) — \), i.e
e =D ey ck(t)Pr where (¢y) is a basis of Ker (S(0) — \). Notice that I — KW (¢, A(t) — A) is invertible on
Ker(S(0) — AI), the inverse of his operator restricted to this kernel will be denoted by (I — KW (¢, A(t) —\))~!
so that

ul = (I — KW (t, \(t) — \)) " ey
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From (33), W (t, A(t) — A)u! belongs to Im(S(0) — A) = Ker*(S(0) — \) since S(0) is a Fredholm selfadjoint
operator, and then

S OWEAR) — NI — KW (AL — A) ") =0, i=1,2,...,m. (34)
k=1

This shows that a vector of coefficients C' = (¢;)j=1,....m # 0 is a solution if and only if the determinant of the
m X m matrix M (t, A\(t) — \) with entries

M(tv a)i,j = <W(tv a)(l - KW(tv O‘))ilqu? ¢Z>

satisfies
det (M (t, A\(t) — X)) = 0.

Hence A(t) is an eigenvalue of our problem if and only if det (M (¢, A(t) — X)) = 0. Note that ¢ — M(t, A(t))
is analytic around ¢ = 0.

For small values of ¢ the operator (I — KW (t,a))~! is well defined since I — KW (0,0) = I and t +
(I — KW (t,a))~! is analytic around ¢ = 0. On the other hand, if det M (¢,) = 0 then (34) has a nontrivial
solution ¢;(t),...,cn(t) and this means that A(t) = A + « is an eigenvalue of (F}).

We focus now on det M (t,«) for a« € R. From the fact that W(0,«) = «l, it comes that for sufficiently
small values of «, the operator I — KW (0, «) is invertible on Ker(S(0) — AI) and from the Von Neumann
expansion we write

(W(0,0)(I = KW (0,0) " 61, 65) = o[+ > aF (K1, 05)
k=1

hence
o o0
det (M(0,a)) = o™+ > Bia™H =a™(14 > pidt).
i=1 i=1
Since det (M (0, «)) # 0 is the restriction on ¢t = 0 of det (M (¢, «)), we deduce from the Weierstrass preparation
theorem that there is neighborhood of (0,0) such that det (M (¢, «)) is uniquely representable as

det (M (t,a)) = P (t, a)h(t, a)

where .
Pu(t,a) =™+ ap(t)a™ "
k=1
and where
h(t,a) # 0.
Furthermore, the coefficients ap(t), k = 1,...,m are real and analytic in a neighborhood of t = 0. Then

det (M (t,«)) = 0 if and only if P,,(t,a) = 0. If ay(t), k =1,...,m are the real roots of the polynomial, we
take A1(t) = A+ ai1(t) if a;(t) is not identically equal to zero.

We now have to find the (m — 1) other branches A;(t) and the corresponding eigenfunction w;; for i =
2,...,m. We use the idea of the deflation method by considering the operator

Sa(t) = S(t) — M Pi(t)
where P; is the orthogonal projection on the subspace spanned by u1 ;. At ¢ =0, we obtain

SQ(O)UJ' = S(O)Uj — )\51]"&]'
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in other terms S»(0)u; = Auj, j = 2,...,m while S2(0)u; = 0. This shows that A is an eigenvalue of
multiplicity m — 1 of S2(0) with eigenvalues ug,...,u,,. One can show that these functions are the only
linearly independent eigenfunctions associated to A. Now we can apply the same recipe used before to the
operator Sy instead of S. We then get a branch Ao(t) such that ¢ — A2(t) is analytic in a neighborhood of
t = 0. Iterating the process, we get at the end the m— branches \;(¢), ¢ = 1,...,m such that each branch
is analytic in a neighborhood of ¢ = 0 and m corresponding eigenfunctions formlng an orthonormal set of
functions in H2 (092).

The proof of the last item follows the same lines than the proof of Ortega and Zuazua for the Stokes system,
see [22]. (]

3.3 Shape derivative of simple eigenvalues of the Ventcel-Laplace problem

Let A be a simple eigenvalue of the Ventcel-Laplace equation (1) and let u be the corresponding normalized
eigenfunction. We give in this subsection the explicit formula for the shape derivative of the normalized
eigenvalue of the Ventcel-Laplace operator associated to (1).

On Q¢ = (I +tV)(Q2) with ¢ small, there is a unique eigenvalue \(t) near A which is an analytic function
with respect of the parameter ¢. The associated eigenfunction wu;(x) = u(t,x) is solution of the problem (1).
The shape derivative denoted u’ is the partial derivative dyu(t, z) evaluated at ¢ = 0. Let us give the analytic
expression of the shape derivative u’ and of \'(0). We recall the first part of the statement of Theorem 1.4:

Theorem 3.5 If (\,u) is an eigenpair (with u normalized) for the Ventcel problem with the additional as-
sumption that X\ is simple eigenvalue then

1. The application t — \(t) is analytic and its shape derivative at t =0 is

N(0) = / Vo (1950l — 10l ~ AHJul® + B(H Iy~ 2D*) V0.V 1) do
o0

2. The shape derivative u'of the eigenfunction satisfies

Au' =0 in Q,
—BA + Ot — M = BAL(V,,0pu) — Bdiv, ( (2D2b HI;)V, )
+ divy (Vo Vru) — N (0)u + AV, (0pu + Hu) on 9. (35)

Proof of Theorem 3.5:

We first consider the second point: the fact that v/ is harmonic inside the domain is trivial. To derive the
boundary condition satisfied by u’, we use a test function ¢; defined on 99; with d,¢; = 0 as used in the
proof of Lemma 3.2 and 3.3 in [11]. We get the following weak formulation valid for all ¢ small enough:

BV u(t,x).V ¢ doy + On,u(t, z) ¢ dl — Nt )/ u(t,x)p doy = 0.
o 0 0y

We take the derivative with respect to ¢ and get at ¢t = O:

ﬂ( » Voult, z). Vi, dat) » + i(/m Onyu(t, )y dUt)

dt

t=0
From [13] and [7], we get

qa
dt

( » Voult, z).Vréy dat> = /a ) (— Al — Ay (Vydu) + div, ((2D% — HI,)V, ))qS do.
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After some lengthy but straightforward computations we also obtain

;i(/g On, U &4 d0t>

Z(/am A(t)uedr dUt)

= O’ ¢ do — V:Vo.Viug do + /

Vi ((%u + Hu)) ¢ do
+=0 oN oN o0

and

=\ (0 d
g “/m“d’ o

+/\/ ¢ do + ) Onu ¢ do + A Hug do.
[2/9) o0 o0

To end the proof of this second point, it suffices to gather the relations.

Now, we turn our attention to the first point, the explicit expression of the shape derivative of the eigenvalue
N (0). Let us multiply the two sides of (35) the boundary condition satisfied by «’ by the eigenfunction u and
integrate over the boundary 0€2:

0= / V' (=BA U+ Opu — Mu) do +/ ViOpu(—pAu) do
oN oN

+ [ BVa(HIg—2D?*b)V,u.Vou do + / V| Vrul? = X(0) / Jul?
o0 oN oN

—)\/ v, (u@nu + H|u|2> do.
o0
Using the boundary condition satisfied by the eigenfunction: —SA u 4+ dp,u — Au = 0, it follows that

0= [ Vpoouhu—0yu) do+ | BViu(HIg—2D*)V,u.V,u) do
9] [2]9]

16)
+ / V¥, Juf? = N(0) / ful? = A / Vi (wdh + Hluf?) do.
90 o0 oN

and the normalisation condition / u? do =1 implies
o0

N(0) = — / Viu|Onu|? do + / BV (HI; — 2D*0)V,u.V,u do
o0 o0

+/ Vol Voul? — )\/ Vi, H|ul? do.
o0 o0

3.4 Shape derivative of multiple eigenvalues of the Ventcel-Laplace problem
3.4.1 The general result

We suppose that A is an eigenvalue of multiplicity m. For smooth deformation ¢ + €2, there will be m
eigenvalues close to A (counting their multiplicities) for small values of t. We know that such a multiple
eigenvalue is no longer differentiable in the classical sense. We are then led to compute the directional
derivative of t — \;(t) at t = 0 where \;(¢),j = 1,...,m are given by Theorem 3.4. This is the second part of
Theorem 1.4 that we recall here:

Theorem 3.6 Let A be a multiple eigenvalue of order m > 2. Then each t — \;(t) given by Theorem 3.4 has
a directional derivative which is one eigenvalue of the matriz M (Vy) = (Mjr)1<jk<m defined by

Mj, = / Vi (VTuj.VTuk — OpujOpu, — AHujuy, + B (HId — 2D2b) VTuj.VTuk) do. (36)
oN
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Proof of Theorem 3.6:
Let t — (u(t,x), A(t) = A\(€2:)) a smooth path of eigenpair of the Laplace-Ventcel problem, so that it satisfies

Au(t,z) = 0 in €
—BA;u(t,z) + Opu(t,x) = A{t)u(t,x) on 0.

We have proved that v’ = d;u(0, x) is harmonic in Q and satisfies the boundary condition (35) on 9. We use
the decomposition of u = u(0, x) as
m
U = Z CjUj
j=1

for some ¢ = (c1,¢2,...,cm)T # 0. Multiplying the two sides equation of (35) by ug, we get after some
integration by parts the eigenvalue equation

N(0)e = Mc
where M = (Mj)1<ij<m is defined by (36), which achieves the proof of Theorem 3.6. ]

3.4.2 The case of balls

We consider now the case where the domain is a ball of radius R. The problem is invariant under translation.
In order to remove the invariance, we fix the center of mass of the boundary of the domain, as in Section 2.
The coordinates functions z; are eigenfunctions of the Ventcel-Laplace operator, so we get

B(d—l)-ﬁ-R xX;

1
Onxi = — x; on OB, A= 7 , and u;(z) =

R | i l200)

We check that
B(d —1)* + Rd
R3

—OpujOpuy, — AHujup, = — UjU.

Therefore, the matrix M = Mp, has the following entries

d—1)2+d
Mjk = / Vn( — ﬁ( ) + Rujuk + (I + ﬁ (HId — QDZb)) VT'LL]‘.VTUk> do
0N

R3
B(d—1)2+dR d—3
= / Vn( — ( R)3 Ujug + (1+ ,8?)V7u]‘.v7uk> d0'>.
o0
The idea is to use the real spherical harmonics Yl(i),i =1,...,d of order 1 and first rewrite the entries

My, j,k=1,...,d of the matrix M.

Corollary 3.7 Let Q be a ball of radius R, M\ its first non-trivial eigenvalue, which is of multiplicity d. The
shape derivatives of the maps t — \i(t), i = 1---d given by Theorem 3.4 are the eigenvalues of the matrix
M(Vy) = (Mji,)j k=1,....a defined by

B(d—2)+ R
M, = —(d + 1P RMJ“ / v, YOv® 4o (37)
where Yl(j), j=1,...,d are the spherical harmonics of order 1.
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Proof of Corollary 3.7:

Set B(d— 1)+ dR

—-1)° 4+

MY = - / Vi ujuy, d
Jk R3 50 Uik ao
and
Mﬁ) = /a . V(I + B (HIy —2D%)) vTuj.vTuk) do.
We have
" (@)
U; = 1 Yl
R=

hence

2
(1) _ Bld—1)~+dR_ ) (k)
M _—/mvn 1YY do

: ()
Concerning Mj i

that

, we must compute the scalar product V;u;.V,u,. A straightforward computation shows

j k
TV = AL  RIH T T R+

d—3
(I 4+ B(HIy—2D?))V,u;Vyuy, = (1 + BR> \RTIR VT

Bld—=3)+R (1)1 d—3 d
= R2+d Yy + 145 R wg_ 1 RIT

Since / V,, do = 0 it comes that
O0BRr

hence

@ _ _Bd-3)+R

(y (1)
ph ot v, Yy Vo,

OBRr
Finally M (V;,) has the entries

1 2 Bld—2)+R )1 (1
My, = M) + MG = —(d + D= /aB v, YUY do,
R

A first interesting result is:
Proposition 3.8 In dimension 2 and 3, there is a equivalence between
(i) V,, is orthogonal (in L2(OBR)) to the spherical harmonics of order 2,
(il) M(V,) =0.

Proof of Proposition 3.8:
By the product relations of spherical harmonics (see Appendix B), we can see that

4 = span {Yf”ﬁ“, jk=1,... ,,d} .

This shows that M;, = 0 when V,, is orthogonal to the spherical harmonics of order 2.
Now suppose that M (V;,) = 0, this means that / Vi Yj(l)Yk(l) do =0, for all j,k=1,...,d hence this

OBg
means that all the Fourier components of V;, in H are zero. This means that V, is orthogonal to Ho. ]
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In the case where M(V,) # 0, we compute the trace of the matrix M (V,,) to obtain information on its
eigenvalues.

Proposition 3.9 When Q is a ball of radius R, then

Tr(M(Vy)) =0 (38)
for all volume preserving deformations.
Proof of Proposition 3.9:
It comes that
p(d—2)+ R

Te(M(Vy,)) = —(1+ d)

1
T Rpdfz / Z‘Y( P Vi do.

Using the normalisation Z;.lzl |Yj(1)|2 = ﬁ‘i_l [See [23], Corollary 2.9, pl44], we obtain

d(1+d)(B(d—2)+ R)
Te(M(Vy)) = — Vi do =0,
(M (V) e [ Vido
since we are concerned with deformations preserving the volume. ]

As a consequence of Proposition 3.8 and Proposition 3.9, there is the following alternative: either the only
eigenvalue of M (V,,) is 0, or M (V,,) has at least one nonnegative and one nonpositive eigenvalue. In both
cases, 0 € O\; (the subgradient of A1) that is to say the ball is a critical shape.

3.5 Numerical illustrations

In order to illustrate Proposition 3.9, we consider the two dimensional case and consider perturbations of the
disk given in polar coordinates by

pi(8) = a(t) (R +t£(9))

where a(t) is such that the delimitated area is .

In Figure 5, the computations are made in the case R = 1 and 8 = 10, the deformation parameter ¢
appears in the abscissa.

In both collection of figures, we can see the derivatives of the second and third eigenvalues vanish at the ball
in every case except when f(6) = cos(26), where the regular lines cross, leading to a really non differentiable
second eigenvalue. This is coherent with Proposition 3.8. Let us explicit the case V,, = R? cos 26, where we
are led to compute the eigenvalues of the following symmetric matrix

2
3 / cos 26 cos> 6 df 0
M==gr| o
0 / cos 20 sin’ 6 db
0
hose eigenvalues are &«; = ——— and ag = i
v seny L= 79R 27 9R
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(d) f(0) = sin(20) (e) f(0) = cos(30) (f) f(0) = cos(40)

Figure 5: A1(€2) and A\2(2) in the direction of f(0) - |Bgr| = m, 5 = 10.

4 Testing if the ball is a local maximum for )\;: second order arguments

We know that any ball is a critical point for volume preserving deformations. Therefore, if the subgradient
OA1(B; V) # {0}, then the ball is a local maximizer. It remains to deal with the case where all the eigenvalues
of Mp(V,) are 0; this case corresponds to V,, orthogonal to the harmonics of order two. Then, we aim at
proving that the second derivative of A\ along at least one of the smooth branches is nonpositive.

In this section, we remove the invariance by translation of the problem by fixing the center of mass of
the boundary 0€2. The necessary order two conditions of optimality are: the second derivative should be non
positive on the subspace orthogonal to the space generated by the gradient of the constraints. Due to the
previous remarks, we hence consider deformation field in the hilbertian space H spanned by all the spherical
harmonics of order greater or equal to 3.

The goal of this section is to present the different steps for the computations. We will characterize the
matrix ' whose eigenvalues are the second order derivatives of the smooth branches of eigenvalues. It turns
out that this computation is hard even in the case of a ball. Nevertheless, the computation of Tr(F) is much
simpler than the individual computations of the entries. In order to prove that the ball is a local maximum
of A1, it suffices to prove that its trace is nonpositive: therefore at least one smooth branch of eigenvalues has
a nonpositive second order derivative.

4.1 Construction of the matrix F of the second derivatives

Let (u(t,x), A(t) = A(£2¢)) be an eigenpair of the Laplace-Ventcel problem, that is to say solves

Au(t,z) = 0 in
—BAzu(t,z) + Opu(t,x) = At)u(t,x) on O

We use the decomposition of u = u(0, x) in the basis of eigenfunctions:
d
u = Z CjUj
j=1
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for some c1, ¢, ..., cq not all zero. We have shown that the vector ¢ = (c1,ca,...,cq)! is solution of

N(0)e = M(V,)e
where the matrix M(V},) = (M;i)1<s,j<a is defined by (36).

To compute the second derivative at ¢ = 0, one has to compute the first shape derivative u/(z) = «/(0,x).
Fredholm’s alternative insures the existence of a unique harmonic function @; orthogonal to the eigenfunctions
u1, U2, . . ., uq and satisfying on 0f) the boundary condition
—BA + Oy — NIy = f [AT[Vnanuj] + div, [V, (HI; — 2Db) - vfuj]]
+div, [VnVTUj] + )\IUj + )\Vn(anu] + HUj). (39)

It follows that

d d
u = Z 5ju]' + Z ijbj (40)
j=1

7j=1
for some ¢;j,¢; when j =1,...,d. We point out that the (¢;) are the same coefficients as the decomposition
of w in the basis (u;).
The strategy is straightforward : we have to consider the equation satisfied by v’ on the boundary 92 and take
its shape derivative again. A first look to the second derivative shows that we will encounter three operators :

e the first contains only «” and its expression is the following

E(O) _ —BAUH + anu// o
e concerning the term in «' and A = 0 we have
EW = —28A,(V,0pu') — 2div, (Vi (I + BA)V )
-2 [)\’u’ + AV, (O + Hu’)}
where A = HI — 2D?b is the deviatoric part of the curvature tensor.

e The remaining term is £ contains only u; we give a more explicit expression below.

Green-Riemann identity tells us that (E(© ;) = (u”, —BAru; + Opu; — Mug) = 0, @ = 1,...,d. This means
that the term E© will have no influence in the determination of the second derivative of the eigenvalue. We
will focus only on E®) and E®.

Construction of E®):

The computations are very technical. We need first to use a test function ¢ which is the restriction of a
test function @ defined on a tubular neighborhood of the boundary such that its normal derivative on 02 is
zero. This kind of extension is well discussed in the book [12] of Delfour-Zolesio. Taking the shape derivative
of the boundary condition (35) (in the multiple case) we need to compute

<d 178 VARTR v dat> = (AW ¢) + (AP, ),
dt Joq, =0

5<d AV, Viu.V dat> = (BWY, ¢) + (BPu, ),
dt Joq, =0

_(jt</ [)\/u—l—)\(u' +Vn8nU+VnHu):|¢ do*t) = <C(0)u", )+ <C(1)u’,¢)> + (C(Q)U, ®),

O t=0

B<d VT(VHVTGHU).VTqdet) = (DO, @) + (DD, ¢).
dt o t=0
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The remaining E® containing only u is then given by
E® =A@y 4+ B@y 4+ Py + D@y,

For an operator L involved in E®, i = 1,2, 3 we denote by (Lij)ij=1,...,d the matrix of L in the basis of the
eigenvalues. After calculations (see also Remark D.1 in the Appendix), we get the following linear equation

N'IT—E)e+2(—M (V) +XNI)é=0
(corresponding to the second derivation) together with
(=M (V) + X 1)e =0.
(corresponding to the first derivation) where the matrix E = (F;;) is split into E = E() + E?) where the
terms involving «’ are gathered in E() and the terms involving u are gathered in E(®).
4.2 Computation of the trace

Since the direct computations of the eigenvalues are difficult, we restrict ourselves to the cases d = 2 or d = 3,
and we will focus first on the trace of E and prove that Tr(E) is nonpositive. We start with the trace of E(2):

Lemma 4.1 Assume d € {2,3}. With K(R) = RQ++wd+1’ we have
TﬂEm):—wﬁ+RﬂﬂﬂR%/ \VJ%%U—KUﬂ/R V2do. (41)
OBRr OBRr

for all deformations preserving volume and such that V,, is orthogonal to spherical harmonics of order two.
Proof: It suffices to sum all the traces given by Lemmas C.1, C.2, C.3 and C.4. ]

Concerning Tr(E(M), we start with the following Lemma which is straightforward (see also Remark D.1):
Lemma 4.2 We have

d
Tﬂﬂ%:2/ WE:(ﬂ%%ﬁw—HMW@+U+BWQ—2WMNEQVWOda (42)
o0N :
7j=1

holds for all deformations preserving volumes such that V,, is orthogonal to spherical harmonics of order two.

From this result we deduce the following, which is proved in Appendix D:

Proposition 4.3 Assume d = 3 and set o = ]B% We denote Y™, m = —I,...,m any spherical harmonic of

orderl > 2. If
l

V, = i}#( Z vl’mYlm>,
=3

m=—1
then
Tr(EWY = K(R) = A B 1 R% l 2
(EWV) = - =57 ;[ ta + Bial §_jl|w,m|
where
I 142 1+a(3-1) I+11-1 1+ a(4+1)
Alg = —— —= (4a+2) ——> L 4nd By = — —— (da+2) ——— 2
ta = 53 =g et g e B 7 Wt e
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Since TrE = Tr(EW) + Tr(E®), we will then deduce the following result

Proposition 4.4 Assume d € {2,3}. Then there exists a nonnegative constant p such that

T(E) < KR [ VP (VP do
OBRr

holds for all preserving volume deformations such that V, is orthogonal to all spherical harmonics of order
two.

Proof: The computations are rather technical and have been checked with a program of symbolic calculus.
We distinguish the case d = 2 and d = 3.
The case d = 2. Let us compute the trace of the matrix F when V,, = 7! (vgl) cosl@%—vgl) sinlﬁ) S

N\ {0, 1,2}. Gathering all the results concerning the trace of the different matrices involved in the matrix F,
we get when

v, =l (UP cos 10 + vl sinw) , 1eN\{0,1,2},

we have

Te(E) = ~K(R) Y G(a,l) / (2 + D)r? ()2 + 0")?) do.

where

o) — (2 =1) 241242221 -2)%+ ol —2)(1* +2))
(a:0) = 2(1+12) (1 —2)I(1+ ) '
A close look to the fraction G shows that it has no pole for « > 0 and [ > 2, that it is nonnegative for

[ > 2 and that G(l,a) — 1 when | — +o0; then there is a nonnegative constant p such that for all [ > 3,
p < G(l,a) < p~t. This gives

T(E) < KR [ VAV + VP dor

OBRr
. d l
The case d = 3. The strategy is the same, we get for V,, = r! Zpl:_dl v,(g)Ylp,
d;
Te(E) = —K(R) Y. F(a,l) / 1)+ 12 S @0)? do.
1>3 OBr p=—d,

where F(a,l) is the fraction

Floyl) = (z(z+1)+1)z(1+a(z+1m):0(2l+1) (1=2) (1+all+3)

and where the polynomial P, are defined as

Py(X) = 2X*4+5X%4+16X2% -8,

Pi(X) = 4X°+18X* +40X3 +68X% — 28X — 56,

Py(X) = 2X54+21X° +42X* +35X3 +16X — 112,

Py(X) = 8X5+18X5 +24X* - 68X3 — 144X? — 112X — 64.
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By Descartes’s rule of signs, the polynomials P,, have at most one positive root. Since P,,(0) < 0 and
P, (2) > 0 for m = 0,...3, P, has exactly one positive root which is in [0,2]. Since [ > 2, there exists a
nonnegative constant u such that for all k > 3, u < F(k,a) < p~! and

TH(E) < —K(R) / Vo Va2 + Va2 do
O0BRr

A Some classical results on tangential differential calculus

We recall some facts about tangential operators acting on functions defined on 0€2. The formulas involve the
extensions of functions and the differential calculus becomes easier since we will use the classical euclidian
differential calculus in a neighborhood of 9€). The canonical extension will be provided thanks to the oriented
distance and the orthogonal projection on the tangent plane. For more details, the interested reader will
consult the book [12] of M. Delfour and J.P. Zolesio from which we borrowed the necessary material.

A.1 Notations and definitions. Preliminary results

We recall some essential notations and definitions that are needed for the computations of shape derivatives.
Given a smooth function f : 9Q — R, we define its tangential gradient V. as

V.f=Vf—Vfnn (43)

where f is any extension of f in a tubular neighborhood of Q. An extension is easily obtained when 9 is
smooth. The tangential gradient does not depends on the extension.
It is also useful to define the tangential gradient as the normal projection of V f to the tangent hyperplane of
0Q2; in other words

V.f=Vf—n®nVf, on dQ.

We also need the definition of the tangential divergence : for a tensor v, we define the surface divergence as
div, u = Tr(V,u)
For regular functions we define the surface Laplacian ou Laplace-Beltrami operator as
A f = divy (Vo f).
We recall the definiton of the oriented distance byq:

rz € RN\Q
boa(z) = { Cigdg()x) Er x i IS, . (44)

where the notation dg stands for the distance function for a subset Q C R%:
do(z) = infycolz — y|

We shall sometimes write b instead of bgq; its gradient is an extension of the normal vector field n in a
neighborhood of 0f2.

Let D?b be the Weingarten operator with entries (V,); n; where n; is the j—th component of n. The normal
is known to be in the kernel of D?b, the other eigenfunctions are tangential and are the main directions for
curvature of 9f).
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Let ki, i =1,...,d — 1 be the non zero eigenvalues of D?b. We define the mean curvature H as
H=> r;=Tr(D%) = Ab, on 0Q. (45)

An important result about the normal derivative of this quantities is:

Proposition A.1 Suppose that the boundary 0S is of class C3. Then the normal derivative of the main
curvature H s

OnH == k. (46)

Other known identities: we denote x the identity function. We have

—-A;x = Hn
div,n = Hn

Tangential integral formula: Given two functions f (scalar) and v smooth enough, we have

/ fdiv, v + Vi fu= Hf v.n
o0 o0 o0

Shape derivative of the main curvature H and of the normal n in the direction of a velocity V:

Proposition A.2 Let a surface O be of class C?. The shape derivatives of the normal n and of the mean
curvature H in the direction of the velocity vector V' are

n = V.V,

H = —-AV, (47)

where V,, = (V,m) denotes the normal component of the vector deformation V.

A.2 A commutation lemma

Here f and g are two smooth functions defined on U a neighborhood of 0f2; the notation b stands for the
oriented distance. Recall that its gradient is an extension of the normal field n on 0f).

Proposition A.3 We have
On(V7f.Vrg) +2(D*0V . f).Vg = Vo (0af).Vrg + V7 (0ng). Vo f (48)
Proof: A straightforward calculus gives
On(Vf.Vg) = (D*fVg)n+ (D*gVf)n

and
V(0unf).Vg = V(Vfn).Vg
= (D%*fn).Vg+ (D?*bVf).Vyg
hence
V(0uf).Vg+V(0ug).Vf = 2(D*Vf).Vg+ (D?*fn).Vg+ (D?gn).Vf
= 2(D*Vf).Vg+dn(Vf.Vyg)
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We use now the decomposition of V into its normal and tangential components and the well known identity
D?bn.n = 0. We get

Prog #oos _
onZon | on2on
Ofog  0%g0f

2 ZJ7d P IT
2(D°bV - f).Vrg + 0n(V:f.Vrg) + o2 on + 92 I

v‘r(anf)-vtg + VT(a ) Vof+ 5
(49)

hence
Vi (0nf)Vrg + Vi (0ng) Vi f = 2(D*0V, f).Vrg 4 00(Vrf.Vrg)

B Spherical harmonics

In order to explicit the shape hessian under consideration, a useful tool is the surface spherical harmonics
defined as the restriction to the surface of the unit sphere of harmonic polynomials. We recall here facts from
[23, pages 139-141]. We let H}, denote the space of spherical harmonics of degree k. It is also the eigenspace of
the Laplace-Beltrami operator on the unit sphere associated with the eigenvalue —k(k +d — 2). Its dimension

is
g ((d¥k=1Y _ (dt+k-3
k= k kE—2 '

Let (Y{)i<i<a, be an orthonormal basis of Hjy with respect to the L?(0Bg) scalar product. The (Hg)ren
spans a vector space dense in L?(0Bg) and the familly (Y )ken1<i<d, is a Hilbert basis of L?(0Bp). Hence,
any function ¢ in H/2(9Bg) can be decomposed as the Fourier series:

Z(Zakl ) for |z| =

k=0
Then, by construction, the function u defined by

d

-zl
:Zﬁ Zakl | | , for |z| <R,
k=0

is harmonic in Br and satisfies u = ¢ on 0Bgp.

We recall now some results which are ingredients for the computations of Tr(F) in dimension three. Some
expressions involve the Clebsch-Gordon and related Wigner 3j coefficients. The interested reader will find all
the details and proofs in the book of Cohen-Tannoudji and al [8, Tome 2, Annex B].

The last results of this section deal with the integration of the product of two or three spherical harmonics:

Proposition B.1 Given li,ls > 0 two natural integers and —l1 < mq <1, —ls < mo < lo, we have

Y'l?l’nlyﬂ’u —
L1+l
m1+m2 12:2 2ll + 1 (212 + 1)(2L + 1) ll ZQ L ll lg L Ym1+m2
L] 4 0O 0 O me —mi—mso) L ’
1—1l2

i la L i o L . . .
where <0 0 0> and <m1 My —my — m2> are the Wigner 35 symbols and Clebsch-Gordon coefficients.
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Proposition B.2 We have:

leymgymg_ (2l1+1)(212+1)(213+1) lh Iy I3 l1 lo l3
0B h b2 A7 0 0 0 mi1 Mo ms )

In particular it holds

Proposition B.3 We have:

_ 1 L+M+1 L—M+1
YOV =1\ — VMYV, = \/ \/ ),
831 47T 331 2L—|—1 2L+3)
L—I—M+ L+M+2
Vv = \/ ),
9B, 47 2L+1 )(2L + 3)

WL —M—1)
yMy v M = .
om, 1 2L+1 Y(2L — 1)

C Intermediate results for the second shape derivative matrix

We need to construct the matrix associated to the second shape derivative. To that end, we have to compute
the explicit formula for all the shape derivatives of order one involved in the formula giving A’ (see Theorem
3.5). Since, these computations are very technical, we only give the main line and the used arguments. We
will omit the technical details. In the following lines, we denote by H (t) the mean curvature associated to the
boundary of Q; and A(t) the deviatoric part defined on 0 as

A(t) = H(t)I — 2D?b(t)

(see [12] for the terminology).

In order to deal with the weak formulation on the boundary 9€);, we will make use of a test function ¢
which is the restriction of a test function ® defined on a tubular neighborhoof of the boundary such that its
normal derivative is zero. This kind of extension is well discussed in the book [12] of Delfour-Zolesio.

In this differentiation, nineteen terms arise and we introduce some notations to study them separately.
For all function test ¢ € H'(09), we will need in the sequel the following quantities:

d
A(u,u', ¢) = <dt

)

anTu.ngz)dat)
t=0

o

)

B(u,u,¢) = B< d AV, Vu Vo dat)

& o t=0
Clu,u',u",¢) = —d(/ {)\/u—l—)\(u'—f—Vnanu—}—VnHu)]qb d0t> ,
dt o t=0

D(u,u’,¢) = 5< d V. (VoV:0hu). Vg d0t>

dt Joq,

t=0

We will now study independently each term A, B, C and D, when = Br C R? or R?, and ¢ — §); is volume
preserving.
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Study of D(u,u’,¢). From the derivative formula of boundary integrals, we know that we have to compute
three main terms: the first corresponding to the shape derivative, the second concerns the normal derivative
of the integrand and the third is related to the term related to the mean curvature H.

First, we have

D(u,u,¢) = 5( Vo (Vi Ot — VooV V) Ve do + [ Vo (V!.0u).Vrd da)
OBRr

OBRr

+8 O (V) V1 V.V do
OBR

- _/3( Ar(Vo 0o do+ [ Vo (V!.04u). V.6 da)
OBRr

9Br

1B 9Vt Ve Nahdo+ 8 | A, (vanu.vTvn)qs do.
OBRr OBRr

The third term is

B HV,V,(Vadow)Ved do = -5 | div, (anvT(vnanu))¢ do.
0BRr OBR

We focus now on f3 faBR VnOn [V (VnOnu).V,¢| do. We have
IS ViOn [V (ViOpu). V1] do
OBRr

=p ViV [00(Vi0pu)]. V1o do — 23 V(D0 [V, 0,u]) .V ¢ do
0BR 0BR

=0 </ VaVr [0nVn0nu)] Vo do — 2 / Vi (D20V 1 [VoByt]).V 56 da)
9B OBR

= _ﬁ ddi- [anT[a’nu anVn] - 2VnD2va[VnanuH¢ do.
OBRr

We expand D(u, ¢) into a sum (DWu/, ¢) + (DPu, ¢). For D@, we will set D(?) = Zi:l D) where

(DY ¢y = B Vo [V0pt']|.Vrgp do = —f3 A Vi8¢ do

BBR 8BR
(DB, ¢) = /3[ / (=AL[V! 0] ¢ do — / div, V3,0,V V. [0u]] ¢ do,

8BR 8BR

- / divy [HV, V. (Vadpt)] 6 do},

8Bg

(D®2y, ¢y = —p div, [8,u 8,V, V. Vy]¢ do + B AL [VdyuV, V] do,

BBR aBR

<D(273)u7 ¢> = 2/8 diVT [VnDQb ' v7' [Vnanu]kb do.
0BRr

We denote DM and DKk = 1,2, 3 the matrices whose elements are defined by

(2k) _
g T

DY = (DWii; u;), and D

ij <D(2’k)ui,uj>, i,j = 1,2, - ,d.

We give a result concerning the traces of the matrices.
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Lemma C.1 We have

268(d—1)K(R
Ir(D(271)) = Tr(D(m)) =0 and Ir(D(Q’S)) = — ( JK( )/ Vn2 do,
R 0BRr
ith th lisati tant K(R) = d
wi e normalisation constan Ty,

Proof of Lemma C.1:
We have

d d
Tr(D(271)) — /3[/ (—AT(VTQZ&Lui)ui do —/ div, (VnanVnZVT(anui))ui do
O0BRr

i=1 9BR i=1
- / div, (anvf(vnanui)ui da} (50)
OBRr
d do d
sl vA-DS )] 4 / VooV S Vo (O011i) Vst 90
O0BRr ; R OBRr Zz;
d d
+8 HV2 "V (0nui)Vou; do + 3 HY  0puiVo VoV Vru;. do
9B i=1 9Br =

Combining the two facts (coming from algebraic properties of spherical harmonics, see Appendix B),

[T — d(d—1)
(d—1) ; = ;VT(&@U%).VTUZ = gy = - DE(R). (51)
and
d
/ VoY 0ntti V1 V3. Vot = 0, (52)
9Br =1
we get

d
do
Tr D(271) =(d—1 8nu2-2/ Vé"‘vnanvn"i_ﬂvr? T
(D) = @= DY ol [ ) 7

Since we assumed the deformation to be volume preserving (see Remark 1.6), we have
d2
[ (Vi viduVe + HYZ) do = S0l =0
OBR dt

and this implies that
Tr(D@Y) = 0.

The same strategy applies for Tr(D®?2).
We focus now on Tr(D®3)). We first expand the second term in the definition of D®):

d
(D) = B> ViOntts V[0, Vo] Vs — 2V, 0nu; D?b -V, V. Vou; do
i=1 7/ 9Br

d
-BY_ / 2V2 D% -V, (0,u4).Vyu; do.
i=1 /9Br
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We follow the same argument thanks to the relations (51)-(52) and the fact

d
d—1)K(R
> DV (9nu).Vru; = [d=DK(R)
i=1
on the sphere. Recall that on the sphere D?b = I;/R. [
Study of B(u,u’,¢). In the same manner, we begin to compute the derivative of the integrand:
4 <A(t)V V0.V ¢) -
dt Vot Vr ‘tz() N

AV, VuNV ¢+ AV NV u V¢ + AV, V' Vieg — AV,0,uV V, V6.
Denote A = (ai]’)lgi,jgd and ./Zl = (8naij)1§i7j§d. Thanks to lemma A3, we get

V.0, (VnA : VTu.VTgZ)) = V2A - VuVeh+ ViV A - VoV, + V2AD, [vTu.vﬂz)} .

From the relation

d
B% A(t)VnVaQtu.VaQt(b do

:/ d(A(t)VnVaQtu.Vathﬁ)‘ do
GIoN t=0 0

Br % t=0

+ / Vn8n<AVnVTu.VT¢) do+ | HV2AV .V ,¢ do,
8BR 8BR

we gather all the terms and obtain B(u, ¢) = (BWu/, ¢)+(B®/, ¢); we then set (B2 u, ) = Zf:1<B(2”’)u, o),
where

<B(271)u/7 ¢> = —6 diVT [VnA : VTUI]¢ dO',
OBRr
(B®Vu,¢) = =g | divy [(V; + HV;} + Vo0, V2) A - Vulé do,
OBRr
(B*Pu,0) = —p [ dive[0hu VoA V7,6 do,
OBr
(B®u,¢) = —p [ div, [Vad - Vil do,
O0BRr
OBRr
We get
B, ¢) = B[  VZ(Ou[Al-VuVeg) do+ B | VEA-V.0,uV.¢ do
OBRr 9Br
-8 | 2(D*A)-V,uV.é do
o0N
o] ATt A5 - 20704
OBpRr

Let B@H) k =1,2,3,4 denote the respective matrices associated to the operator with respect to the basis of
eigenvectors. We have the following result:
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Lemma C.2 We have

4
, K(R
(> B®)) = —p(d— 1)RK(R) / IV, Vil? do + o ( )/ V2 do.
i=1 O0BR R 0BRr
Proof of Lemma C.2:
Using the same arguments as before, we prove easily that Tr(B®1)) = Tr(B(22)) = 0.
For the other terms, above all we have to focus on the term

d
Tr(B?%) = 8 Vo Y (A" Vew). Ve, do.
OBRr i—1

We have, thanks to the expression of shape derivation of the normal vector and of the mean curvature given
in Proposition A.2:
A(t) = H(t) — 2D?*b(t) = A" = —A,V,, + 2D(V.V,);

then

d
(B2 = 3 Vo Y (A Vou;).Veu,; do
OBr =1

d d
= -8 VoAV > Vo) da+25/ Vo) D(VTVH)-VTuz}.VTuZ- do
dBr izl OBr 5 -

d d
- _8 VoA Vi > Vo) do + 25/ Vo ) | DV, V) - vTul} Vu; do
O0BRr i=1 O0BRr i=1

d d
= -8 Vi ALV, Z \Vu|? do + 25/ v, Z D2V, VTui] Vu; do
9Br i=1 O9Br =1 -

d d
= -8B VoA Vi > Vo) do + 25/ VaTr(D3V) Y |Veus|? do
OBr i=1 9Br i=1

Since Tr(D2?V,,) = A,V,,, and since Zf-l:l |V, u;|?> = RK(R), on OBr we get
d
Tr(B23) = ﬁ/ ValA Vi Y |Vl do = B(d — 1)RK(R) Vi ALV, do.
dBp = 0Bg

Concerning Tr(B(2’4)), we have to distinguish the case d = 2 from the case d = 3. If d = 3 then A = 0 ; this
implies that Tr(B(2*%) is reduced to

Tr(B®Y) = (d - 1)}((}::)5z V.2 do.
8BR

If d = 2, then A + A is a null matrix and this leads to

d
Tr(BRY) = 28 V2Y D% Vou,.Veu; do

9Br =1
B 2
= 2K(R)—= V.2 do.
R Jopy
Then for d = 2,3 we get

Tr(B2Y) = 25K](%R);

34



Study of A(u,u,$). We use the classical formula, we get

4
dt

( VnVTu.VTgbdat) = / (Vo) VouVr¢ do +/ Vo, V'V, do
0 0BRr

t=0 dBR

n / Vi, V. V. [Onu Vo + angmu} + (Vnan[vmu.ws] v HV,?VTU.VT¢) do.
O0BRr

Since 0p¢ = 0, it comes that

/ Vi V., Vi, [anu V.o + aan)VTu} do = —+ / V2 [8nuAT<;5 + VT[ﬁnu].VTqﬁ]
9Br 2 JoBy

1
— _1/ Vn2 (8n[VTu.VT¢] + 2D2bV7u.V7¢) do — / Vn2 Onulr¢ do
2 JoBg 2 JoBg

Hence, gathering the equivalent terms we get

4 Vo Vu.V ddoy = / (Vo) Vo' Vi¢p do + / Vo, V' .V, do
dt Jaq, r—o JoBg dBr
! AL V2 Opu)p — O (VIV-uV,¢) do + / (HI; — D*b)V2V, u.V.¢ do.
2 JoBg 8Br

We split these terms into A(u, ) = (AM/, ¢) + (AP u, ¢). As before, we set (AP u,p) = Z?:1<A(i)u, o)

where

<A(1)u',¢> = / —div, [V, V. u']¢ do,
OBRr

ARDug) = [ i, (V] HVE + Vo) Vol 6 do,
OBRr

(ACDu0) = [ divr 0, VuVoVi) o doy
OBRr

(AP, ¢) = / div, [V? (2D*0Vu — V(0,u))]¢ do.
OBRr

We have

Lemma C.3 We have

Twmmnzm1um”h=0am1wﬂmb=—K“”/ Vo do
OBRr

The proof of Lemma C.3 follows the lines of the proof of Lemma C.2.

Study of C(u,v,u”,¢). We decompose C(u,u,u”, $) as follows:

Clu, ¢) = (COu”, ¢) + (CD, ¢) + (CPu, ¢)
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with (CPu, ¢) = E?:3<C’(2’i)u, ¢) where

€Oy ¢y = —\ u'¢ do
O0Bgr
) = 2 [ (N V@ H) 6 do
O0BRr
(CPDu,g) = —X / ugp — X / VaOnue do
0BRr OBR
(CCDu g = i / (V). + Vo0V + HV2) (O + Hu)) 6 do
OBRr
(C®u,0) = N[ Vo =V VVrut Ha)o do
O0Bgr

_ )\/833 Vi (VTVn.VTu FAV, u)qb do

d—1
(O, ¢) = —)\/ V2 (Oiu —u Z K2 4 H&m)gb do
9Br

i=1
= 0.

Denoting by (C(Q’j)), j =1,2,3,4 the matrices associated to the linear operators C3?), p = 1,2,3.4 in the
basis of eigenvectors, we get:

Lemma C.4 We have

4
> Tr(C®)) = ARPK(R) /
j=1

VuALV, do = —((d—1)3+ R) RK(R)/ V-V, |? do.
OBRr

dBR

Proof of Lemma C.4:
The proof is straightforward and obeys to the same arguments used before. The only non null trace concerns
the factor in —H' = A, V,,. n

D Computing v’
We recall that ¢t — (A\(t),u(t,-)) is solution of

Au = 0 inTy(Bgr),

—BA;u+ Opu—At)u = 0 on ITy(Bg). (53)

To compute the second derivative, one must know v’ = u/(0). For the reader convenience, we recall the
problem (35) solved bu u'.

Av’' =0 in Bg,
—BA + O’ =M = BAL(V,0pu) — Bdivy (Vi (2D?b — HI,)Vru)
+ div, (V,Vou) — Nu+ AV, (0,u + Hu) on OBg.

First, Fredholm’s alternative insures the existence of a unique harmonic function @; orthogonal to the eigen-
functions w1, us, .. ., uq and satisfying on 0Bg the boundary condition

—BAL + Oty — Mij = B|Ar[Vidpus] + divy [V (H Iy — 2D2D) - vTuj]]
+div, [V, Vruj] + Nuj + AV, (9pu; + Huy). (54)
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It follows that .
=D Gu Z (55)
Jj=1 Jj=

for some c;j,¢; when j =1,...,d. We point out that the (c;) are the same coefficients as the decomposition
of uw in the basis (u;) of the eigenspace associated to A\: u = cius + - -+ + cqugq.

Remark D.1 We recall that we only need the terms u;: we inject this decomposition of u' in EM.

d
R+Bd-3
EWgy = —23"¢ [/ VnOnjOn do + 2ﬁ()/ VoVou; Vob do
= OBg R OBg
i R+ p(d-3
-2) "¢ [ / VnOnij0n do + R HAE=3) / VoV, 1.V, do
o " LJoeng R 0B
—ox | ViHujp do —2) | ViHio da]

8BR 8BR

By construction the first sum cancels and we simply get

E}) =2 /a ) Vi (= OnitjOn, — HNajuy + (I + 8 (HIg = 2D*)) V1.V 7uz ) do

D.1 Explicit resolution of (54) to compute 1;

Let us now compute @; solution of (54). This step consists in technical computations. For the completeness
of the presentation, we present the case of dimension three, we will then simply state the results in dimension
two. From now on, we do not consider the case d > 4 for technical reasons.

D.1.1 Explicit representation of u; in the case d = 2.

We illustrate the computation of the elements u;, ¢ = 1,2 in the case d = 2. The eigenfunctions are the
normalized coordinates functions that is (u1,us) given by

cos 0 sin @
and ug(r,0) =1 .
TR3

ui(r,0) =

=
3
g

We have

Lemma D.2 Let V be a deformation of normal component V,, = Rk(vgk) cos k8 + vék) sin k0), then

- Pl 1 —k (k) k.
ay(r,0) = - [vl cos(k—i—l)&—l—vgsm(k—i—l)e} (56)
2y/mRz kK
rk=l 14k B(2—Fk)+RYT (%)
k—1)0 + vh sin (k — 1)0
+2\/7?R3k_2[ LR Hvl cos ( )0 + vy sin ( )
and
k+1 1—k
to(r,0) = ! - [—vék)cos(k+1)9+v’fsin(k+1)9 (57)
2y/mRz Kk
rk=l 14+ k B(2—Fk)+RYT1 )
k—1)0 — vl sin (k- 1)0
+2\/7?R3k_2[ LR va cos ( )0 — v sin ( )

37



In order to justify these formulae, one has to compute a, b, ¢, d the coefficients

Uj = a® cos (k +1)0 + b™) sin (k + 1)0 + ¢ cos (k — 1)0 + d® cos (k — 1)0

T

such that @; satisfies (54) with u; = . We left the tedious computations to the reader.

| ||L2(aBR)

D.1.2 Explicit representation of #; in the case d = 3

We begin with the case where V,, = rlYlm and ¢, = rYlp where —l < m <[ and —1 < p < 1. We introduce

the coefficients:
=1p 47 m -m—p)\0O 0 0 )’

(1)t 32+1)RI+3) 1 1 1+1 I 1 1+1
47 m p —m—p/\0 0 0 )’

where we use the Wigner 3; symbol and Clebsch-Gordan coefficients. We set & = /R in order to obtain an
adimensional constant.

hS

and

(l717m7p)
Cl+1,p

Lemma D.3 Let | # 0 be a natural integer and let =l < m < [. Let 'V, = lelm and u, = TYlp where
—1 <p < 1. The unique solution of (54) that is orthogonal to Span(Yl_l,Ylo, Y{') is given by
+1

~ (l71»m7p) l—1y m+p (lvlam’p)/r m—+p
Up = a2y, 0 Y ey, R2 Y

where
(ttmp) _ L+2 1+aB 1) ~@1mp)

. _ (Limp) _L=1 1+a(d+1D) q1mp)
I Y N

and Dp1pa = l 14+ a(3 i l) I+1,m

Proof of Lemma D.3:
We first decompose the right hand side of (54) into the basis of spherical harmonics. Taking into account that

Ll L\
(0 0 0> =0
whenever (lq,l2, L) satisfies the triangular inequality and 1 + lo + L is odd, we get

IBVnanup _ ﬁRlYimY'lp — ,BRZ [Cl(ﬁtghp)ylzlfp + Cl(ii:;n#’)}/lil;rp}

and then L L
BA(Vadutp) = aR 7 {101 = DO DY — 1+ 1)+ 2) 0P

We also have

1
V-V Veu, = B [Ar(Vhup) — Vi Aruy — upAr V]
Rlil (1,1,m,p)y  m~+p (L,1,m,p)y m+p
- = [z(z—2)qfl’p ) A (S V() Tors A
b2 g 4 v
U+ DOV 11+ 1) Gy YT

= R [ oty - oy,
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Since div; V,,V;u, = V;V,.Vu, + V,Aruy, it comes

vy VeV = B[ = DO = (142) ofy ).

Hence, gathering the various terms in the right hand side of (54), we see that 4, is solution of
—BA U, + Opty — Aoty =

— l,m,1, m l,m,1, m
R (@ +2)(1+ a3 = D)UY 4 (1= 01+ a4+ D)CET YT

After identification, we obtain:

(L Lm.p) trmp) ™
~ »L,m,p) -1y, m+p »1,1m,p m+p
Up = al—l,p,a r Yl 1 + al+1,p,a R2 }/l—l—l )
(l717m7p)

141 po Are defined in Lemma D.3. ]

where the coefficients a
As a corollary, we deduce the general case for V.

Corollary D.4 If

then
(1,1,m,p) (1,1 )TZJrl
»Lm,p) l—1y,m~+p ,L,m,p m~+p
a’l—l,p,a r Y2—1 + a’l—i—l,p,a R2 Yi—&—l

l 1
=3, ) D atim

(o)
=2 m=—Ip=—1

D.2 The explicit expression of the trace of E(): the case d =3
1

We set u; = K(R)(a' ;Y7 '+ ad Y2 4+ i) for 1 < i < 3 where K(R) = — =7 is a normalization constant
=

insuring ||u;||2 = 1 and where

ol =1/V2, ol =0,
042,1 =0,

ap = 1/V?2,
a2 =0,

o3 =i/V2.

On the sphere in dimension 3, the deviatoric part of the curvature cancels and the entries of E(}) are

3
TI“(E(I)) _ ZE](;) where E](jl) — / Vn< — 8nﬂjanuj — H)\ﬂju]- + VT?]]'.VTUJ) do,
= 0N

where each @; corresponding to u; is computed thanks to Corollary D.4.
We first state a technical result to perform this summation. We postpone its proof to the end of the section.

Lemma D.5 Let 'V, = RlYlm, -1 <m<I and

Y =rY}

for =1 <p<1. Let m' and p’ be integer such that —1 < m’ <1 and —1 < p’ <1 and suppose

7,,l—i—l

~ ’ / / /
b=arY" T b Y
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Then

/ Vn< — OO — HA) + vﬂ;.vﬂp) do
OBRr

= —a (da+20) R%! Y YmYP — b (da+2) B2 / Yy
0B, 0B,
As a consequence, we get for j =1,2,3
o 5 - [+2 14+aB+1D) < o, s ) oo
B = - Ry R a2 223 IR 3D 3 el (/QBIYH vy
t (dat2) I—1 1+a4+1) i i I o </ Ym+pymyp)2
Lo 1taB+0) & &= " g, B ST

We are now in position to prove Proposition 4.3 concerning the trace of E(!) in dimension d = 3.

Proof of Proposition 4.3:

We have to sum the EJ(JI) obtained before the statement of Proposition 4.3. By the normalization condition
> j |a{;]2 = 1, our main task is to compute the sum over p = —1,0, 1 of the integrals involving three spherical
harmonics. The values of this type of integral is recalled in Propositions B.2 and B.3. Elementary computations
then give

l 1

23 LS 23 141
ymtrymyP ) — 2 d ymtrymy?r ) — = T
2 2 (/831 =1 1> ™ 2 2 (/831 b1 1) i 20+ 1

m=—lp=—1 m=—lp=—1

Proof of Lemma D.5:
We compute:

V0,000 = —RAL [a(Z—1)Ylﬁ+p’+b(z+1)yﬁﬁp’} Yy,

SAHVuby = —RH (4o +2) [y 0y vy,

We have also

1

/{jBR VaVAh Ve = o /é)BR Vi [ Ar(§0) — 0 — G20

1 ’ / / ’
- _ 5 l(l+ 1) RQZ—I / (aY'lT_nler _{_bY'l:r_Ll+P )Yimylp
0B1

1 el NG R ANt
0B;
1 - m' ’ m’ / m
+5 B /83 [azu—n Y b (14 1)1 +2) Ymﬂy; Y?
1
- R2l—1/ o @=1) Y b 1 2) I vy
0B1

We obtain the result by summing the three terms. ]
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E Shape Derivatives of Steklov and Laplace-Beltrami eigenvalues prob-
lem

The following result is obtain by taking 8 = 0 in Theorem 1.4.
Theorem E.1 [Steklov eigenvalues] We distinguish the case of simple and multiple eigenvalue.

o If A= \x(2) is a simple eigenvalue of the Steklov problem and u an associated eigenfunction, then the
application t — A(t) = \((L +tV)(R)) is differentiable and the derivative at t =0 is

N(0) :/ Vi (19l = 8 — AH|uo?) do.
oN

The shape derivative u' of the eigenfunction satisfies
Au' =0 in Q,
O’ =\’ = div, (V,V,ru) — N (0)u + AV;, (Opu + Hu) on 0.

o Let A be a multiple eigenvalue of order m > 2. Let (u;) for 1 < j < m denote the eigenfunctions
associated to \. Then there exists m functions t — \g(t),k = 1,...,m defined in a neighborhood of 0
such that

— X(0) = A,
— for every t in a neighborhood of 0, \i(t) is an Steklov eigenvalue of Q = (I +tV)(£2),

— the functions t — \g(t),k = 1,...,m admit derivatives which are the eigenvalues of the m x m
matrix M= Mq(V,,) of entries (M;;) defined by

Mjk = / Vn( - anujanuk - H)\U]Uk + VTUj.VTUk> do.
oN

The following result is obtain by taking 8 — +o00 in Theorem 1.4.
Theorem E.2 [Laplace-Beltrami eigenvalues] We distinguish the case of simple and multiple eigenvalue.

o If A= \p(2) is a simple eigenvalue of the Laplace-Beltrami problem and u an associated eigenfunction,
then the application t — A\(t) = A\ (L +tV)(Q)) is differentiable and the derivative at t =0 is

N(0) = / Vn<(H I, — 2D2b)VTu.VTu> do.
(oY)

The shape derivative v’ of the eigenfunction satisfies
Au' =0 in Q,
—Anu = A (V,0pu) — divy (Vi (2D — HIG)V,u) — N (0)u on 0N
o Let A be a multiple eigenvalue of order m > 2. Let (u;) for 1 < j < m denote the eigenfunctions

associated to X. Then there exists m functions t — A\g(t),k = 1,...,m defined in a neighborhood of 0
such that

- Ak(o) = )‘7

— for every t in a neighborhood of 0, \i(t) is a Laplace-Beltrami eigenvalue of Qy = (I +tV)(Q),

— the functions t — A\g(t),k = 1,...,m admit derivatives which are the eigenvalues of the m x m
matrizc M= Mq(V,,) of entries (M;;) defined by

Mjk = / Vn< (Hfd — 2D2b) VT’LM;.V-,-UJ) do.
o0
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