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Gaussian decay for a difference of traces of the Schrodinger

semigroup associated to the isotropic harmonic oscillator.

January 27, 2014

Mathieu Beau*, Baptiste Savoief

Abstract

This paper deals with the derivation of a sharp estimate on the difference of traces of the
one-parameter Schrédinger semigroup associated to the quantum isotropic harmonic oscillator.
Denoting by Heo,. the self-adjoint realization in L*(R?), d € {1,2,3} of the Schrédinger
operator —2A+ 1x*x|*, K > 0 and by Hy,«, L > 0 the Dirichlet realization in L?(A{) where
A = {xeR: —L/2 < x; < L/2,1 =1,...,d}, we prove that the difference of traces
TrLz(Rd)e_tH“v“ - TrLz(A%)e_tHL’“, t > 0 has a Gaussian decay in L for L sufficiently large.
The estimate we derive is sharp in the sense that its behavior when « | 0 and ¢ | 0 is similar
to the one given by TrLz(Rd)e_tH“*” =(2 sinh(gt))_d. Further, we give a simple application
within the framework of quantum statistical mechanics.

MSC-2010 number: 35J10, 47D08, 81Q10, 81Q15, 82B10.

Keywords: Quantum harmonic oscillator, Gibbs semigroups, Mehler’s formula, Duhamel-like
formula, Geometric perturbation theory.
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1 Introduction.

1.1 The setting and the main result.

For any d € {1,2,3} and L € (0,00), denote A4 := {x € R¢: —% <x < %, l=1,...,d} and

|A%] its Lebesgue-measure. On C5°(A¢), define Vi > 0 the family of operators:
S L T

Hp .= - (—iVx)" + o |x|=. (1.1)

It is well-know that V& > 0, (1.1) extends to a family of self-adjoint and bounded from below

operators VL € (0,00), denoted again by Hy, ., with domain D(Hp ) = Wy *(A%) N W22(A%).

Obviously this definition corresponds to choose Dirichlet boundary conditions on the boundary

dA4 . Since the inclusion W, *(A%) < L*(A%) is compact, then V& > 0 Hy . has a purely discrete

spectrum with an accumulation point at infinity.
When A¢ fills the whole space (when L 1 o), define V& > 0 on C§°(R?) the family of operators:

Hopim % (—iV)? + %/ﬁ2|x|2. (1.2)
From [14, Thm. X.28], Vx > 0 (1.2) is essentially self-adjoint and its self-adjoint extension, denoted
again by H x, is semi-bounded. By [15, Thm. XIII.16], the spectrum of H , is purely discrete
with eigenvalues increasing to infinity. From the one-dimensional problem, the eigenvalues and
eigenfunctions of the multidimensional case can be written down explicitly. The eigenvalues of the
one-dimensional problem are all non-degenerate and given by, see e.g. [4, Sec. 1.8]:

1
e((;),ﬁ :n<s+§> , seN (1.3)

The corresponding eigenfunctions, which form an orthonormal basis in L?(R) read as:

VreR, ¢ (x) = ¢21_8| (5) 57" o (Vir) . seN, (1.4)

where 7, s € N are the Hermite polynomials defined by: #(x) := (—1)Se$2£—;(e_12), Vo € R.
The eigenvalues and eigenfunctions of the multidimensional case (i.e. d = 2,3) are respectively
related to those of the one-dimensional case by:

S S5 1
E®), = Zegozg = HZ <sj + 5) os={s;}7 €N, (1.5)

v, () =[] oh), x={z;}, R (1.6)

From (1.3)-(1.5) and by the use of the min-max principle, one has for any L € (0, 00):
Vk >0, info(Hp,) > info(Hex) = Eég,),_i = degg%n > 0, e(()g),ﬁ = g

Let us turn to the one-parameter strongly-continuous semigroup (the so-called Cy-semigroup
in the Hille-Phillips terminology [11]) generated by the operators introduced above. At finite-
volume, it is defined VL € (0,00) and V& > 0 by {GL .(t) := e L 1 [2(A) — L2(A%)}i>0.
It is a self-adjoint and positive operator on L2(A¢) by the spectral theorem and the functional
calculus, see e.g. [18]. The same hold true for the one-parameter semigroup on the whole space
{Goox(t) = et o [2(RY) — L2R%)};>0. Moreover V0 < L < oo, V& > 0 and Vt > 0,



Gr «(t) is a Gibbs semigroup, i.e. G .(t) (resp. Geo,x(t)) belongs to the Banach space of trace-
class operators on L2(A%) (resp. L?(R?)), see [19, 2] and [20, Sec. 3]. A basic feature is the
monotonicity property for the finite-volume trace, see Lemma A.4 in Sec. A:

—d
VL € (0,00), Trpaat) {Gru(t)} < Trpega {Goon(t)} = (2 sinh (gt)) . k>0t 0.

Our main result is the following sharp estimate on the difference of traces of the semigroups:

Theorem 1.1. Vd € {1, 2,3} there exists a constant Cq > 0 and a L > 1 s.t. VL € [L,00), V& > 0
and Yt > 0:

Tra(ag) {GLn(®)} = Troaces) {Goon (8)}]

d—1
scd<1+t>2d+3{(1wE)QTrLzmd){Goo,K(t)H(%) }e-gﬂanh@‘f). (1.7)

As a corollary of Theorem 1.1, one has the following estimate:

Corollary 1.2. Vd € {1,2,3} there exists a constant Cq > 0 and Y0 < ko < 1 there exists a
Ly, >0 s.t. VL € [Ly,,0), VK € [ko,0) and Vit > 0:

Traag) {Gra®)} = Trraa {Goon(B)}]
< Co (14 VA) (14 5) (1 + 13D Ty oy {Goo n(t)} e~ 3 5 2(50) (15

Remark 1.3. The upper-bound in (1.7) is made up of two terms: the first one identifies with a
bulk-like contribution, the second one with a boundary-like contribution.

Remark 1.4. The estimate in (1.7) is sharp in the sense that its behavior when x | 0 and ¢ | 0
is given by the term Trz2ga){Goo,x(t)} = (2sinh(%t))~¢. We recall that sinh(z) ~ 2 when z | 0.

Remark 1.5. In the r.h.s. of (1.7), one can get rid of the polynomial growth in L (when d > 1)
appearing in the second contribution via (A.16). This will give rise to an exponential growth of type
exp(4t), but the main singularity in x | 0 and ¢ | 0 is still given by the term Trp2ga){Geo,x(t)}-

Remark 1.6. We stress the point that the upper bound in (1.8) cannot be derived directly
from (1.7) due to the inequality sinh(kt) > kt, Vk,t > 0. Moreover, the upper bound only has
a polynomial growth in ¢. The price to pay to make appear the term Trp»ge){Geo,x(t)} as a
common factor, is that for 0 < k < 1, the estimate holds for L large enough chosen accordingly
(i.e. L > cste/+/k). Note that the £ in Corollary 1.2 can be chosen uniformly in & € [1, c0).

Remark 1.7. In (1.7) and (1.8), the powers on the factors (1 + v/k), (1 + k), (1 +¢) and the
constant appearing in the argument of the exponential can be optimized.

1.2 An application in quantum statistical mechanics.

Consider a d-dimensional ideal quantum gas composed of a large number of non-relativistic
spin-0 identical particles confined in the box A4 and trapped in an isotropic harmonic potential.
Such a system is considered to figure out the Bose-Einstein condensation phenomenon created by
cold alkali atom gases in magnetic-optical trap, see e.g. [13, Chap. 10] and references therein.
Within the one-body approximation, the dynamics of a single Boson is determined by (1.1).
Suppose that the system is at equilibrium with a thermal and particles bath. In the grand-
canonical ensemble, let (8,2,|A¢|) be the external parameters. Here, 3 := (kpT)~! > 0 is the
“inverse’ temperature (kg stands for the Boltzmann constant) and z = e the fugacity (u is the
chemical potential). The finite-volume single-particle partition function is defined as, see e.g. [16]:

®r(B) == TrL?(Atg) {GLx(B)}, B>0. (1.9)



The grand-canonical average number of particles at finite-volume is related to (1.9) by, see [3]:
Npx(B,2) = 2'®1,.(18), B>0,z¢ (O,eﬂi“f”(HL*”) : (1.10)
=1

Theorem 1.1 (resp. Corollary 1.2) allows to get the large-volume behavior of the single-particle
partition function (resp. the grand-canonical average number of particles). Indeed, one gets

(0)
V0 < k1 < Ko < 00, VO < B1 < B2 < 0o and for any compact subset K C (O,eﬂ1E°gv~1):

,ﬁE(O)_
e 00, K
[OJ = lim @, . =Trye Geoo.re =,
, (5) LITI}}O L, (5) Ir (Rd){ , (ﬂ)]’ (1 _e—BN)d
Noo,n(ﬂvz) = Illle NL,n(ﬂvz) = Zl(I)oo,kaUﬂ)a
o =1

uniformly in (k, 8, z) € [k1, k2] X [B1, B2] X K. Moreover, one has the following asymptotics:

D1 (B) = Poo.n(B) + O (e*CLZ) :
Nia(B,2) = Noow(Br2) + O (e_CL2) :

for some L-independent constant ¢ = ¢(k,3) > 0. We emphasize that the upper bound in (1.8)
plays a crucial to prove the thermodynamic limit of (1.10) for any z € (0, eBEég?ﬂ), see [3, Sec. Al.

2 Proof of Theorem 1.1 and Corollary 1.2.

The starting-point consists in rewriting the difference between the traces involving the differ-
ence between the semigroup integral kernels. We refer the reader to Sec. A in which we have col-
lected some basic properties on the semigroup kernel. Since VL € (0, 00] and V& > 0, {Gp . (t) }+>0

is a Gibbs semigroup with a jointly continuous integral kernel G(Ld)ﬁ( ;1) : R x R — C, then:

Tr 12 () {Gooue ()} — Trpzaa) {Gru(®)} = 20 (1) + 2.9(1),

with Vd € {1,2,3}, VL € (0,00), V& > 0 and Vt > 0:

200 = [ ax {60, xxit) - G exi)} (21)
’ A% ’ ’

Z{0E) = / dx G, (x,x;t). (2.2)
w0:= [, 0L

Here, we used [8, Prop. 9]. Note that Vk > 0, V¢t > 0 the kernel Ggﬁ%m(- ,- t) is explicitly known
and it is given by the Mehler’s formula, see (A.3)-(A.4). It is derived from (1.4)-(1.6) and (1.5).
Next, it remains to estimate each one of the above quantity. For the quantity in (2.2):

Lemma 2.1. Vd € {1,2,3}, VL € (0,00), V& > 0 and Vt > 0:
(d) (BT kL2 tann(5t)
2.1 < (2 sinh (215)) e .

Proof of Lemma 2.1. Let 8 > 0 and x > 0 be fixed. Due to (A.4), it is enough to treat only
the case of d = 1. From (A.3) and by setting # = y, one has by direct computations:

erfc ( K tanh (%t) %)

VL € (0,00), ¥t >0, 2"=V(t) = ,
\/2sinh(st) tanh (51)



where erfc denotes the complementary error function, see e.g. [1, Eq. (7.1.2)]. From the Chernoff
inequality which reads as: Va > 0, erfc(a) < e along with the identity (B.5), one arrives at:

-1 .
VL € (0,00), V¢ >0, Z\"=D(1) < <2sinh<gt)) ok tanh(5t). 0

As for the the quantity defined in (2.1), we establish the following estimates:

Proposition 2.2. For any d € {1,2,3}:
(7). There exists a constant Cq >0 and a L > 1 s.t. VL € [L,0), V& > 0 and Vt > 0:

‘%fﬁ(t)‘ < Cy(1+1)20+3 {(1 +Vr)” (2sinh (gt))fd + (%)d_l} e () (23)

(#3). There exists a constant Cq > 0 and VO < kg < 1 there exists a Ly, > 0 s.t. VL € [Ly,,0),
VK € [ko,00) and ¥Vt > 0:

20| < Ca (14 V) (14 01+ D) (25inh (gt))ide 5 tann(51), (24)

By gathering Lemma 2.1 and Proposition 2.2 (¢) (resp. (ii)) together, Theorem 1.1 (resp.
Corollary 1.2) follows. The rest of this section is devoted to the proof of Proposition 2.2.

2.1 Proof of Proposition 2.2.

In view of (2.1), the first step consists in writing an expression for the difference between the
two semigroup kernels. It is contained in the following lemma:

Lemma 2.3. VL € (0,00), V& > 0 and Vt > 0:
2 (1) (1) ) —
V(ZL', y) € AL? Goo /{(z y7t) GLJ{,(:L" y,t) -

1 [t L L
_Z d G . ) G(l) oyt —s)—a 9, G(l _
2/0 s { oo,n(x’ 278)( z L,n)( 2’y7t S) oo,n(‘r’ 2 )( Ln)(2’y7t S)}

(2.5)
and in the case of d = 2,3, for any (x,y) € A2%:
Gg‘i)n(x yit) — G(Ldn(x yit) = ——/ ds/ do(z (d) . (x,2;8) [nz . VZG(LdL(z,y;t — s)} ,
and '
(2.6)

where do(z) denotes the measure on OAS and n, the outer normal to OAY at z.

The proof of Lemma 2.3 in the case of d = 3 can be found in [5, Lem. 4.2], see also [6]. Since
the generalization to d = 1, 2 can be easily obtained by similar arguments, we do not give any proof.

Remind that the kernel GS;QK is explicitly known and given by the Mehler’s formula. In view
of (2.1) along with the expressions from Lemma 2.3, the actual problem comes down to deriving a
sufficiently sharp estimate on the gradient of the finite-volume semigroup kernel allowing to bring
out a gaussian decay in L for the quantity in (2.1). It is contained in the following proposition:

Proposition 2.4. Vd € {1,2,3}:
1). ere exists a constant Cg > 0 and L > 1 s.1. € |L,00), VK > 0, V(X, S an >0
(i). Th st tant Cy >0 and L > 1 s.t. YL € [£,00), V& > 0, V(x,y) € A2? and ¥t > 0

VG e, yit)] < Ca {20 (e, y38) + (D, y30) | (27)

20, (x,y31) = (14 VR)(L+ ) [eoth (5¢) G, (x vit,8); (2.8)
2d+1 L2 .

R e, yit) o= LT g B (506D (o yoap). (2.9)

Vit



(i7). There exists a constant Cq > 0 and Y0 < ko < 1 there exists a Ly, > 0 s.t. VL € [Ly,,00),
Vk € [Ko,00), Y(x,y) € A2? and Vt > 0:

VaGi yit)| < Ca {2, (e, v3t) + &k yit) | (2.10)
d—1
A yit) = w1 R (L ) F e R (GO oy, (210)
(sinh(kt))2

Here, Gﬁ(fé)ﬁ( ,o5t,y), K> 0 and v > 0 is defined in (A.7) and G(()Z?O(~ ,5t) in (A2)-(A4).

Note that Proposition 2.4 contains in fact the key-estimates of this paper; its proof is placed
in Sec. 2.2. We mention that the derivation of such estimates relies on a Duhamel-like formula for
the finite-volume semigroup Gr, .(t), L € (0,00) obtained via a geometric perturbation theory.

Remark 2.5. A natural question arises: what is the difference between (2.9) and (2.11)7 In
(2.11), we artificially made appear the factor (sinh(nt))% in the denominator. The price to pay is
that for 0 < x < 1, the estimate holds for L large enough chosen accordingly (i.e. L > cste/+/k).

Proof of Proposition 2.2. Denote ¢, = £L/2. We begin with the assertion (i). Let us start
with the case of d = 1. In view of (2.1), (2.5) and (2.7), we need to estimate VL € [£, 00):

vt >0, D/Ld 1)1( t):= / ds/ de(d “U(z,¢;5,1)P (d “U(¢, a5t — s), (2.12)
Al

9= (1) = / ds / dz GYZD (2, o5, )R (o, it — 5). (2.13)
AL ’

Here, we have commuted the two integrals; this will be justified by what follows. We first estimate
the quantity in (2.12). In view of (A.3) and (2.8), then from (A.14) for any L € [£,00) and ¢ > 0:

5 1 w L2 "
= 1>1()gOﬁ(Hﬁ)(Hthe—g%mhE /dsm 2.14)

for some constant C' > 0. By using the upper bound in (B.4) along with the inequality:

1 tanh (£¢) tanh (£t) 1 (
, = X < ot 2.15)
V2SIh(sD) | o sinh(st) tanh (57)  2sinb (58) T 2sinh (5¢)
justified by (B.5), then there exists another constant C' > 0 s.t. VL € [£,00) and Vt > 0:
(1 + t)% L2
=Dty < O (14 VR) VIF o 8 tanh(51), (2.16)

2sinh (5t)
Next, let us estimate the quantity in (2.13). In view of (2.9) and (A.3), VL € [£,00) and V¢ > 0:

t
(d=1),2 3 ds =L anh(5(t-5)) / (= (=0 .

)< (1+t ———e 84 2 de G/ (2,608, 1)Gog o (sp,x;4(t — s)).

D/L,n ( ) = ( ) 0 \/m AL ( L ) ( L ( ))

Now, we want to make appear from the integration over A} a Gaussian decay in L while having
the argument s. To do so, let us remark that on R2¢, d € {1,2,3} one has for any s > 0:

GO, (x,y:5,1) < e~ H XTI 1an(59) G (x y:s,2). (2.17)

To get (2.17), we expanded in (A.3) the squares and used that 2ab < (a? + b?), combined with the
fact that coth(a)) — tanh(a) > 0 Voo > 0. From (2.17) and (B.9), then by using the upper bound
in the second inequality of (A.8) along with (A.13), one arrives VL € [£,00) and Vt > 0 at:

1 t 5 L2 it K d
9,(gz 1)2()<C( \J;E) engtanh(gt)/O ts—s’ (2.18)




for some constant C' > 0. Gathering (2.16)-(2.18) together, we obtain (2.3) in the case of d = 1.
Let us turn to the case of d = 2. The quantity in (2.6) being made up of four terms, then the same
holds for the quantity in (2.1). Since these terms have exactly the same structure, it is enough to
treat only one of them. In view of (2.7), we need to estimate VL € [£,00) and Vt > 0:

7N (t) = /ds/Az dx /A dz1 G52 (x, (21,62)5 8, 1) ((21,6), x5t — 5),  (2.19)

‘/ ds/ d"/ dar G52 (x, (21,60 )58, DR D ((21,60), %31 — 5). (2:20)
2 Jo A2 AL ’ '

The strategy consists in using the property (A.4) in order to use the results stated in the case of
d = 1. Let us first estimate the quantity in (2.19). In view of (A.4) and (2.8), then from (A.14):

/ dx / Az G2 (x, (21,61); 5, 1)GE= (21,61), %3t — 5,8)
A2 AL
<C dxq G(d 1)(901,901,1? 8)/ dzo Gg‘iil)(xz,CL;s,l)G(d 1)(§L,x2,t—s 8),
R RY
for some constant C' > 0. From (A.18), the first integral in the above r.h.s. is nothing but the
trace (multiplied by a constant). Then, for any L € [£,00) and ¢ > 0, we arrive at:

(d=2),1 (1+t>%
i ()<C( \/E)Qsmh

/ ds,/coth t—s / das G zg,gL;s,l)Ggil)(gL,:cg;t—5,8),
Rl

for another constant C' > 0. The integral w.r.t. s has been estimated in the case of d = 1, see
(2.14). Then it remains to mimic the arguments leading to (2.16) to conclude. Next, we estimate
the quantity in (2.20). In view of (A.3)-(A.4) and (2.9), then from (A.8) followed by (A.14):

/ dx / dz G2 (x, (21, 51); 8 )G (21, 61), 3 (¢ — 5))
A% AL

<C [ day G (w1, 205 41) / dzy G5 D (w6155, 1)GEL) (cp, 223 4(t — 5)),
AL RL

for some constant C' > 0. Since the integrand in the first integral is nothing but a constant, this
will make appear a factor L. Hence, in view of (2.9) and (A.3), one has VL € [£,00) and Vt > 0:

— 5 L2 tanh( % (t—s))

(d=2),2 1,y < 1+t /
9/ ()— m

e
X / sz G(d 1)(z25§L,571>G$,:()1)(§Laz2;4(tiS))a
Rl
for another C' > 0. The integral w.r.t. s has been estimated in the case of d = 1. It remains to
mimic the arguments leading to (2.18) to conclude. The case of d = 3 follows by similar arguments.

Subsequently, we prove the assertion (i7). Let ko > 0 be fixed. Let us start with the case of
d=1. In view of (2.10), we only need to estimate VL € [Ly,,00) the quantity:

y(d D204y / ds/ de(d “U(z gL;s,l)ﬂA{L(d,jl)@L,fE;t*S)-
AL 1



From (2.11) and (A.3), one has VL € [L,,,0), V& € [ko,00) and V¢ > 0:

50 1’2()<\/_\/1+—n1+t%/
\/smh t—s

x/ deoiil)(:c,gL;s,1)Gg‘i:01)(§L,:c;4(t—s)).
Al '

Now, from (2.17) followed by (B.9), then by using the upper bound in the first inequality of (A.8)
along with (A.13), one has VL € [£,,, ), V& € [k, o0) and Vt > 0:

z 2
7= D2y < Oy T RO D2 o5 2 tann(50) [* [ ds v :
Vit \/sinh(ks) sinh(k(t — s))
for some C > 0. It remains to use successively (B.7), (B.4) and (2.15) which lead together to:
) sy
5=D2(s) < 0V/R(L iU s £ aan(5e), (2.21)
2 sinh (gt)

for another constant C' > 0. Gathering (2.16)-(2.21) together, we get (2.4) in the case of d = 1.
Let us turn to the case of d = 2. In view of (2.10), we only need to estimate VL € [L,, 00):

5=, /ds/ dx/ Az G2 (x, (21,51); 5, DR (1,60), x5 — 9),
A2 AL ’

In view of (A.3)-(A.4) and (2.11), then from the first upper bound in (A.8) followed by (A.14):

/ dx / dz G (x, (21, 51); 5, 1)GD (21, 01), 3, 4(t — 5)) < C Ve
A2 AL

sinh(ks)
X / daxy Gg‘izl)(zl, x1;4t) / daxs Gg‘iil)(zg, SL; S, 1)G$§1)(§L, x9;4(t — 8)),
AL R1

for some constant C' > 0. Note that the integrand in the first integral of the above r.h.s. is nothing
but a constant. This will make appear a factor L, but we will get rid of it at the end. Ergo, in
view of (2.11) and (A.3), there exists another C' > 0 s.t. VL € [Ly,,00), V& € [ko,00) and V¢ > 0:

6 - L? K
54921 < ot 1+ mr LY d Vivi—s o re(5e-)

o Vi v/sinh(ks) sinh(k(t — s)

x/ dzo Ggoil (zg,gL;s,I)Gg?)l)(q,zg;él(t— s)).
Rl

The rest of the proof mimics the strategy we used for the case of d = 1. By using the upper bound
in the first inequality of (A.8) along with (A.13), one has VL € [£,,,0), V& € [ko,00) and V¢ > 0:

6 rt N/ 2 2
(d=2),2 < 21 L(1+t> / d sVt —s 7%%tanh(g(t75)) 7§%tanh(gs).
9’ (1) < Cn~(1+r) 0 § sinh(ks) sinh(k(t — s))e ’ ¢

Using successively (B.9), (B.7) and (2.50) leads to:

1+ t — £ L2 tanh(E
5L=2 (1) < Ow(1 + w)?LVE Q(Smh(m) £ 47 tanb (1),
for another L-independent C' > 0. It remains to use (A.16) to get rid of the L-factor:
L . C 1 C 1
Ssinh(rh) N . 2"
2 sinh(kt) vk " 2sinh(kt)/tanh (4t) K (2sinh (5t))




Gathering the above estimates together, one arrives VL € [£,,, ), Vk € [kg, 00) and Vt > 0 at:

7 L2 K
9/Ld 2), 2( ) < C\/E(l + R)2\/Z (1 +t) efs—"thanh(gt)’

(2sinh (4t))?

for another constant C' > 0. The case of d = 3 can be deduced by similar arguments. O

2.2 Proof of Proposition 2.4.

As previously mentioned, Proposition 2.4 contains the key-estimates to prove Theorem 1.1
and Corollary 1.2. The proof heavily leans on an approximation of the finite-volume semigroup
operator via a geometric perturbation theory. For further applications, see [9] and also [10, 17].

2.2.1 An approximation via a geometric perturbation theory.

The key-idea consists in isolating in A¢ the region close to the boundary from the bulk where
the semigroup G (t) will act. The underlying difficulty is to keep a good control of the remainder
terms arising from this approximation. This will be achieved by using well-chosen cutoff functions.

For any 0 <n < 1,0 <9 <1000, d € {1,2,3} and L € (0,00) define:

Or.,(9) = {x e AZ : dist (x, 0A9) < ﬂL”}. (2.22)

For L sufficiently large, ©7,, () models a ’thin’ compact subset of A4 near the boundary with
Lebesgue-measure |©7, ,(9)| of order O(L4=D+7). For any 0 < n < 1, let Ly = Lo(n) > 1 s.t.

O1,,(1000) C A, Lo—L{ > Lo/V?2, (2.23)

and Lg large enough. Let us now introduce some well-chosen families of smooth cutoff functions.
Let frand ff . L € [Lo(n),00) be a partition of the unity of A¢ satisfying:

fon+fi,=1 on A4

1 1
Supp (f1.0) < (83101, (75) )+ o= vitxe (8101, (5)) . 0 iy <

1 . 1
Supp (ff,,]) COr, <§> » fi,=1lifxeOr, <E) )
Moreover, there exists a constant C' > 0 s.t.

VL > Lo(n), ID°frall, < CL77M, Vio| <2, |o| = o1+ + 0a.

Also, let fL,n and fL,n, L € [Lo(n), o0) satisfying:

Supp (fL,,]) (Ad \Or. (614)) , fim=1lifxe (A% \Or., (Bi)) 0< frn <1

2 1 2 . 1 2
Supp (fr.) € Ory (5) . fia=1lifxe€O., (Z) L 0< fr, <1
Moreover, there exists another constant C' > 0 s.t.
VL > Lo(n), maX{HDUfLmH ’HDUfL’"H } <Ll o] < 2.

With these properties, one straightforwardly gets:

frafrn = fra; (2.24)
dist (Supp (D"fLm) , Supp (DTfL,n)) > CL", V1<l|o| <2,Y0<|r| <2 (2.25)
frofim = Fin (2.26)
dist (Supp (D"fL,n) , Supp (DTffm)) >CL", V1<|o]<2,V0< 7] <2, (2.27)



for some L-independent constants C' > 0.
Afterwards, let us define V0 < 1 < 1, VL € [Lo(n), 00) (see (2.23)) and V& > 0 on Cg°(A%):

1 1 2 ifx €S (2 )
B = = (—iV)? + =KV (%), Vin(x) = X[, , X €SP (fLan ) (9 98)
2 2 1 (L—L"", otherwise.

By standard arguments, (2.28) extends to a family of self-adjoint and semi-bounded operators for
any L € [Lo(n),0), denoted again by hy ., with domain D(hy .,) = Wy 2 (A%) N W22(A4).
V0 < n <1, VL € [Lo(n),00) and V& > 0, let {gp y(t) := e~ thimn + L2(AY) — L2(A%)}i>0 be
the strongly-continuous one-parameter semigroup generated by hr . ,. It is an integral operator

with an integral kernel jointly continuous in (x,y,t) € E X A_% x (0,00). We denote it by g(LdL,n.

Next, introduce Y0 < n < 1, VL € [Lo(n), 00) and V& > 0 the following operators on L?(A¢):

V>0, Gri(t) == fraGoen®)frn + fragrn(fi (2:29)
W () 1= - {% (Afw) +i (Vi) (N>} Goon(O)f L.+
) . ' . ' ) (2.30)
- {5 (Afen) +i (Vi) <—zv>} 9L.mn(t) 5
Sometimes, we will use the shorthand notations:
V>0, G0 = FrnGoon®fim Gy = fLagran®,  (231)

The main result of this paragraph is the following Duhamel-like formula:

Proposition 2.6. Vd € {1,2,3}, V0 < n < 1, VL € [Lo(n),o0) and ¥k > 0, it takes place in the
bounded operators sense on L?(A4):

t
VE> 0, Gra(t)=Gp,.nt) — / ds G et — $)Wi e (5). (2.32)
0

The proof of Proposition 2.6 can be found in Sec. 2.2.3; it is essentially based on the application
of [8, Prop. 3] taking into account the features of the cutoff functions introduced previously.

Remark 2.7. One can derive the following upper bounds on the operator norms. Vd € {1,2,3}
there exist two constants Cyq,c > 0 s.t. YO <n < 1, VL € [Lo(n), o0), V& > 0 and V¢ > 0:

IGL ()] < Hgﬁm(t)u n Hggm(t)u < (cosh(kt)) ™% + CueTo L7, (2.33)
1+t 21 N W2 L2
IWE (Ol < CavTF R g e {14 (14t e T (2.30)

The upper bound (2.33) comes from (A.15) and (2.51). The rough estimate in (2.34) is derived
from Lemmas 2.11 and A.1 along with the properties (2.25)-(2.27).

2.2.2 End of the proof.

The starting-point in the proof of Proposition 2.4 is the Duhamel-like formula in (2.32). Taking
its adjoint, one has ¥d € {1,2,3}, V0 < n < 1, VL € [Lo(n),00) (see (2.23)) and Vx > 0 on L?(A%):

t
vt > 0, GL7,€(t):g;,w(t)—/ ds W, (5)GLult — 5), (2.35)
0



where the adjoint operator of G, . »(t) and W, ,(t) reads respectively as, see (2.29)-(2.30):
gz,m(t) = fL,nGOO,H(t)fL,n + fz,ngL,n,n(t)fL,m (2-36)
1/ . _ A
Wi n(®) = =FraGoon(®)F (A1) +if1a{(=iV) Goont) = (V) Goon (O]} (V1n) +
1 A A
~ inrnn®5 (Bfr) + 55 A=) gLn(®) = [(=iV) 92} (Vi) -

(2.37)
Here, [-, -] denotes the usual commutator, and in the bounded operators sense:

t

[(=iV), G,k ()] = — / ds Goo,k(t = 8) [(=1V) , Hoo,i) Goo,i(5), (2.38)
0
t

[(—iV) agL,ﬁ,n(t)] == / ds gL,fwi(t - S) [(—’L'V) ) hL,n,n] gL,ﬁ,n(S)- (2-39)
0

Writing (2.35) in the kernels sense, it follows this identity which holds V(x,y) € A2¢ and V¢ > 0:
VG (x,y:t) =
Vx (gzm (x,y;t / ds / dz Vy WL ,“7) (x, z; S)G(Ldlu(z,y;t —s). (2.40)
Ad '

Next, we need the following lemma whose proof can be found in Sec. 2.2.4:

Lemma 2.8. Vd € {1,2,3} there exist two constants ¢,Cq > 0 s.t.:
(i) YO < n < 1, VL € [Lo(n),00), V& > 0, ¥(x,y) € A2? and Vt > 0:

« d
Vs (G) " (x,330)] < Ca{ PO, (5 vi0) + B, (x,v30) |

P, (%, y:t) = (1+ V&) Coth( )G(d) (x,¥:t,2), (2.41)
1+ .
R (x,y:1) = \J;E) e~ F TG, (x, y;21). (2.42)

(ii). V3 <n <1, VL € [Lo(n),00), V& > 0, V(x,y) € A2 and Vt > 0:

NG
]vx Winn) oyit)| < Ca{rd e yit) + i xoyit) ) (2.43)
rgg)m 77()( y;t): (1 + \/_) coth (gt) (1+ t)e_c”L% COth(%t)G((,‘i),ﬁ(x,y; t,8), (2.44)
a L+ 22, o2 d
T(L,L,n(an;t) =g e feme 7 X@L,n(g)(X)Ggo),o(X,Y;4t)X@L,n(§)(Y)- (2.45)

Here, o, ,(9), ¥ > 0 denotes the indicator function associated with Oy, (V) defined in (2.22).
Remark 2.9. In (ii), the 7 has been restricted to (1, 1) only to make the estimates more elegant.

Proof of Proposition 2.4. From now on, we set = 3 in the r.h.s. of (2.40). In view of the

second term, (2.43) with (2.44)-(2.45) and (A.5), we need to estimate the two quantities:

X Y5t / ds /ddZT K= X,Z,S)G(()g),ﬁ(Z,y;t - Sal)a (246)
R s

(d) (x,y;t / ds / dzr(d) (x,z; s)G( ) (Z,y;t—s,1). (2.47)
Rd L.k,

10



Let L > Lo(n = 1) defined in (2.23). We start with (2.46). From (2.44) followed by (A.14), there
exist two constants ¢, C > 0 s.t. V& > 0, V(x,y) € A%d and Vt > 0:

coth (%¢) Ny
Qz»>(od7),€(xa y; t) S C (1 + \/E) (1 + t) G(d X LY t, 8 / ds W 7C/{Lcoth 5
\/coth (%¢)

By using (A.16) to get rid of the coth in the integrand, followed by the lower bound in (B.4) for
the (artificial) denominator in the above r.h.s., then the upper bound in (2.8) follows. Let us turn
to the quantity in (2.47). From (2.45), one has Vx > 0, ¥(x,y) € A2? and V¢ > 0:

M)

2
_ k% L%
16 4 9

QL(d)(X yit) < (1+t)2d/ s & 5 deg),O(x,z;éls)x@L l(%)(Z)Cv'<(>‘i)7,€(z,y;t—5,1).
0 2

Rd

Now, we use (2.17) to make appear a Gaussian decay in L from the integration over R%. Here, the
presence of the characteristic function in the integrand plays a crucial role. Since Vz € O 1 (%),

|z| > (L — VL) (remind that L > Lo(n = 1), Lo(n) as in (2.23)) then ¥(x,y) € A3 and Vt > 0:

K 2

t
(d)(X 2d L s L2 7ﬁﬁtanh(ﬁ(t75))
y,> (1+t> /dS e 16 1 % 84 2
% 0 Vs

x / Az G (x,2;45)GD, (z,y;t — 5,2). (2.48)
Or n( ) '

Subsequently, we separate the proof of (i) from (ii). Extending the integration w.r.t. z to R%
then using successively the second upper bound in (A.8) and (A.13), (¢) follows from the bound:

2 2

e

=3

se—g%tanh(g(t—s)) Se—%%[tanh(%s)—i—tanh(%(t—s))] Se—%%tdnh(%) 0<s<t, (249)

)

=
[

justified by the lower bound in (B.4) together with (B.9). Let us turn to (i7). Firstly, we extend
the integration w.r.t. z to RY, then we use the first upper bound in (A.8) followed by (A.13).
Secondly, we introduce a factor s“T s~ “7 under the integral w.r.t s, and then we use successively
the lower bound in (B.4) and the upper bound in (B.1) leading both to (ks)~# < (coth(ks))? <
e2%5(sinh(ks))~2. On this way, we get under the same conditions than (2.48):

K 2

t LLip )% odrse— e Ll . .
QL(d) (x,y:t) < Clid(l +t)2ngi)O(x,y;4t)/ ds S (t—s)2ez"e 15 ¥ e—g%ztaﬂh(i(t—s))’
7 0 {sinh(xs)sinh(k(t — s))}

vl

for another constant C' > 0. Here, we artificially made appear a (sinh(xs))# under the integration
w.r.t. s. This leads to the appearance of a e2%5 in the numerator. If xk > 1, we can get rid of it

NZ 2
via the term e~ 16 7 8 (for L large enough) since x < k2. If k € (0,1), one has to choose L large
enough accordingly to & (i.e. L > cste/\/k). Given a kg > 0, let L = L,y > Lo(3) s.t. VL > Ly,

_n3 1_2_1) "3 L2
2 \871 s —E T

the inequality e ( <e % holds. By using an inequality of type (2.49) followed by
the identity in (B.7), then VL € [Ly,,0), V& € [Ko, ), ¥(x,y) € A2? and V¢ > 0, we arrive at:

(141¢)*

7ﬁL—2tanh(it) (d) .
e 1671 2V G (%, y;4t)
(sinh(kt)) 3 of )

QL(d) (x,y;t) < Ok

d
2

/Ot ds 5“7 (t - s) {(COth(FLS)) + (coth(x(t — s)))%} ,

for some constant C' > 0. Here, we used that (a + b)? < 2%(a® + %) Va,b,d > 0. To conclude this

11



estimate, it remains to use that there exists another constant C' > 0 s.t. V¢t > 0 and Vk > 0:

} dt1

(1+)2t= . (2.50)

vl
vl

max {/Ot ds % (t — )% (coth(ss)) ,/Ot ds % (t — 8)% (coth(s(t — 5)))

[MY

< olEnt

K2
To get (2.11), we have to modify the upper bound in (2.42) by mimicking the method used above
to make appear the singularity (sinh(x¢))? in the denominator (instead of v/%). O

2.2.3 Proof of Proposition 2.6.
The proof leans on [8, Prop. 3] that we reproduce here for reader’s convenience:

Proposition 2.10. Let 57 be a separable Hilbert space and H be a self-adjoint and positive
operator having the domain D C €. Fix ty > 0. Assume that there exists an application
(0,t0] >t — S(t) € B(H) (the algebra of bounded operators on F) with the following properties:
(A). supgeicy, IS < 1 < oo. (B). It is strongly differentiable, Ran(S(t)) C D and s —
lim; o S(t) = 1. (C). There exists an application (0,to] > t — R(t) € B(H) continuous in the
operator-norm sense s.t. |[R(t)|| < cat™® where 0 < a < 1, and:

oS
S0+ HS (10 = Rit)o.

Then the following two statements are true:
(i). The sequence of bounded operators (n > [1/t]):

Tn(t) := /1 ) ds exp[—(t — s)H]R(s),

n

converges in norm; let T(t) be its limit;
(ii). The following equality takes place on B(H): exp(—tH) = S(t) — T'(t).

Before giving the proof, we need a series of estimates related with the kernel of the semigroup
generated by the operator in (2.28). The proof of the below lemma can be found in Sec. 2.2.4.

Lemma 2.11. Vd € {1,2,3} there exists a constant Cq > 0 s.t. Y0 < n < 1, VL € [Lo(n), ),
Vi >0, V(x,y) € A2 and Vt > 0:

g (X yit) < Cae™ TG (x v ), (2.51)
1+t)4 _2p2
‘ngédln(x Y )’ < Cd( \/E) TG (x v 2e), (2.52)
1+t 2
gl xoyin)| < e 0G0, o), (25)

Proof of Proposition 2.6. The only thing we have to do is verify the assumptions of Proposition
2.10 in which Gy, , ,(t) plays the role of S(t). Let 0 <n < 1, L € [Lo(n),00) and £ > 0 kept fixed.
(A) From (2.33), Gr,,,n(t) is uniformly bounded in ¢ by some constant Cyq > 0. (B) By using that
s —limy o Goo,k(t) = 1 and s — limy |0 g1, (t) = 1 in the kernels sense, then:

V6 € L2(A}). BmGrnd = {Frafrn+ frafin} o= {fra+ fia}o =0,
where we used (2.24) and (2.26). Next, let us investigate the strong differentiability. From (2.31):
1
vo e L2(0%), = {(91,(t+00) () = (91, (9) ()}
- 1
= fL,n(' )E /]R'i dy {/Rd dz Ggl)),n( ) 4 t)G(()(é),H(Z, y; (%) - Ggl)),n( Y5 t)} fL,TI(Y)(b(Y)'

12



Since Goo (1) L2(R?) — D(Hs ), then the Stone theorem (in the kernels sense) provides:

tim 55 { (0170 +06) ) = (20,09) ()} =~ Vs [ Ay G330 )60

By using similar arguments to treat the contribution coming from gyzw( ), we therefore obtain:

(1%% % {GLem(t +68) — Groen(t)0} = — FLyHoo xGoo () fLin® — fL,nhL,n,ngL,n,n(t)fzm(ﬁ'
(2.54)
(C) Let Dy :={¢ € Cl(A_%) N CQ(A%),¢|6A% =0,A¢ € L?(A9)} be the domain on which Hy, ,, is
essentially self-adjoint. In the weak sense for any ¢ € Do, ¥ € C5°(A%) and t > 0:

0G0 «
lL(Wv"/)) = <HL,/<507 gL,n,n(t)"/)>L2(A%) = - <507 %(t)"/}> (A%) + <507 WL,n,n(t)"/)>L2(A%) s
L2(AY

where %(t) denotes the operator in the r.h.s. of (2.54). Note that the second equality is

obtained by performing some integration by parts, and afterwards by using the following identities:

HL,nfL,n = Hoo,nfL,n = {Hoo,m fL,n:| + fL,nHoo,m
as well as (remind that the potential V,, in (2.28) satisfies Vi (x) = |x|? on Supp(fLm)):

HL,nfL,n = hL,n,nfL,n = [hL,n,nv fL,n} + fL,nhL,n,n'

Since I1(¢,-) is a bounded linear functional Vo € Dy, then C§°(A) > ¥ ~ I(p,9) can be
extended in a linear and bounded functional on L?(A¢) by the B.L.T. theorem. As well, since
I(-,1) is a bounded linear functional Vi) € L?(A%) then ¢ ~ I(¢,) can be extended on the
self-adjointness domain D(H7, ). This means that V¢ > 0, Ran(Gr . ,(t)) C D(Hr,,). Hence:

G x,
<807 HL,ngL,mn(t>7/’>L2(Ad) =—\% L (t)w + <<Pa WL,n,n(t)7/’>L2(Ad) .
L ot L2(Ad) L

Finally, from (2.34) ||Wr, k5 (t)]| < Ct™2 Y0 < t < 1. Hence [IWL kn(t)|l is integrable in ¢ ~ 0. O

2.2.4 Proof of intermediary results.

Proof of Lemma 2.11. (2.51) follows from the Feynman-Kac formula in [14, Thm. X.68] together
with (A.5) and the definition of the Lo in (2.23) leading to (L — L")? > L?/2 VL € [Lo(n), 00).
Next, let us turn to the proof of (2.52)-(2.53). To do that, let us introduce an operator of reference.
vd € {1,2,3},V0 < n < 1, VL € (0,00) and V& > 0, define on C5°(A4):

. 1 K2 ~ - 1
M =5 (<iV)" + VLX), Vi) =7 (L1 (2.55)
By standard arguments, (2.55) extends to a family of self-adjoint and semi-bounded operators for
any L € (0,00), denoted again by Az .. V0 <1 <1, VL € (0,00) and V& > 0, let {gr, x n(t) :=

e thiem LQ(A%) — L? (AdL)}tZO be the strongly-continuous one-parameter semigroup generated

(d)

Lr,n 18 explicitly known and reads as:

by ITLL,W?. Its integral kernel denoted by g
~2 n
Vix,y) € AT VE> 0, i (xyit) = e TG (x i), (2.56)

where G(Ld,)o is the kernel of the semigroup generated by the Dirichlet Laplacian in L2(A%), see
(A.6). Note that (2.56) directly follows from the Feynman-Kac formula. The starting-point of the

13



proof of (2.52)-(2.53) is a Duhamel-like formula to express the semigroup {gr, . n(t)}+>0 in terms
of {Ggr,k,n(t)}+>0 whose integral kernel is given in (2.56). Let 0 < n < 1, L € [Lo(n),c0) (see
(2.23)) and k > 0 be fixed. In the bounded operators sense on L?(A%), it takes place:

t
vt > 07 gL,n,n(t) = gL,ka,n(t) - / ds gL,n,n(S) {hL,n,n - hL,n,n} gL,ka,n(t - S)v (257)
0

where we used the self-adjointness of the semigroups {gr. «»(¢) }+>0, {gr,5,5(t) }e>0-
Proof of (2.52). From (2.57), it follows in the kernels sense:

d ~(d 1
V(x,y) € AR VES 0, Vgt (x,3i0) = Vadi (6, ¥50) = Jap (e yit), (258)
q(LdL " (x,y;t) ==k / ds /Ad dz ng(LdL " (x,2;5) {VLm(z) — VLW(Z)} g(ﬁlm(z,y;t —s5).

Remind that Vy, ,,(2z) — Vi, (z) = |z|> — 2(L — L")? on Supp(fr.,), 0 otherwise. Let us estimate
the first kernel in the r.h.s. of (2.58). From (A. 11) and (2.56), there exists a constant Cg > 0 s.t.

1+t)d _w2p2
( \+/E) e TG (x,y;2t). (2.59)

Subsequently, from (2.59) along with (2.51), there exists another constant Cy > 0 s.t.

V(xy) € AFL V>0, Vgl (xyit)] < Ca

ds
0 Vs

where we used in the last inequality (A.13). Finally use (A.16) to get rid of the L? what leads to:

V(x,y) € A2, vt > 0, }q(Ld)K (%, ¥ )} < Cgr*L*(1 + t)de*%LTtGg?o(x,y;Qt)

1 t d W2 12
(%eitGgﬁfo(x,y;Qt), (2.60)

for another constant Cy > 0. It remains to gather (2.59) and (2.60) together.
Proof of (2.53). Starting from the below identity which holds in the bounded operators sense:

¢
900, (V) a0 =~ [ @53umalt — ) [(-39), B 1.0 5)
0
then by using that [(—iV), Az ..,] = 0, one gets from (2.57) on L*(A%):

t
VE >0, (=iV) gL mn(t) = (- N)ng(t)f/ Qs 310(5) (=3V) {Ptsin = B} 9Lt = 5).
0

It follows in the kernels sense:

V(x,y) € AFLVE> 0, Awgl (x,¥i1) = Axii (X, yit ZuL o
u(Ld)ﬁl77 (x,y;t) : / ds/ dz ngL on(%:238) (V2Viy) (z)g(LdZ€ 2z Y5t —s),
Al w

u(Ld),fn(x y;t) = mQ/ ds /Ad dz ngij(x, Z; S) {VL,.,](Z) - VLW(Z)} Vzg(LdL 2z, yit—s).
0 L
From (A.12) and (2.56), there exists a constant Cyq > 0 s.t.
14+0)4 .2
V(x,y) € A2Vt > 0, ‘Axg(LdLn(x ¥; )‘ < cd%eﬁ% G (x, y:2t).
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Subsequently, by mimicking the method leading to (2.60), there exists another Cy > 0 s.t.

(d),1

1+ ¢)? 2 12
V(X,y) € A%d’ vt > 0’ }uL K n(x y; ) < Cduei S

52 ()
s i@
\/E 00,0

By the same method again, but replacing the estimate (2.51) with (2.52), we have:

(x,y;2t).

2d
(L+18)™ w222

(d),2 A

¢ ds
< Og—it— (G (x, v 2t / —_—
uLnn(X Y )‘ = Yd t € oo,O(va, ) 0 \/g /—t—S

Gathering the three above estimates together, then the proof of (2.53) is over.

Proof of Lemma 2.8. Let d € {1,2,3},0<n <1, L € [Lo(n),00) and x > 0 kept fixed.
(i). From (2.36) written in the kernels sense, then V(x,y) € A2? and Vt > 0:

vx (gz,ﬁ,n)(d) (X7 y; t) = (VfLJ]) (X)G(()g)fi(x y, )fLJ?(y) + fLW(X)Vth(g),n(Xa y; t)fL,n(Y)‘i’
+ (VF5) (95 & yit) fra(y) + £, Vagsn (%, ¥3) fra()-

(2.41) is an upper bound for the two first kernels in the above r.h.s. obtained from (A.3)-(A.4)
and (A.9). (2.42) is an upper bound for the two last kernels obtained from (2.51) and (2.52).

(ii). From (2.37) written in the kernels sense, then V(x,y) € A2¢ and V¢ > 0:

4
Ve Wi) ' eyit) = 3 Q0 (x, yi1),  with:
QUL 6, ¥3) 1= =i (Vi) (0) [(=iV) , Goon D] (6,3) (V1) (9)+
(V1) VG, 0, v30) (V) (9) = (V) (G335 (B ) ),
QLA 6, yit) 1= =if 1OV (V) Goorn ()] (5,3 (Vi) (3)+
F Fn(OAGE, (5,:0) (Vis) ) = fra()VxG, 0y 0)5 (Afra) (),

10 ocyit) = =i (VF7,) () [(=3V), 910n(8)] (53) (T 1) (9)+
4 (V12.) Vgt 6 3:0) (V) () (VF5) (0950, 0033005 (Afrn) ),
QU (6 ¥31) = —if5,(X) Vi [(19) , gr.n(®)) (5 9) (T 1) ()4
15080, (33 0) (Vi) (9) = 1500 Vx0 o 33005 (A20) ().

(2.61)

(2.62)

(2.63)

(2.64)

Let us first estimate (2.61). In view of (A.9), (2.41) is clearly an upper bound for the two last
terms in the r.h.s. of (2.61). For the first term in (2.61), we use (2.38) in the kernels sense. Then,

there exists a constant Cy > 0 s.t. V(x,y) € A2¢ and V¢t > 0:

2t
%/ ds/ dz G((fé),ﬁ(x,z;t —5) (Valz[?) Gg%m(z,y; 5) < Cy(K*L + ﬁg)tGg%K(x,y;t, 2).
0 R

(2.65)

Here, we used that |z| < |x — z| + |x|, then (A.16) to get rid of the factor |x — z| and (A.14),
and finally the inequality coth(a) > 1 Va > 0. Now, we use the property (2.27) to get rid of the
powers of  in (2.65) via (A.16). Hence, there exist two other constants ¢, Cy > 0 s.t. on A2%:

(V1) () [(<19), Goee D] (5,5) (V) )

< CaL ™31 + L)oo ot (5 G (x, y:t,4).
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Restricting to 1 > n > i, and gathering the above estimate with (2.41) together, then there exist
two other constants ¢, Cy > 0 s.t. VL € [Lo(n),00), V(x,y) € A2 and Vt > 0:

Q60 ¥i)| < Ca (L4 V) yJeoth (51) (1 4+ et (506D (x,yit,4).  (2.66)

Subsequently, let us turn to (2.62). From (A.9) and (A.10) together with the property (2.25), then
there exist two other constants ¢, Cy > 0 s.t. V(x,y) € A2% and V¢ > 0:

1 A .
Fra)VRGD, (57105 (Afra) () + Fr.a(ACD, (5. y:) (Vi) <y>\
< Cd\/E coth (gt)e_CHLG COth(%t) G(()g),n(xa y; ta 4)

Here, the property (2.25) is essential to remove a y/coth(xt) in the numerator of (A.10). For
the first term of (2.62), we use the same reasoning leading to (2.65) combined with the property
(2.25). Thus, there exist two other constants ¢, Cq > 0 s.t. V(x,y) € A2? and V¢ > 0:

K2
2

fon(x / ds/d dz V4 G(d) (x,z;t — 8) (Vz|z|2) g‘i),{(z y;s )(VfLm) (y)‘
R
< Ca (14 V&) L1 + L)1 + t)e<E o506 (x, y:1.8),

Restricting to 1 > n > i, and gathering the above estimates together, then there exist two other
constants ¢, Cy > 0 s.t. VL € [Lo(n),00), V(x,y) € A2? and V¢t > 0:

Q2 (x,y: )‘ < Cy (1+ V) /coth (gt)(l + e r b eoh(5) 6@ (x yit8).  (2.67)

The estimate in (2.44) follows by adding (2.66) and (2.67) together.
We continue with (2.63). (2.42) is an upper bound for the last two terms in the r.h.s. of (2.63).
From (2.39) in the kernels sense, then by (A.16) there exist two other constants ¢, Cy > 0 s.t.

2 27

_/ ds/ dsz (X250 = 8) (V2 Vi) (z)g(LdL 2(Zy38) < Cde_%LTt —C_G( 0(%,y;2t).
Ag o

We conclude that there exist two other constants ¢, Cy > 0 s.t. V(x,y) € A2%:

1 t d L2 12 2n

( \—2) e ¥ et Ggi?o(x,y;4t). (2.68)

Concerning (2.64), one can prove that there exist two other constants ¢,Cy > 0 s.t. on A%d:

vt > 0, ‘QLM y)‘<C’d

1 t 2d 2 L2 2n
%eﬁ%tec%Gg?o(x,y;4t). (2.69)

Here, we used (2.27) combined with (A.16) to get rid of a v/ in the denominator of (2.53). The
estimate in (2.45) follows by adding (2.68) and (2.69) together, then by taking into account the
support of the cutoff functions introduced in Sec. 2.2.1. O

Vi >0, ]Qf{fn X, ¥ )‘ <Cy

3 Acknowledgments.

B.S. was partially supported by the Lundbeck Foundation, and the European Research Council
under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC grant
agreement 202859. A part of this work was done while the second author was visiting DIAS-STP
(Dublin), B.S. is grateful for invitation and financial support. Both authors warmly thank Horia
Cornean, Tony Dorlas and Cyril Levy for helpful and stimulating discussions.

16



A The semigroup: A review of some basic properties.

Here, we collect the technical results we use throughout the paper involving the semigroup
generated by Hp, ., see Sec. 1.1. For reader’s convenience, all the proofs are placed in Sec. A.2.

A.1 Kernels, estimates and all these things.

For simplicity’s sake, we use hereafter the notation Ao, := R. From (1.1)-(1.2), remind that:

VL € (0,¢], Hp,= % (—iVx)® + %H2|X|2 in L*(AY), d € {1,2,3}. (A1)
Below, we allow the value k = 0; in that case, Hr, o with L < oo is nothing but the Dirichlet Lapla-
cian and Hy o the free Laplacian on the whole space whose self-adjointness domain is W22(A%).
Let us recall some properties on the strongly continuous one-parameter semigroup {Gp, . (t) :=
e tHrw s [2(A4) — L%(A¢)}i>0 generated by Hy . in (A.1). We refer to [18, Sec. B] and [20]. As
already mentioned, Vx > 0 and VL € (0, o0] it is a self-adjoint and positive operator on L%(A¢) by
the spectral theorem and the functional calculus. Moreover, since {Gr, .(t)}+>0 is bounded from
L?%(A%) to L>=(A4), then it is an integral operator by the Dunford-Gelf’and-Pettis theorem.

Let us turn to the integral kernel of {G, . (t)}¢>0 we denote by G(ch)n. Vk > 0 and VL € (0, o0],

G(L'{L is jointly continuous in (x,y,t) € A_dL X A_dL % (0,00) and vanishes if x € A4 or y € OAS.
When L = oo, it is explicitly known. If k = 0, it is the so-called heat kernel reading for d =1 as:

(z—y)?
1 e

T Ve Vi

If k > 0, the one-dimensional kernel is given by the so-called Mehler’s formula, see [12, pp. 176]:

V(,y) € A2, vt >0, GV (,y5t) - (A.2)

A2 (d=1) = [ 5[ty tanh(§t)+(z—y)? coth(5t)] (A 3
V(z,y) € AL, VE>0, GO (2, y5t) 27rsinh(nt)e o

Note that the multidimensional kernel (i.e. d = 2,3) is directly obtained from (A.2) or (A.3) by:

d
Ve >0, G (xy:t) =[] G (mu5t), x:={a;} iy, y = {y;}s. (A4)

J=1

When restricting to L € (0, 00), the mapping L — G(LdL (x,y;t) is positive and monotone increas-
ing. This leads to the following pointwise inequality which holds V& > 0 and VL € (0, 00):

V(x,y,t) € AL x AL x (0,00), G (x,y;t) <sup G\ (x,y;t) = G (x,y;t).  (A.5)
’ L>0 ’ ’

We mention that, if x = 0, the kernel G(LC{)O is explicitly known and reads as, see [8, Eq. (4.13)]:

d
d d=
V(x,y) € A%, vt >0, G(L7)O(x,y;t) = H G(L,O 1)(xj,yj; t), (A.6)

=1
- 1 (x —y+2mL)? (x+y—2mL—L)?
G(Ldo 1)(x,y;t) =— Z {exp (—— —exp | — .
’ V2t el 2t 2t

In view of (A.3)-(A.4), let us introduce Vk > 0 the new notation:

gd _ .
Vv >0, Gg‘izn(x,y;tvfy) = <m> He_ﬁ[(zj-i-yj)z tamh(5‘15)4—(96]'—1/1)2coth(;t)]7 (A?)
j=1

with the convention: GS;QK(- ,o3t) = Gg%n(- ,+;t,1). Here are collected all the needed estimates:
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Lemma A.1. Vd € {1,2,3}, there exists a constant Cyq > 0 s.t.
(i). V& >0, ¥y >0, V(x,y) € A% and ¥Vt > 0:

d
(d) ) < K g4 A(d) h) < AR @D h) < -4
G0 y5t.) < (s ) A6 xyinn) <116 Y yint) < 2rt)E, (A
‘Vngg%K(x,y;t)‘ < Cgv/ky [ coth (gt)foé),ﬁ(x,y;t,Q), (A.9)
‘AXGg‘ign(x,y;t)‘ < Cyk coth(/ﬁt)Gg‘i?K(x,y;t, 2). (A.10)

(ii). VL € (0,00), V(x,y) € A2 and Vt > 0:

1 d
A (xyib)| < Od(%t)Gii?&x,y; 2t). (A.12)

We continue with the following lemma expressing the semigroup property in the kernels sense:

Lemma A.2. Vd € {1,2,3}, V0 >0, Vt >0, V0 < u < ¢:
(i). V& >0, VL € (0,00] and V(x,y) € A%¢:

/ Az G\ (x,2;6(t — u))G\Y) (2, y; 6u) = GYP) (x,y; 6t). (A.13)
Al ’ ’ ’

(ii). V& >0, Vy > 0 and ¥(x,y) € A%4:

/ 42 GD (x, 2 5(t — u),7)CD, (2, y:6u,7) = 1 CD, (x,¥:t, 7). (A14)
A

d
oo

Now, we give some estimates on the operator and trace norms of the semigroup {Gr, . (t)}+>o0.
For any x > 0 and L € (0, 0], {GL,«(t)}+>0 is a contraction semigroup, see e.g. [20, Sec. 1.2]:

Lemma A.3. Vd € {1,2,3}, Vk > 0 and Vt > 0:

vl

VL € (0,00), ||GLx®)] < ||Gook(t)]] < (cosh(kt))™2 < 1. (A.15)

Restricting to k > 0, VL € (0,00] {Gp x(t)}+>0 is a Gibbs semigroup, see [20, Sec. 3.1]:

Lemma A.4. Vd € {1,2,3}, V& > 0 and VL € (0,], {Gr.x(t) }+>0 is a trace class operator on

L2(A%). Moreover, denoting Egg?,i =d%, one has for any L € (0,00):

_EW) 4

e o0, K

AN
Trrzaay {GLw(t)} < Trrzad ) {Goo(t)} = (2 sinh (515)) = m-

A.2 Proof of Lemmas A.1-A .4.

Proof of Lemma A.1. From the lower bounds in (B.2)-(B.4), (A.2) is an upper bound for (A.3)
what leads to (A.8). (A.9)-(A.10) are obtained by direct calculations. The crucial ingredients are:

—u 2M " _v
Yu,v>0,Ve >0, xte < ) ¢ 27 (A.16)
v
and the identity (B.6) for (A.10). (A.11)-(A.12) follow from [8, Prop. 2]. O
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Proof of Lemma A.2. (i) follows from the semigroup property which reads as: Gp .(t) =
Grx(t —u)Gp x(u) YO < u < ¢. The proof of (ii) is based on the following explicit calculation:

Va,b,c,d >0, /dz e~ lo@ ) b(a—2)"] o= [e(z4) +d(=—9)]
R

_blckd)ta(dte)tdab 2 _ bletd)ta(dte)tded, 2 _gb(d—c)talc—d)

Vr(a+b+c+d) ze B atb+efd " afbterd Y eT T afbretd . (A7)

Then, set ag := tanh(§du), by := coth(§du), co := tanh(50(t—u)) and do := coth(5d(t—u)). From
the identities in (B.7)-(B.8) and (B.5): ag+bo+co+do = 2sinh(kdt){sinh(kdu) sinh(kd(t—u))} .
The rest of the proof consists in using some identities involving the hyperbolic functions to simplify

each one of the factor inside the exponentials in the r.h.s. of (A.17). It is (quite) easy to get:

(bo(co + do) + ao(do + co) + 4agbo) (ag + bo + co +do) ™" = 2 coth(kdt),
(bo(do — co) + ao(co — do)) (ao + bo + co + do)f1 = tanh (gét) — coth (gét) ) O

Proof of Lemma A.3. The first inequality follows from the fact that the semigroup {Gr «(t)}i>0
is increasing in L in the sense of [7, Eq. (2.39)]. The Shur-Holmgren criterion provides the esti-
mate on the operator norms. When « > 0, we used (A.17) (with ¢ = 0 = d) along with (B.6). O

Proof of Lemma A.4. Let (J2(L2(A9)), || - |l3,) and (31(L2(AD)), | - ||l3,), L € (0,00] be the
Banach space of Hilbert-Schmidt and trace class operators on LQ(Ad) respectively. We start with
d=1. Let K > 0 and ¢ > 0 be fixed. In view of (A.3), from (A.17) (we set ¢ =0 = d):

2 1 1
oo d d ‘ (d - ( = )
I Hj? / . /Al Y |Goor (x93 2 sinh(kt) <

Therefore, Goo (1) is a trace class operator on L*(AL)) since [[Goo,x(t)]3, < [|Goox(3)]3, < oo

Since Gg‘iil)c ,;t) is jointly continuous on A%, from [8, Prop. 9] it follows that:

1

1
—— Al
2 sinh (5t)’ (A.18)

[Goont)l, = [ oGV (o) =

AL
where we used the identity (B.5). By positivity of Goo x(t), |Goo,s(t)ll5, = Trrzar ){Goo,s(t)}-
The rest of the proof leans on the estimate (A.5) which leads to [|GL.(t)[3, < ||GOO7,€( I3, -
Hence, VL € (0,00) G, 4(t) is also a trace class operator on L?(A}), and by mimicking the above

arguments, its trace norm obeys [|Grx(t)[3, = Trr2(a1){Grs(t)} < [|Goo(t)||3,- The case of
d =1 is done. The generalization to d = 2, 3 is straightforward due to (A.4). O

B Some useful identities and inequalities.

Here, we collect some miscellaneous inequalities/identities involving the hyperbolic functions.
Most of them can be found in [1, Sec. 4.5]. For any real a > 0:

1 < cosh(a) < e (B.1)
a < sinh(a) < % , (B.2)
0 < tanh(a) < 1, (B.3)

1 1 1+«
— < coth : < B4
o= coth(a) fanh(a) —— a> 0 (B.4)
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For any reals o« >0 and ¢t > s > 0:

«Q «
sinh(at) = 2sinh (Et) cosh (gt) , (B.5)
1 « 1 «
coth(at) = = coth (—t) + — tanh (—t) , B.6
(at) = 5 5 5 5 (B.6)
sinh(at)
coth(as) + coth(a(t — s)) = — - , B.7
(as) (af ) sinh(as) sinh(a(t — s)) (B-7)
sinh(at)
tanh(as) 4+ tanh(a(t — s)) = , B.8
(as) (af ) cosh(as) cosh(a(t — s)) (B:8)
tanh(as) + tanh(a(t — s)) = tanh(at) {1 + tanh(as) tanh(a(t — s))} > tanh(at). (B.9)
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