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BANDWIDTH SELECTION IN KERNEL EMPIRICAL RISK
MINIMIZATION VIA THE GRADIENT

By Michaël Chichignoud∗ and Sébastien Loustau

ETH Zürich and University of Angers

Abstract: In this paper, we deal with the data-driven selection of
multidimensional and (possibly) anisotropic bandwidths in the gen-
eral problem of kernel empirical risk minimization. We propose a
universal selection rule, which leads to optimal adaptive results in a
large variety of statistical models such as nonparametric regression or
statistical learning with errors-in-variables. These results are stated
in the context of smooth loss functions, where the gradient of the
risk appears as a good criterion to measure the performance of our
estimators. This turns out to be helpful to derive excess risk bounds -
with fast rates of convergence - in noisy clustering as well as adaptive
minimax results for pointwise and global estimation in robust non-
parametric regression. The selection rule consists of a comparison
of the gradient empirical risks. It can be viewed as a non-trivial im-
provement of the so-called GL method (see Goldenshluger and Lepski
[16]) to non-linear estimators. Another main advantage of our selec-
tion rule is the non-dependency on the smallest eigenvalue of the
Hessian matrix of the risk, which is a changing and unknown param-
eter determined by the underlying model.

1. Introduction. We consider the minimization problem of an unknown risk function
R : Rm → R, where m ≥ 1 is the dimension of the statistical model we have at hand.
Assume there exists a minimizer called “oracle”:

(1.1) θ? ∈ arg min
θ∈Rm

R(θ).

The risk function corresponds to the expectation of an appropriate loss function w.r.t. an
unknown distribution. In empirical risk minimization, this quantity is usually estimated
by its empirical version from an i.i.d. sample. However, in many problems such as local
M -estimation or errors-in-variables models, a nuisance parameter can be involved in the
empirical version. This parameter most often corresponds to some bandwidth related to a
kernel which gives rise to the problem of “kernel empirical risk minimization”. One typi-
cally deals with this issue in pointwise estimation as e.g. in Polzehl and Spokoiny [46] with
localized likelihoods or in Chichignoud and Lederer [10] in the setting of robust estimation
with local M -estimators. In learning theory, many authors have recently investigated su-
pervised and unsupervised learning with errors in variables. As a rule, such issues (viewed

∗. The first author acknowledges partial financial support as member of the German-Swiss Research
Group FOR916 (Statistical Regularization and Qualitative Constraints) with grant number 20PA20E-
134495/1.

MSC 2010 subject classifications: Primary 62G05, 62G20; secondary 62G08, 62H30
Keywords and phrases: Adaptivity, Bandwidth Selection, ERM, Errors-in-variables, Robust Regression,

Statistical Learning

1



2 CHICHIGNOUD & LOUSTAU

as an inverse problem) require to plug-in deconvolution kernels in the empirical risk such
as Hall and Lahiri [20] in quantile and moment estimation, Loustau and Marteau [36] in
noisy discriminant analysis, Loustau [34] in noisy learning, Chichignoud and Loustau [11]
in noisy clustering and Dattner, Reiß and Trabs [13] in quantile estimation (see Section
2.2 for further details about these examples).

All the above papers study the theoretical properties of such kernel empirical risk min-
imizers and propose deterministic choices of bandwidths to deduce optimal (minimax)
results. As usual, these optimal bandwidths are related to the smoothness of the target
function or the underlying density and are not achievable in practice. The adaptivity is
therefore one of the biggest challenges. In this respect, data-driven bandwidth selections
and optimal adaptive results have been already proposed in [10, 11, 13, 46], which are all
based on Lepski-type procedures.

Before describing these procedures and their interest, let us briefly explain why other
popular data-driven methods are not suitable in our context. Model selection procedures
have been introduced to select the hypothesis space over a sequence of nested models
(e.g. finite dimension models) with a fixed empirical risk. Unfortunately, the bandwidth
parameter affects the kernel empirical risk and a model selection technique cannot be
directly applied in our setting. Another popular candidate is cross-validation. This useful
technique is based on the following two-step procedure. First of all, a family of estimators is
constructed from a subset of the observations called the training set. The rest of the sample,
called the test set, is used to select the best estimator in the previous family. However,
in errors-in-variables models, this test set is not available since we observe contaminated
observations. Aggregation methods suffer from the same handicap. Nevertheless, we can
mention Meister [41] in deconvolution estimation who is able to estimate the L2-risk via
a Fourier analysis, but this is not directly applicable in our general context.

Lepski-type procedures are rather appropriate to construct data-driven bandwidths
involved in kernels (for further details, see e.g. [24, 31, 32]). It is well-known that these
procedures suffer from the restriction to isotropic bandwidths with multidimensional data,
which is the consideration of nested neighborhoods (hyper-cube). Many improvements have
been made by Kerkyacharian, Lepski and Picard [26] and more recently by Goldenshluger
and Lepski [16] to select anisotropic bandwidths (hyper-rectangle). Nevertheless, their
approach still does not provide anisotropic bandwidth selection for non-linear estimators
as in our purpose. The only work we can mention is Chichignoud and Lederer [10] in
a restrictive case which is pointwise estimation in nonparametric regression. Therefore,
the study of data-driven selection of anisotropic bandwidths deserves some clarifications.
Moreover, this field is of first interest in practice, especially in image denoising (see e.g.
[2, 4]).

The main contribution of our paper is to solve this issue in the framework of kernel
empirical risk minimization. To this end, we provide a novel universal data-driven selec-
tion of anisotropic bandwidths suitable for our large context of models (see Section 3
for a proper definition). This method can be viewed as a generalization of the so-called
Goldenshluger-Lepski method (GL method, see [16]) and of the Empirical Risk Compari-
son method (ERC method, see [11]). This will enable us to construct estimators which have
adaptive optimal properties. We especially derive an oracle inequality for the “Gradient
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excess risk” (described below), which leads to adaptive optimal results in many settings
such as pointwise and global estimation in nonparametric regression and clustering with
errors-in-variables.

Along the present paper, we deal with smooth loss functions, where the smoothness
is related to the differentiability of the associated risk function. Under this restriction,
we propose a new criterion to measure the performance of an estimator θ̂, namely the
Gradient excess risk (G-excess risk for short in the sequel). This quantity is defined as:

(1.2) |G(θ̂, θ?)|2 := |G(θ̂)−G(θ?)|2 where G := ∇R,

where | · |2 denotes the Euclidean norm on Rm and ∇R : Rm → Rm denotes the gradient
of the risk R. With a slight abuse of notation G denotes the gradient, whereas G(·, θ?)
denotes the G-excess risk. The use of a smooth loss function, together with (1.1), leads to
G(θ?) = (0, . . . , 0)> ∈ Rm and the G-excess risk |G(θ, θ?)|2 corresponds to |G(θ)|2. The
main idea behind this criterion is summarized in Lemma 1 (see Section 2.1), which gives
the following inequality: √

R(θ̂)−R(θ?) . λ−1
min|G(θ̂, θ?)|2,

where a . b (a, b ∈ R) means that ∃c > 0 such that a ≤ cb, θ lies in a neighborhood of
θ? and λmin is the smallest eigenvalue of the definite positive Hessian matrix of the risk
function R at θ?. This quantity especially coincides with the usual Fisher information in
maximum likelihood estimation.

With such an inequality, we can deduce “fast” rates of convergence O(n−1) for the usual
excess risk R(θ̂)−R(θ?) if we have at our disposal “slow” rates of convergence O(n−1/2)
for the G-excess risk (see Section 2.1 for further details). One of the contributions of our
paper consists in stating fast rates for the excess risk - in the presence of smooth loss
functions - without using the so-called localization technique (see Mammen and Tsybakov
[38], Koltchinskii [28], Blanchard, Bousquet and Massart [7], Bartlett and Mendelson [6]).
In Section 4, we illustrate this phenomenon in clustering, where fast rates have been
recently proposed using localization (see [33, 11]).

From an adaptive point of view, the introduction of the G-excess risk (1.2) has some
interesting properties. In standard excess risk bounds, the use of localization techniques
has an important drawback: any model selection or adaptive procedure suffers from the
knowledge of the parameters involved in the so-called “margin assumption” (see e.g. Tsy-
bakov [47], Koltchinskii [28]), such as the smallest eigenvalue λmin of the Hessian matrix.
Due to the G-excess risk approach, an important contribution of our paper is the non-
dependency of our data-driven procedure on λmin. We give further comments on this point
in the sequel.

In this paper, we consider the risk minimization (1.1) over a finite dimensional parameter
of Rm. In statistical learning or nonparametric estimation, one usually aims at estimating
a functional object belonging to some Hilbert space. However, in many examples, the
target function can be approximated by a finite object thanks to a suitable decomposition
in a basis of the Hilbert space for instance. This is typically the case in local M-estimation,



4 CHICHIGNOUD & LOUSTAU

where the target function is assumed to be locally polynomial (and even constant in many
cases). Moreover, in statistical learning, one is often interested in the estimation of a finite
number of parameters as in clustering (see other examples in Section 2.2). The extension
to the infinite dimensional case is discussed in Section 6.

The structure of this paper is as follows: the next section describes the main ideas behind
our approach and states the first notations. In Section 3, we state an oracle inequality for
the G-excess risk of the data-driven procedure. We then apply this procedure to the
unsupervised learning problem of clustering in Section 4 and to robust nonparametric
regression in Section 5. Additionally, we give a discussion in Section 6. The proofs are
finally conducted in Section 7.

2. Main ideas and first notations. In this section, we present the main ideas of
this contribution, namely the gradient excess risk approach and the heuristic of our data-
driven selection rule. We also present some examples where a bandwidth is involved in
empirical risk minimization, from both local M -estimation or errors-in-variables problems.

2.1. The gradient excess risk approach. As mentioned above, we suggest to work with
the “G-excess risk” defined in (1.2). The most important fact with (1.2) is the following:
with smooth loss functions, slow rates O(n−1/2) for the G-excess risk |G(θ̂, θ?)|2 lead to
fast rates O(n−1) for the usual excess risk R(θ̂)−R(θ?) thanks to the following lemma.

Lemma 1. Let θ? satisfy (1.1) and U be the Euclidean ball of Rm centered at θ?, with
radius δ > 0. Assume θ 7→ R(θ) is C2(U), all of second partial derivatives of R are bounded
on U by a constant κ1 and the Hessian matrix HR(·) is positive definite at θ?. Then, for
δ > 0 small enough, we have:√

R(θ)−R(θ?) ≤ 2

√
mκ1

λmin
|G(θ, θ?)|2, ∀θ ∈ U,

where λmin is the smallest eigenvalue of HR(θ?).

The proof, given in Section 7, uses some standard tools from differential calculus ap-
plied to the multivariate risk function R ∈ C2(U) at a neighborhood of θ?. The constant
two appearing in the RHS can be arbitrarily close to one, depending on the size of this
neighborhood. In the sequel, we use Lemma 1 to a consistent family of estimators.

Let us explain how the previous lemma, together with standard probabilistic tools,
allows us to establish fast rates for the excess risk. In this section, R̂ denotes the usual
empirical risk with associated gradient Ĝ := ∇R̂ and associated empirical risk minimizer
(ERM) θ̂ for ease of exposition. Thanks to the smoothness of the loss function, G(θ?) =
Ĝ(θ̂) = (0, . . . , 0)> and we lead to the following heuristic:

(2.1)

√
R(θ̂)−R(θ?) . |G(θ̂, θ?)|2 = |G(θ̂)− Ĝ(θ̂)|2 ≤ sup

θ∈Rm
|G(θ)− Ĝ(θ)|2 . n−1/2.

The last inequality comes from the application of a concentration inequality to the empiri-
cal process Ĝ(·), which requires no localization technique. Somehow, Lemma 1 guarantees
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that for a smooth loss function, fast rates occur when the Hessian matrix of the risk is
positive definite at θ?.

Now, let us compare our approach to the literature on excess risk bounds. Vapnik
and Chervonenkis [50] have originally proposed to control the excess risk via the theory
of empirical processes. It gives rise to slow rates O(n−1/2) for the excess risk (see also
[49]). In the last decade, many authors have improved such a bound by giving fast rates
using the so-called localization technique (see [7, 28, 38, 40, 42, 47] and the references
therein). This field has been especially studied in classification (see Boucheron, Bousquet
and Lugosi [8] for a nice survey). The principle of localization is to study the increments of
an empirical process in the neighborhood of the target θ?. Using a uniform Bernstein-type
inequality, this random quantity can be bounded by its expectation with high probability.
This complex technique requires a variance-risk correspondence, that is to say a control
of the variance term appearing in the concentration inequality by the excess risk. This
is equivalent to the so-called margin assumption. Interestingly, the next lemma suggests
to link the margin assumption with some smoothness conditions on the loss function as
follows.

Lemma 2. Let X be a Rp-random variable with law PX and assume there exists a loss
function ` : Rp×Rm → R+ such that R(·) = EPX `(X , ·). Let us consider an oracle defined
in (1.1) and let U be the Euclidean ball of center θ? and radius δ > 0 such that:

– θ 7→ `(X , θ) is twice differentiable on U , PX -almost surely;
– R(·) = E`(X , ·) is three times differentiable on U and the partial derivatives of third

order are bounded;
– the Hessian matrix HR(θ?) is positive definite.

Then, for δ sufficiently small, we have:

EPX [`(X , θ)− `(X , θ?)]2 ≤ 3κ2λ
−1
min [R(θ)−R(θ?)] , ∀θ ∈ U,

where κ2 = EPX supθ∈U |∇`(X , θ)|
2
2 and λmin is the smallest eigenvalue of HR(θ?).

The proof is given in Section 7 and uses a Taylor expansion at θ?. Note that the regularity
of the loss function implies a strong margin assumption, i.e. a power of the excess risk
equals to 1. Weaker margin assumptions - where the power of the excess risk is less than
1 - have been considered in the literature (see Tsybakov [47], Koltchinskii [28], Bartlett
and Mendelson [6]) and allow them to obtain fast rates of convergence for the excess
risk between O(n−1/2) and O(n−1). However, to the best of our knowledge, these weaker
margin assumptions are very often related to non-smooth loss functions, such as the hinge
loss or the hard loss in the specific context of binary classification.

From the model selection point of view, standard penalization techniques - based on
localization - suffer from the dependency on parameters involved in the margin assumption.
More precisely, in the strong margin assumption framework, the construction of the penalty
needs the knowledge of λmin, related to the Hessian matrix of the risk. Although many
authors have recently investigated the adaptivity w.r.t. these parameters, by proposing
“margin-adaptive” procedures (see [46] for the propagation method, [30] for aggregation
and [3] for the slope heuristic), the theory is not completed and remains a hard issue (see
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the related discussion in Section 6). As mentioned above, it is surprising to note that our
data-driven procedure does not suffer from the dependency on λmin since we focus on
stating slow rates for the G-excess risk and we do not need any margin assumption.

2.2. Kernel empirical risk minimization and examples. Let us fix some notations. Let
(Ω,F ,P) be a probability space and for some p ∈ N?, consider a Rp-random variable Z on
(Ω,F ,P) with law P absolutely continuous w.r.t. the Lebesgue measure. In what follows,
we observe a sample Zn := {Z1, . . . , Zn} of independent and identically distributed (i.i.d.)
random variables with law P . The expectation w.r.t. the law of Zn is denoted by E.

In this paper, we are primarily interested in the kernel empirical risk minimization
problem, where a bandwidth is involved in the empirical risk. In the sequel, we call a
kernel of order r ∈ N? a symmetric function K : Rd → R, d ≥ 1, which satisfies the
following properties:
•
∫
Rd K(x)dx = 1,

•
∫
Rd K(x)xkjdx = 0, ∀k ≤ r, ∀j ∈ {1, . . . , d},

•
∫
Rd |K(x)||xj |rdx <∞, ∀j ∈ {1, . . . , d}.

For any h ∈ H ⊂ Rd+, we also call kernel the dilation Kh defined as

Kh(x) = Π−1
h K(x1/h1, . . . , xd/hd), ∀x ∈ Rd,

where Πh :=
∏d
j=1 hj . With a given kernel K, we define the kernel empirical risk indexed

by an anisotropic bandwidth h ∈ H ⊂ (0, 1]d as:

(2.2) R̂h(θ) :=
1

n

n∑
i=1

`Kh(Zi, θ),

and an associated kernel empirical risk minimizer (kernel ERM):

(2.3) θ̂h ∈ arg min
θ∈Rm

R̂h(θ).

Along the paper, the function `Kh : Rp×Rm → R+ is a loss function associated to a kernel

Kh such that θ 7→ `Kh(Z, θ) is twice differentiable P almost surely and such that R̂h is an
asymptotically unbiased estimator of the true risk R, i.e.

(2.4) lim
h→(0,...,0)

ER̂h(θ) = R(θ), ∀θ ∈ Rm.

We recall that the aim of the paper is the data-driven selection of the “best” kernel ERM
in the family {θ̂h, h ∈ H}. In the sequel, we list many examples of kernel empirical risk
minimizations over finite dimensional spaces.

We start with local M-estimation which is usually employed in pointwise estimation.
The key idea, as described for example in [48, Chapter 1], is to approximate the target
function in a neighborhood of size h of a given point x0 by a polynomial. An estimation
of this polynomial can be then derived by minimizing an appropriate kernel empirical risk
as in the examples below.
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• Local Fitted Likelihood - Polzehl and Spokoiny [46]

Let us introduce a sample of independent random variables (Wi, Yi) ∈ [0, 1]×R, i =
1, . . . , n, where Yi has a probability density g(·, f?i ) with parameter f?i = f?(Wi). The
aim is to estimate the quantity f?(x0) = θ? at a given point x0. This model contains
standard nonparametric problems such as Gaussian regression, binary classification
model, inhomogeneous exponential and Poisson models. In such a case, one usually
applies the local version of the well-known likelihood method. It gives rise to the
minimization of the localized negative log-likelihood as:

1

n

n∑
i=1

− log (g(Yi, t))Kh (Wi − x0) −→ min
t∈R

.

In this framework, Polzehl and Spokoiny [46] have stated adaptive minimax rates
in the isotropic case for the Kullback divergence via a comparison of localized log-
likelihoods (see also [25]).

• Image denoising - Astola et al. [4]

Let (Wi, Yi) ∈ [0, 1]2 × R, i = 1, . . . , n be the data associated to the Gaussian
regression Yi = f(Wi) + εi. In image denoising, the design Wi corresponds to the
pixel location, whereas Yi corresponds to the pixel color. To denoise a pixel (pointwise
estimation), the authors consider the local least square estimate as:

1

n

n∑
i=1

[
Yi − ft(Wi)

]2
Kh (Wi − x0) −→ min

t∈Rm
,

where ft is a polynomial of order m− 1 with coefficients t. The adaptive theoretical
properties of such an estimator have been investigated in the isotropic case in [18].

• Robust nonparametric regression - Chichignoud and Lederer [10]

We consider the regression model Zi = (Wi, Yi) such that Yi = f(Wi) + ξi, where
W1, . . . ,Wn are independent and uniformly distributed on [0, 1]d, and ξ1, . . . , ξn are
i.i.d. with possibly heavy-tailed density gξ. We introduce the local empirical risk :

1

n

n∑
i=1

ρ(Yi − t) Kh(Wi − x0) −→ min
t∈R

where x0 ∈ (0, 1)d and ρ : R → R+ is a convex, twice differentiable loss function
with a bounded derivative such as the so-called Huber loss. For pointwise estimation,
the authors have obtained adaptive results in the anisotropic case. This example is
explicitly developed in Section 5 and generalized to global estimation.

Now, we turn out into errors-in-variables models, where a deconvolution kernel is in-
volved in the empirical risk. Suppose we observe an i.i.d. sequence:

Zi = Xi + εi, i = 1, . . . , n,(2.5)

where the Xi’s have density f and εi’s are independent to the Xi’s with known density g.
In this model, many statistical issues have been investigated.
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• Moment estimation - Hall and Lahiri [20]

From the observations Zi, i = 1, . . . , n defined in (2.5), Hall and Lahiri [20] con-
sidered the estimation of the r-th moment of the density f , for any r ∈ N?. This
requires the use of a deconvolution kernel K̃h (constructed from Kh) in their esti-
mation procedure. They especially estimate the r-th moment by calculating the r-th
moment of the deconvolution kernel estimator. However, this issue can be viewed as
the following kernel empirical risk minimization:

1

n

n∑
i=1

∫
R

(xr − µ)2K̃h(Zi − x)dx −→ min
µ∈R

.

Hall and Lahiri [20] propose a complete minimax study of this problem and also
consider quantile estimation as in the next example.

• Quantile estimation - Dattner, Reiß and Trabs [13]

Given noisy data Zi, i = 1, . . . , n as in (2.5), the goal is to estimate a τ -quantile
qτ of the density f , for any τ ∈ (0, 1). Dattner, Reiß and Trabs [13] minimize the
following kernel empirical risk:

1

n

n∑
i=1

∫
R

(x− η)(τ − 1lx≤η) K̃h(Zi − x)dx −→ min
η∈R

.

Minimax rates for this problem have been stated in [20]. Dattner, Reiß and Trabs [13]
have investigated the adaptive minimax issue via a standard Lepski-type procedure.
However, this is suitable to select an isotropic bandwidth, only.

• Noisy Clustering - Chichignoud and Loustau [11]

Let us consider an integer k ≥ 1. In the problem of clustering with noisy inputs Zi =
Xi+εi, i = 1, . . . , n, one wants to estimate k cluster centers c? = (c?1, . . . , c

?
k) ∈ (Rd)k

of the density f minimizing some distortion. To this end, Chichignoud and Loustau
[11] combine a deconvolution kernel and the well-known k-means distortion to give
the following kernel empirical risk minimization:

1

n

n∑
i=1

∫
Rd

min
j=1,...,k

|x− cj |22 K̃h(Zi − x)dx −→ min
c∈Rdk

.

The authors have investigated the problem of selecting the bandwidth. They prove
adaptive fast rates -up to a logarithmic term- for a data-driven selection of h, based
on a comparison of empirical risks. However, as above, this paper only deals with an
isotropic bandwidth. The anisotropic issue is especially studied for such a problem
in Section 4.

In the sequel, we will present the selection rule of the bandwidth in the general context
of kernel empirical risk minimization including all of the previous examples. We especially
deal with the noisy clustering and the robust nonparametric regression in Sections 4 and
5, respectively.
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2.3. Heuristic of the selection rule. From an adaptive point of view, we aim at select-
ing a kernel ERM into the family {θ̂h, h ∈ H} defined in (2.3), where H ⊂ Rd+ is a set of
anisotropic bandwidths. The anisotropic issue has been recently investigated in Golden-
shluger and Lepski [16] (GL method) in density estimation (see also [12] in deconvolution
estimation and [14, 15] for the white noise model). This method, based on the compari-
son of estimators, requires some “linearity” property, which is trivially satisfied for kernel
estimators in density estimation. However, kernel ERM are usually non-linear (except for
the least square estimator), and the GL method cannot be directly applied.

A first trail would be to compare the empirical risks (2.2) - viewed as estimators -
instead of kernel ERM. This comparison has been already employed by Chichignoud and
Loustau [11] with the ERC method, which is only suitable for isotropic bandwidths (see
also [46]). Unfortunately, as far as we know, the GL method cannot be performed by using
this comparison. More precisely, the requirement of the localization argument seems to be
the main obstacle to the GL method.

To tackle this impasse, we introduce a new selection rule based on the comparison of
gradient empirical risks instead of empirical risks or kernel ERM themselves. For any
h ∈ H and any θ ∈ Rm, the gradient empirical risk is defined as:

(2.6) Ĝh(θ) :=
1

n

n∑
i=1

∇`Kh(Zi, θ) =

(
1

n

n∑
i=1

∂

∂θj
`Kh(Zi, θ)

)
j=1,...,m

.

Note that we have coarsely Ĝh(θ̂h) = (0, . . . , 0)> since `Kh(Zi, ·) is twice differentiable
almost surely. According to (2.4), we also notice that the G-empirical risk is an asymp-
totically unbiased estimator of the gradient of the risk.

We are now ready to describe the main ideas of our data-driven procedure. Since a
nuisance bandwidth is involved in our empirical risk, we can give a bias-variance decom-
position of the G-excess risk thanks to (2.1) as follows:

(2.7) |G(θ̂h, θ
?)|2 ≤ |G− Ĝh|2,∞ ≤ |EĜh −G|2,∞ + |Ĝh − EĜh|2,∞,

where the expectation E is understood coordinatewise and |T |2,∞ := supθ∈Rm |T (θ)|2 for
all functions T : Rm → Rm. The selection rule is constructed in a way that the selected
bandwidth mimics the oracle bandwidth h?, which trades off the bias-variance decompo-
sition (2.7). For this purpose, we introduce the data-driven bandwidth:

ĥ := arg min
h∈H

B̂V(h),

where B̂V(·) is an estimate of the bias-variance decomposition and satisfies with high
probability:

sup
h∈H

{
|Ĝh − EĜh|2,∞ + |EĜh −G|2,∞ − B̂V(h)

}
≤ 0.

The construction of B̂V consists of two steps: we first apply a Talagrand’s inequality
to control the variance (stochastic) term |Ĝh − EĜh|2,∞, whereas the second step is to

estimate the bias term |EĜh −G|2,∞. This requires the comparison between G-empirical

risks and an auxiliary G-empirical risk Ĝh,η (η ∈ H) associated to some convoluted kernel
as in Goldenshluger and Lepski [16] (see next section for further details).
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3. Selection rule and oracle inequality. In this section, we describe in details the
selection rule and give the main oracle inequality. More precisely, Theorem 1 gives an
upper bound for the G-excess risk (1.2) of the kernel ERM θ̂

ĥ
, where ĥ is chosen by the

selection rule described below. Gathering with Lemma 1 in Section 2, we derive excess
risk bounds as well as `2-risk bounds.

The construction of the selection rule is based on the comparison of the G-empirical
risks (2.6) defined in the previous section. As mentioned above, we need to introduce an
auxiliary G-empirical risk in the comparison. For any couple of bandwidths (h, η) ∈ H2

and any θ ∈ Rm, the auxiliary G-empirical risk is defined as:

(3.1) Ĝh,η(θ) :=
1

n

n∑
i=1

∇`Kh∗Kη(Zi, θ),

where Kh ∗ Kη(·) :=
∫
Rd Kh(· − x)Kη(x)dx stands for the convolution between Kh and

Kη. The statement of the main oracle inequality needs a control of the deviation of some
random processes depending on the auxiliary G-empirical risk. This control is given by
the next definition.

Definition 1 (Majorant). For any integer l > 0, we call majorant a function Ml :
H2 → R+ such that:

P

(
sup
λ,η∈H

{
|Ĝλ,η − EĜλ,η|2,∞ + |Ĝη − EĜη|2,∞ −Ml(λ, η)

}
+
> 0

)
≤ n−l,

where |T |2,∞ := supθ∈Rm |T (θ)|2 for all T : Rm → Rm with | · |2 the Euclidean norm on
Rm.

The main issue for applications is to compute right order majorants. This could be done
thanks to the theory of empirical processes, such as Talagrand’s inequalities (see for in-
stance [9, 17]). In Sections 4 and 5, such majorant functions are computed in noisy clus-
tering and in robust nonparametric regression.

We are now ready to define the selection rule as:

(3.2) ĥ = arg min
h∈H

B̂V(h),

where B̂V(h) is an estimate of the bias-variance decomposition at a given bandwidth
h ∈ H. It is explicitly defined as:

B̂V(h) := sup
η∈H

{
|Ĝh,η − Ĝη|2,∞ −Ml(h, η)

}
+M∞l (h), with M∞l (h) := sup

λ∈H
Ml(λ, h).

The kernel ERM θ̂
ĥ

defined in (2.3) with bandwidth ĥ satisfies the following bound.
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Theorem 1. Let Ml(·, ·) be a majorant according to Definition 1. For any n ∈ N?
and for any l ∈ N?, we have with probability 1− n−l:

|G(θ̂
ĥ
, θ?)|2 ≤ 3 inf

h∈H
{B(h) +M∞l (h)} ,

where B : H → R+ is a bias function defined as:

B(h) := max

(
|EĜh −G|2,∞, sup

η∈H
|EĜh,η − EĜη|2,∞

)
, ∀h ∈ H.

Theorem 1 is the main result of this paper. The G-excess risk of the data-driven estimator
θ̂
ĥ

is bounded with high probability. Of course, a bound in expectation can be deduced
coarsely. The proof of Theorem 1, postponed at the end of the section, is based on the
definition of ĥ in (3.2). The first step is to decompose the G-excess risk by using the
auxiliary G-empirical risk (3.1). Then, Definition 1 completes the proof.

The RHS in the oracle inequality can be viewed as the minimization of an usual bias-
variance trade-off. Indeed, the bias term B(h) is deterministic and tends to 0 as h →
(0, . . . , 0). The sup-majorantM∞l (h) upper bounds the stochastic part of the G-empirical
risk and is viewed as a variance term.

We call the result of Theorem 1 “oracle inequality” since minimizing the bias-variance
trade-off in the RHS can be viewed as minimizing the G-excess-risk |G(θ̂h, θ

?)|2. Note
that a rigorous proof of this claim still remains an open problem. However, this bound is
sufficient to establish adaptive fast rates in noisy clustering and adaptive minimax rates
in nonparametric estimation (see Sections 4 and 5).

In order to show the power of the G-excess risk, we simultaneously deduce a control of
the estimation error |θ̂

ĥ
− θ?|2 as well as a bound for the excess risk R(θ̂

ĥ
)−R(θ?). In the

presence of smooth loss functions, Lemma 1 is at the origin of the corollary below.

Corollary 1. Suppose the assumptions of Lemma 1 are satisfied and for all h ∈ H,
the estimator θ̂h of θ? is consistent. Then, for n sufficiently large, for any l ∈ N?, with
probability 1− n−l, it holds:

R(θ̂
ĥ
)−R(θ?) ≤ 36

mκ1

λ2
min

inf
h∈H
{B(h) +M∞l (h)}2 ,

and

|θ̂
ĥ
− θ?|2 ≤ 6

√
mκ1

λmin
inf
h∈H
{B(h) +M∞l (h)} ,

where κ1, λmin are positive constants defined in Lemma 1.

We highlight that the consistency of all estimators {θ̂h, h ∈ H} is necessary in order to
apply Lemma 1. This usually implies restrictions on the bandwidth set (see Sections 4 and
5 for further details).

The first inequality of Corollary 1 will be used in Section 4 in the setting of clustering
with errors-in-variables. In this case, we are interested in excess risk bounds and the
statement of fast rates of convergence. The second inequality of Corollary 1 is the main
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tool to establish minimax rates for both pointwise and global risks in the context of robust
nonparametric regression (see Section 5).

The construction of the selection rule (3.2), as well as the upper bound in Theorem
1, does not suffer from the dependency of λmin related to the smallest eigenvalue of the
Hessian matrix of the risk (see Lemma 1). In other words, the method is robust w.r.t. this
parameter, which is a major improvement in comparison with other adaptive or model
selection methods of the literature cited in the introduction.

Proof of Theorem 1. For some h ∈ H, we start with the following decomposition:

|G(θ̂
ĥ
, θ?)|2 =

∣∣(Ĝ
ĥ
−G)(θ̂

ĥ
)
∣∣
2
≤ |Ĝ

ĥ
−G|2,∞

≤ |Ĝ
ĥ
− Ĝ

ĥ,h
|2,∞ + |Ĝ

ĥ,h
− Ĝh|2,∞ + |Ĝh −G|2,∞.(3.3)

By definition of ĥ in (3.2), the first two terms in the RHS of (3.3) are bounded as follows:

|Ĝ
ĥ
− Ĝ

ĥ,h
|2,∞ + |Ĝ

ĥ,h
− Ĝh|2,∞ = |Ĝ

h,ĥ
− Ĝ

ĥ
|2,∞ −M`(h, ĥ) +M`(ĥ, h)

+ |Ĝ
ĥ,h
− Ĝh|2,∞ −M`(ĥ, h) +M`(h, ĥ)

≤ sup
η∈H

{
|Ĝh,η − Ĝη|2,∞ −M`(h, η)

}
+M∞` (h)

+ sup
η∈H

{
|Ĝ

ĥ,η
− Ĝη|2,∞ −M`(ĥ, η)

}
+M∞` (ĥ)

= B̂V(h) + B̂V(ĥ) ≤ 2B̂V(h).(3.4)

Besides, the last term in (3.3) is controlled as follows:

|Ĝh −G|2,∞ ≤ |Ĝh − EĜh|2,∞ + |EĜh −G|2,∞
≤ |Ĝh − EĜh|2,∞ −Ml(λ, h) +Ml(λ, h) + |EĜh −G|2,∞

≤ sup
λ,η

{
|Ĝλ,η − EĜλ,η|2,∞ + |Ĝη − EĜη|2,∞ −Ml(λ, η)

}
+M∞l (h) + |EĜh −G|2,∞

=: ζ +M∞l (h) + |EĜh −G|2,∞.

Using (3.3) and (3.4), gathering with the last inequality, we have for all h ∈ H:

(3.5) |G(θ̂
ĥ
, θ?)|2 ≤ 2B̂V(h) + ζ +M∞l (h) + |EĜh −G|2,∞.

It then remains to control the term B̂V(h). We have:

B̂V(h)−M∞l (h) ≤ sup
λ,η

{
|Ĝλ,η − EĜλ,η|2,∞ + |Ĝη − EĜη|2,∞ −Ml(λ, η)

}
+ sup

η
|EĜh,η − EĜη|2,∞ = ζ + sup

η
|EĜh,η − EĜη|2,∞.

The oracle inequality follows directly from (3.5), Definition 1 and the definition of ζ.
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4. Application to noisy clustering. In this section, we are interested in the sta-
tistical learning problem of clustering. Let us consider an integer k ≥ 1 and a Rd-random
variable X with law P with density f w.r.t. the Lebesgue measure on Rd satisfying
EP |X|22 < ∞, where | · |2 stands for the Euclidean norm in Rd. Moreover, we restrict
the study to [0, 1]d, assuming that X ∈ [0, 1]d almost surely. In the sequel, we denote
by c = (c1, . . . , ck) ∈ (Rd)k a set of k cluster’s centers, often called a codebook in the
literature of clustering. Then, we want to construct a codebook c minimizing some risk or
distortion:

(4.1) W(c) := EPw(c, X),

where w(c, x) measures the loss of the codebook c at point x. For ease of exposition, we
study the risk minimization of (4.1) based on the Euclidean distance, by choosing a loss
function related to the standard k-means loss function, namely:

w(c, x) = min
j=1,...,k

|x− cj |22, x ∈ Rd.

The existence of a minimizer c? of (4.1) is proved in [19] when EP |X|22 <∞ (as well as for
the ERM ĉ defined below). In the standard vector quantization context studied in Section
4.1, we have at our disposal an i.i.d. sample (X1, . . . , Xn) with law P and an associated
ERM:

(4.2) ĉ ∈ arg min
c∈Rdk

Ŵ(c), where Ŵ(c) :=
1

n

n∑
i=1

w(c, Xi).

Several authors have studied the statistical properties of ĉ. Pollard has proved strong
consistency and central limit theorem (see [44, 45]), whereas Bartlett, Linder and Lugosi [5]
have investigated minimax rates of convergence O(n−1/2) for the excess riskW(ĉ)−W(c?).
More recently, Levrard [33] has proved fast rates of convergence O(n−1) under a margin
assumption.

In this section, we are also interested in the inverse statistical learning context (see [35]),
which corresponds to the minimization of (4.1) thanks to a noisy set of observations:

Zi = Xi + εi, i = 1, . . . , n,

where (εi)
n
i=1 are i.i.d. with density g w.r.t. the Lebesgue measure on Rd and independent

of the original sample (Xi)
n
i=1. This problem was first considered in [34], where general

oracle inequalities are proposed. Let us fix a kernel Kh of order r ∈ N? with h ∈ H (see
the definition in Section 2.2) and consider K̃h a deconvolution kernel defined such that
F [K̃h] = F [Kh]/F [g], where F stands for the usual Fourier transform. As introduced in
Section 2, in this setting, we have at our disposal the family of kernel ERM defined as:

(4.3) ĉh ∈ arg min
c∈Rdk

Ŵh(c), where Ŵh(c) :=
1

n

n∑
i=1

w(c, ·) ∗ K̃h(Zi − ·),

with f ∗ g(·) :=
∫

[0,1]d f(x)g(· − x)dx stands for the convolution product restricted to

the compact [0, 1]d. Note that we restrict ourselves to the compact [0, 1]d for simplicity,
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whereas any other compact could be considered. Recently, Chichignoud and Loustau [11]
have investigated the problem of choosing the bandwidth in (4.3). They prove fast rates
-up to a logarithmic term- for a data-driven selection of h, based on a comparison of
kernel empirical risks. However, this paper only deals with a hyper-cube bandwidth h.
Furthermore, the method explicitly depends on the parameters involved in the margin
assumption and in particular on λmin in Lemma 1.

In this section, the aim is twofold. At first, we give fast rates for the excess risk of ĉ
in (4.2) without any localization technique. The proof is extremely simple and illustrate
rather well the power of the G-excess risk approach in this standard statistical learning
context. Secondly, we apply the selection rule (3.2) to choose the anisotropic bandwidth
in (4.3) from noisy data. We then establish adaptive minimax rates for the excess risk. In
this problem as well, the use of the G-excess risk is crucial and allows us to construct a
more robust data-driven procedure (i.e. which does not depend on the parameter λmin).

4.1. Fast rates in the direct case. The statement of fast rates for the excess riskW(ĉ)−
W(c?) is based on the gradient approach (see (2.1)). For this purpose, we assume that
the Hessian matrix HW is positive definite at each oracle c?. This assumption has been
considered for the first time in Pollard [44] and is often referred as the Pollard’s regularity
assumptions. Under these assumptions, we can state the same kind of result as Lemma 1
in the framework of clustering with k-means.

Lemma 3. Let c? be a minimizer of (4.1) and assume HW(c?) is positive definite. Let
us consider C := {c = (c1, . . . , ck) ∈ [0, 1]dk : ∀i 6= j ∈ {1, . . . , k}, ci 6= cj}. Then:

– ∀x ∈ Rd, c 7→ w(c, x) is infinitely differentiable on C \∆x, where ∆x = {c ∈ [0, 1]dk :
x ∈ ∂V (c)} and ∂V (c) = {x ∈ Rd : ∃i 6= j such that |x− ci|2 = |x− cj |2};

– Let U be the Euclidean ball center at c? with radius δ > 0. Then, for δ sufficiently
small: √

W(c)−W(c?) ≤ 2

√
2kd

λmin
|∇W(c, c?)|2, ∀c ∈ U,

where λmin > 0 is the smallest eigenvalue of HW(c?).

As mentioned above, we need the consistency - in terms of Euclidean distance - of the
ERM ĉ defined in (4.2) in order to obtain the inequality of Lemma 3 with c = ĉ. Pollard
[44] has especially studied the consistency of ĉ and allows us to satisfy our needs (see the
proof of Theorem 2 for further details).

This fact allows us to control the excess risk of ĉ as follows.

Theorem 2. Suppose the assumptions of Lemma 3 hold. Then, for n sufficiently large,
the ERM ĉ defined in (4.2) satisfies:

EW(ĉ)−W(c?) ≤
8b21kdλ

−2
min

n
,

where b1 > 0 is explicitly given in the proof.
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The proof is a direct application of the heuristic (2.1) presented in Section 2. In particular,
the study of a derivate empirical process leads to slow rates O(n−1/2) for the G-excess
risk. Lemma 3 concludes the proof.

Contrary to the results in [33], we establish fast rates for the excess risk without as-
suming the continuity of the underlying density f of X. This improvement is due to the
G-excess risk approach, which does not require any localization technique. Indeed, we do
not need that |c − c?|2 . W(c) −W(c?), for c in a neighborhood of c?, which holds for
instance when the density f is continuous (see Antos, Györfi and György [1]).

4.2. Adaptive fast rates in noisy clustering. We have at our disposal a family of ker-
nel ERM {ĉh, h ∈ H} defined in (4.3) with associated kernel empirical risk Ŵh(c) =
1
n

∑n
i=1w(c, ·) ∗ K̃h(Zi − ·), with K̃h a deconvolution kernel. We propose to apply the

selection rule (3.2) to choose the bandwidth h ∈ H. In this problem as well, the use of
the G-excess risk approach is of first interest to establish adaptive fast rates for the excess
risk. For any h ∈ H, the G-empirical risk vector is defined as:

∇Ŵh(c) :=

(
1

n

n∑
i=1

2

∫
Vj(c)

(xu − cuj)K̃h(Zi − x)dx

)
u=1,...,d,j=1,...,k

∈ Rdk, ∀c ∈ Rdk,

where for any j = 1, . . . , k, Vj(c) := {x ∈ [0, 1]d : arg mina=1,...,k |x − ca|2 = j} is the
Voronöı cells associated to c, and xu denotes the uth coordinate of x ∈ Rd. Note that
∇Ŵh(ĉh) = (0, . . . , 0)> by smoothness. The construction of the rule follows exactly the
general case of Section 3, which is based on the introduction of an auxiliary G-empirical
risk. For any couple of bandwidths (h, η) ∈ H2, the auxiliary G-empirical risk is defined
as:

∇Ŵh,η(c) :=

(
1

n

n∑
i=1

2

∫
Vj(c)

(xu − cuj)K̃h,η(Zi − x)dx

)
u=1,...,d,j=1,...,k

∈ Rdk, ∀c ∈ Rdk,

where K̃h,η = K̃h ∗Kη is the deconvolution kernel as in Comte and Lacour [12].

The statement of the oracle inequality is based on the computation of a majorant
function. For this purpose, we need the following additional assumptions. First of all,
as in standard deconvolution problems, the use of a deconvolution kernel requires some
additional assumptions on the kernel K of order r ∈ N?, according to the definition of
Section 2.2.

(K1) There exists S = (S1, . . . , Sd) ∈ Rd+ such that the kernel K satisfies

suppF [K] ⊂ [−S, S] and sup
t∈Rd
|F [K](t)| <∞,

where supp g = {x : g(x) 6= 0} and [−S, S] =
⊗d

v=1[−Sv, Sv].

This assumption is standard in deconvolution estimation and is satisfied for many standard
kernels, such as the sinc kernel. Moreover, the construction of kernels of order r satisfying
(K1) could be managed by using the so-called Meyer wavelet (see [37]).
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Additionally, we need an assumption on the noise distribution g:

Noise Assumption NA(ρ, β). There exists some vector β = (β1, . . . , βd) ∈ (0,∞)d and
some positive constant ρ such that ∀t ∈ Rd:

|F [g](t)| ≥ ρ
d∏
j=1

(
t2j + 1

2

)-βj/2

.

NA(ρ, β) deals with a lower bound on the behavior of the characteristic function of the
noise density g. This lower bound is a sufficient condition to obtain excess risk bounds.
However, to study the optimality in the minimax sense (see [36]), we need an upper
bound of the same order for the characteristic function. This is not the purpose of this
paper. Additionally, this noise assumption is related to a polynomial behavior of the
Fourier transform of g. This case is called the mildly ill-posed case in the deconvolution or
statistical inverse problem literature (see [41]). The severely ill-posed case corresponds to
an exponential decreasing of the characteristic function in NA(ρ, β), such as a Gaussian
measurement error. This case is not considered in this paper for simplicity (see [12] in
multivariate deconvolution).

We are now ready to compute the majorant function in our context. Let H := [h−, h
+]d

be the bandwidth set such that 0 < h− < h+ < 1,

(4.4) h− :=

(
log6(n)

n

)1/max(2,2
∑d
j=1 βj)

and h+ :=
(
1/ log(n)

)1/(2(r+1))
.

Lemma 4. Assume (K1) and NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+. Let a ∈
(0, 1) and consider Ha := {(h−, . . . , h−)}∪{h ∈ H : ∀j = 1, . . . , d ∃mj ∈ N : hj = h+amj}
an exponential net of H = [h−, h

+]d, such that |Ha| ≤ n. For any integer l > 0, let us
introduce the function Mk

l : H2 → R+ defined as:

Mk
l (h, η) := b′1

√
kd

(
Πd
i=1h

−βi
i√
n

+
Πd
i=1(hi ∨ ηi)−βi√

n

)
,

where b′1 > 0. Then, for n sufficiently large, the function Mk
l is a majorant, i.e.

P

(
sup

h,η∈Ha

{
|∇Ŵh,η − E∇Ŵh,η|2,∞ + |∇Ŵη − E∇Ŵη|2,∞ −Mk

l (h, η)
}

+
> 0

)
≤ n−l,

where E denotes the expectation w.r.t. to the sample and |T |2,∞ = supc∈[0,1]dk |T (c)|2 for

T : Rdk → Rdk with | · |2 the Euclidean norm on Rdk.

The proof is based on a chaining argument and a uniform Talagrand’s inequality (see
Section 7). This lemma is the cornerstone of the oracle inequality below, and gives the
order of the variance term in such a problem.
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We are now ready to define the selection rule in this setting as:

(4.5) ĥ = arg min
h∈Ha

{
sup
η∈Ha

{
|∇Ŵh,η −∇Ŵη|2,∞ −Mk

l (h, η)
}

+Mk,∞
l (h)

}
,

where Mk,∞
l (h) := supλ∈HaM

k
l (λ, h). The next theorem gives the main result of this

section, namely a control of the G-excess risk of the kernel ERM ĉ
ĥ
.

Theorem 3. Assume (K1) and NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+.
Then, for n large enough, With probability 1− n−l, it holds:

|∇W(ĉ
ĥ
, c?)|2 ≤ 3 inf

h∈Ha

{
Bk(h) +Mk,∞

l (h)
}
,

where Bk : H → R+ is a bias function defined as:

Bk(h) := 2
√
k (1 ∨ |F [K]|∞) |Kh ∗ f − f |2, ∀h ∈ H.

The proof of Theorem 3, given in Section 7, is an application of Theorem 1 gathering with
Lemma 4. Note that the infimum in the RHS is restricted over the net Ha. However, as
shown in Theorem 4 below, this is sufficient to obtain adaptive optimal fast rates.

As mentioned in the previous section, we can deduce fast rates for the excess risk as
an important contribution. For this purpose, we need an additional assumption on the
regularity of the density f to control the bias function in Theorem 3. This regularity is
expressed in terms of anisotropic Nikol’skii spaces.

Definition 2 (Anisotropic Nikol’skii Space). Let s = (s1, s2, . . . , sd) ∈ Rd+, q ≥ 1 and
L > 0 be fixed. We say that f : [0, 1]d → [−L,L] belongs to the anisotropic Nikol’skii space
Nq(s, L) of functions if for all j = 1, ..., d, z ∈ R and for all x ∈ (0, 1]d:(∫ ∣∣∣Dbsjcj f(x1, . . . , xj + z, . . . , xd)−D

bsjc
j f(x1, . . . , xj , . . . , xd)

∣∣∣q dx)1/q

≤ L|z|sj−bsjc,

and ‖Dl
jf‖q ≤ L, ∀l = 0, . . . , bsjc, where Dl

jf denotes the l-th order partial derivative of
f w.r.t. the variable xj and bsjc is the largest integer strictly less than sj.

The Nikol’skii spaces have been considered in approximation theory by Nikol’skii (see [43]
for example). We also refer to [16, 26] where the problem of adaptive estimation over a
scale s has been treated for the Gaussian white noise model and for density estimation,
respectively.

In the sequel, we assume that the multivariate density f of the law PX belongs to the
anisotropic Nikol’skii class N2(s, L), for some s ∈ Rd+ and some L > 0. It means that
the density f has possible different regularities in all directions. The statement of a non-
adaptive upper bound for the excess risk in this framework has been already investigated
in [34]. In the following theorem, we propose the adaptive version of the previous cited
result, where the bandwidth ĥ is chosen via the selection rule (4.5).
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Theorem 4. Assume (K1) and NA(ρ, β) hold for some ρ > 0 and some β ∈ Rd+.
Assume P has a continuous density f ∈ N2(s, L) for some s ∈ (0, r + 1)d, the Hessian
matrix of W is definite positive for any c? ∈M. Then, we have:

lim sup
n→∞

n1/(1+
∑d
j=1 βj/sj) sup

f∈N2(s,L)
E
[
W(ĉ

ĥ
)−W(c?)

]
<∞,

where ĥ is chosen in (4.5).

This theorem uses Theorem 3 and Lemma 3, gathering with the consistency of the family
of kernel ERM {ĉh, h ∈ H}. In this respect, the definitions of h− and h+ in (4.4), gathering
with the continuity of the density f , imply the consistency of our family (see Lemma 10
in Section 7).

This result gives adaptive fast rates for the excess risk of ĉ
ĥ
. It significantly improves

the result stated in [11] for two main reasons. First of all, the selection rule allows the
extension to the anisotropic case. Besides, there is no logarithmic term in the adaptive rate,
which can be explained as follows. The localization technique used in Chichignoud and
Loustau [11] seems the main obstacle to avoid the extra-log term. The use of G-excess risk
approach allows us to avoid the localization technique and therefore the extra-log term in
the adaptive fast rates. The result of Theorem 4 also extend the result to Nikol’skii spaces
instead of Hölder spaces as in [11].

5. Application to robust nonparametric regression. In this section, we will
apply the result of Theorem 1 to the framework of local M-estimation, which leads to
standard results in nonparametric regression. Indeed, oracle inequalities for the G-excess
risk will give us adaptive minimax results for both pointwise and global estimation.

Let us specify the model beforehand. For some n ∈ N?, we observe a training set
Zn := {(Wi, Yi), i = 1, ...n} of i.i.d. pairs distributed according to the probability measure
P on [0, 1]d × R satisfying the set of equations:

(5.1) Yi = f?(Wi) + ξi, i = 1, . . . , n,

where the noise variables (ξi)i=1,...,n are i.i.d. with symmetric density gξ w.r.t. the Lebesgue
measure. We aim at estimating the target function f? : [0, 1]d → [-B,B], B > 0. Moreover,
we also assume that gξ is continuous at 0 and gξ(0) > 0. For simplicity, in the sequel, the
design points (Wi)i=1,...,n are i.i.d. according to the uniform law on [0, 1]d (extension to a
more general design is straightforward) and we suppose that (Wi)i=1,...,n and (ξi)i=1,...,n

are mutually independent for ease of exposition. Eventually, we restrict the estimation of
f? to the closed set T ⊂ [0, 1]d to avoid discussion on boundary effects. We will consider
the point x0 ∈ T for pointwise estimation and the Lq(T )-risk for global estimation.

Next, we introduce an estimate of f?(x0) at any x0 ∈ T with the local constant approach
(LCA) with a fixed bandwidth. The key idea of the LCA, as described for example in [48,
Chapter 1], is to approximate the target function in a neighborhood of size h ∈ (0, 1)d of a
given point x0 by a constant, which corresponds to a model of dimension m = 1. To deal
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with heavy-tailed noises, we especially employ the popular Huber loss (see [23]) defined
as follows. For any scale γ > 0 and z ∈ R,

ργ(z) :=


z2/2 if |z| ≤ γ

γ(|z| − γ/2) otherwise.

The parameter γ selects the level of robustness of the Huber loss between the square loss
(large value of γ) and the absolute loss (small value of γ).

Let H := [h−, h
+]d be the bandwidth set such that 0 < h− < h+ < 1,

h− :=
log6/d(n)

n1/d
and h+ :=

1

log2(n)
.

For any x0 ∈ T , the local estimator f̂h(x0) of f?(x0) is defined as:

f̂h(x0) := arg min
t∈[-B,B]

R̂loc
h (t), h ∈ H,

where R̂loc
h (·) := 1

n

∑n
i=1 ργ(Yi − ·) Kh(Wi − x0) is the local empirical risk and Kh is a 1-

Lipschitz, non-negative kernel of order 1 (see the definition in Section 2.2). As in (2.4), the
expectation of the local empirical risk has a limit denoted by Rloc(·) := EY |W=x0ργ(Y − ·)
whose its unique minimizer is f?(x0).

In this section, we are interested in the bandwidth selection problem in the family
{f̂h, h ∈ H}, where H is defined above. We want to state minimax adaptive results for
both pointwise and global risks. Since Theorem 1 controls the G-excess risk of the adaptive
estimator, we present the following lemma that gives rive to a control of the pointwise
risk. A same inequality can be deduced with the Lq(T )-norm.

Lemma 5. Assume that suph∈H |f̂h(x0)− f?(x0)| ≤ Eρ′′γ(ξ1)/4. Then, for all h ∈ H,

|f̂h(x0)− f?(x0)| ≤ 2

Eρ′′γ(ξ1)

∣∣∣Gloc
(
f̂h(x0)

)
−Gloc

(
f?(x0)

)∣∣∣ ,
where Gloc (and resp. ρ′′γ) denotes the derivative of Rloc (resp. the second derivative of
ργ).

The proof is given in Section 7. The assumption suph∈H |f̂h(x0)− f?(x0)| ≤ Eρ′′γ(ξ1)/4 is
necessary to use the theory of differential calculus and can be satisfied by using the con-
sistency of f̂h. In this direction, the definitions of h− and h+ above imply the consistency
of all estimators f̂h, h ∈ H (see [10, Theorem 1] for further details). This lemma allows us
to link the local G-excess risk and the pointwise semi-norm.
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5.1. The selection rule in pointwise estimation. To compute the selection procedure in
pointwise estimation, we define the G-empirical risk as:

(5.2) Ĝloc
h (t) :=

∂R̂loc
h

∂t
(t) = − 1

n

n∑
i=1

ρ′γ
(
Yi − t

)
Kh(Wi − x0).

For any couple of bandwidths (h, λ) ∈ H2, we introduce the auxiliary G-empirical risk as:

Ĝloc
h,λ(t) := − 1

n

n∑
i=1

ρ′γ
(
Yi − t

)
Kh,λ(Wi − x0),

where Kh,λ := Kh ∗Kλ as above.
To apply the results of Section 3, we need to compute optimal majorants of the as-

sociated empirical processes. The construction of such bounds for the pointwise case has
already deserved some interests. The next lemma is a direct application of [10, Proposition
2].

Lemma 6. For any integer l ∈ N?, let us introduce the function Γloc
l : H → R+ defined

as:

Γloc
l (h) := C0‖K‖2

√
E[ρ′γ(ξ1)]2

√
l log(n)

nΠh
,

where C0 > 0 is an absolute constant which does not depend on the model.
Let Ha := {(h−, . . . , h−)} ∪ {h ∈ H : ∀j = 1, . . . , d ∃mj ∈ N : hj = h+amj} , a ∈ (0, 1),
be an exponential net of H = [h−, h

+]d, such that |Ha| ≤ n. Then, for any l > 0, the
function Mloc

l (λ, η) := Γloc
l (λ ∨ η) + Γloc

l (η) is a majorant, i.e.

P

(
sup

h,η∈Ha

{
|Ĝloc

h,η − EĜloc
h,η|∞ + |Ĝloc

η − EĜloc
η |∞ −Mloc

l (h, η)
}

+
> 0

)
≤ n−l,

where |T |∞ := supt∈[−B,B] |T (t)| for all T : R→ R and h ∨ η = (h1 ∨ η1, . . . , hd ∨ ηd).

The proof is given in Section 7 as an application of [10, Proposition 2]. We notice that,
unlike Definition 1, | · |2,∞ is replaced by | · |∞ since the G-empirical risk (5.2) is unidi-
mensional.

Eventually, we introduce the data-driven bandwidth following the schema of the selec-
tion rule in Section 3:

(5.3) ĥloc := arg min
h∈Ha

{
sup
η∈Ha

{
|Ĝloc

h,η − Ĝloc
η |∞ −Mloc

l (h, η)
}

+ 2Γloc
l (h)

}
.

We are now ready to give the oracle inequality for the pointwise risk:
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Theorem 5 (Local Oracle Inequality). Consider the model (5.1) and assume that n
is great enough. Then, for any l > 0, with probability 1− n−l, we have:

|f̂
ĥloc

(x0)− f?(x0)| ≤ 6

Eρ′′γ(ξ1)
inf
h∈Ha

{
Bloc(h) + 2Γloc

l (h)
}
,

where Bloc(h) denotes the bias term Bloc(h) :=
∫
Kh(x− y) |f?(x)− f?(y)| dx.

The proof is a direct application of Theorem 1 and Lemma 5, since Gloc(f?(x0)) = 0 and

sup
η∈H

Γloc
l (h ∨ η) = Γloc

l (h).

Note that the infimum in the RHS of Theorem 5 is restricted to the net Ha. However, as
shown in Theorem 6 below, this is sufficient to obtain minimax adaptive results.

Chichignoud and Lederer [10, Theorem 2] have shown that the variance of local M-
estimators is of order E[ρ′γ(ξ1)]2/n(Eρ′′γ(ξ1))2. Therefore, their Lepski-type procedure de-
pends on this quantity. Here, we obtain the same result without the dependency on the
parameter Eρ′′γ(ξ1) - which corresponds to λmin in the general setting - thanks to the
gradient approach. The selection rule is therefore robust w.r.t. to the fluctuations of this
parameter, in particular when γ is small (median estimator).

Now, we focus on the minimax issue for pointwise estimation and we start with the
definition of the anisotropic Hölder class.

Definition 3 (Anisotropic Hölder Class). Let s = (s1, s2, . . . , sd) ∈ (0, 1]d and L >
0. We say that f : [0, 1]d → [−L,L] belongs to the anisotropic Hölder space Σ(s, L) of
functions if for all j = 1, ..., d and for all z ∈ R:

sup
x∈[0,1]d

|f(x1, . . . , xj + z, . . . , xd)− f(x1, . . . , xj , . . . , xd)| ≤ L|z|sj ,

We then give the main result of this subsection.

Theorem 6. For any s ∈ (0, 1]d, any L > 0 and any q ≥ 1, it holds for all x0 ∈ T :

lim sup
n→∞

(n/ log(n))qs̄/(2s̄+1) sup
f?∈Σ(s,L)

E
∣∣∣f̂ĥloc(x0)− f?(x0)

∣∣∣q <∞,
where s̄ :=

(∑d
j=1 s

-1
j

)-1
denotes the harmonic average.

The proposed estimator f̂
ĥ

is then adaptive minimax over anisotropic Hölder spaces in
pointwise estimation. The minimax optimality of this rate (with the log(n) factor) has
been stated by [27] in the white noise model for pointwise estimation (see also [14]). We
did not study the case of locally polynomial functions, which is further complicated to
study in nonparametric regression. In this case, we could consider smoother functions
f? ∈ Σ(s, L), with s ∈ (0, s+)d, s+ > 1.
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5.2. The selection rule in global estimation. The aim of this section is to derive adap-
tive minimax results for f̂h in Lq-risk. To this end, we need to modify the selection rule
(5.3) including a global (Lq-norm) comparison of G-empirical risks. For this purpose, for
all t ∈ R, we denote the G-empirical risks at a given point x0 ∈ T as:

Ĝglo
h (t, x0) = − 1

n

n∑
i=1

ρ′γ
(
Yi−t

)
Kh(Wi−x0) and Ĝglo

h,η(t, x0) = − 1

n

n∑
i=1

ρ′γ
(
Yi−t

)
Kh,η(Wi−x0),

where the dependence in x0 is explicitly written. We then define, for q ∈ [1,∞[ and for
any function ω : R× T → R, the Lq-norm and Lq,∞-semi-norm:

‖ω(t, ·)‖q :=

(∫
T
|ω(t, x)|qdx

)1/q

and ‖ω‖q,∞ := sup
t∈[−B,B]

‖ω(t, ·)‖q.

The construction of majorants is based on uniform bounds for Lq-norms of empirical
processes. This topic has been recently investigated in [17] and gives the following lemma.

Lemma 7. For any l ∈ N?, let us introduce the function Γglo
l,q : H → R+ defined as:

Γglo
l,q (h) := Cq‖ρ′γ‖∞

√
1 + l ×


4‖K‖q(nΠh)−(q−1)/q if q ∈ [1, 2[,

30q
log(q)(‖K‖2 ∨ ‖K‖q)(nΠh)−1/2 if q ∈ [2,∞[,

where Πh =
∏d
j=1 hj and Cq > 0 is an absolute constant which does not depend on n.

Then, for any l > 0, the function Mglo
l,q (λ, η) := Γglo

l,q (λ ∨ η) + Γglo
l,q (η) is a majorant, i.e.

P

(
sup
h,η∈H

{
‖Ĝglo

h,η − EĜglo
h,η‖q,∞ + ‖Ĝglo

η − EĜglo
η ‖q,∞ −M

glo
l,q (h, η)

}
+
> 0

)
≤ n−l.

The proof is a direct application of [17, Theorem 2]. The constant Cq can be explicitly
given from this theorem. Note that their approach does not allow us to obtain the term√
E[ρ′γ(ξ1)]2 in the majorant’s expression as in pointwise estimation but only the term

‖ρ′γ‖∞, which is a bound of it.

We finally select the bandwidth according to the selection rule in Section 3:

ĥglo
q := arg min

h∈H

{
sup
η∈H

{
‖Ĝglo

h,η − Ĝ
glo
η ‖q,∞ −M

glo
l,q (h, η)

}
+ 2Γglo

l,q (h)

}
.

Theorem 7 (Global Oracle Inequality). Consider the model (5.1) and assume that n
is great enough. For any l > 0, we then have with probability 1− n−l:

‖f̂
ĥgloq
− f?‖q ≤

6

Eρ′′γ(ξ1)
inf
h∈H

{
Bglo
q (h) + 2Γglo

l,q (h)
}
,

where Bglo
q (h) :=

∥∥∫ Kh(x− ·)
∣∣f?(x)− f?(·)

∣∣dx∥∥
q

is called the global bias term.
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We note that there is no restriction about the infimum over H - compared to the local
oracle inequality - which is due to the construction of majorant. The proof is based on the
same scheme as the proof of Theorem 1, by adding the Lq-norm. Gathering with a global
version of Lemma 5 (i.e. a control of the Lq-norm instead of the pointwise semi-norm), we
get the result. The proof is omitted for concision.

The above choice of the bandwidth leads to the estimator f̂
ĥgloq

with the following adap-

tive minimax properties for the Lq-risk over anisotropic Nikol’skii spaces (see Definition 2
in Section 4).

Theorem 8. For any s ∈ (0, 1]d, any L > 0 and any q ≥ 1, it holds:

lim sup
n→∞

ψ-1
n,q(s) sup

f?∈Nq,d(s,L)
E‖f̂

ĥgloq
− f?‖qq <∞

where s̄ :=
(∑d

j=1 s
-1
j

)-1
denotes the harmonic average and

ψn,q(s) :=


(1/n)q(q−1)s̄/(qs̄+q−1) if q ∈ [1, 2[,

(1/n)qs̄/(2s̄+1) if q ≥ 2.

We refer to [21, 22] for the minimax optimality of these rates over Nikol’skii spaces. The
proposed estimate f̂

ĥgloq
is then adaptive minimax. To the best of our knowledge, the

minimax adaptivity over anisotropic Nikol’skii spaces has never been done in regression
with possible heavy-tailed noises. As in pointwise estimation, this result could be extend
to the case of local polynomial functions of order k ≥ 1.

6. Discussion. This paper deals with the bandwidth selection problem in kernel em-
pirical risk minimization. We propose a new criterion called the gradient excess risk (1.2),
which allows us to derive optimal fast rates of convergence for the excess risk as well as
adaptive minimax rates for global and pointwise risks.

One of the key messages we would like to highlight is the following: if we consider smooth
loss functions and a family of consistent ERM, fast rates of convergence are automatically
reached provided that the Hessian matrix of the risk function is positive definite. This
statement is based on the key Lemma 1 in Section 2, where the square root of the excess
risk is controlled by the G-excess risk.

From an adaptive point of view, another look at Lemma 1 can be done. In the RHS of
Lemma 1, the G-excess risk is multiplied by the constant λ−1

min, i.e. the smallest eigenvalue
of the Hessian matrix at θ?. This parameter is also involved in the margin assumption
(see Lemma 2). As a result, our selection rule does not depend on this parameter since
the margin assumption is not required to obtain slow rates for the G-excess risk. This fact
partially solves an issue highlighted by Massart [39, Section 8.5.2], in the model selection
framework:

“It is indeed a really hard work in this context to design margin adaptive penalties. Of course recent
works on the topic, involving local Rademacher penalties for instance, provide at least some theoretical
solution to the problem but still if one carefully looks at the penalties which are proposed in these works,
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they systematically involve constants which are typically unknown. In some cases, these constants are
absolute constants which should nevertheless considered as unknown just because the numerical values
coming from the theory are obviously over pessimistic. In some other cases, it is even worse since they
also depend on nuisance parameters related to the unknown distribution.”

We can also mention the work of Koltchinskii [29], who has studied the general margin
assumption. In this context, a “link function” ϕ : R+ → R+ describes the relationship
between the excess risk and the variance term, i.e.

ϕ

(√
EPX [`(X , θ)− `(X , θ?)]2

)
≤ R(θ)−R(θ?),

for all θ belongs to a ball of θ?. In our context, with smooth loss functions, the link
function corresponds to the square function: ϕ(x) = Cx2, ∀x ∈ R+ with C = λmin/(3κ2)
(see Lemma 2). Koltchinskii [29, Section 6.3] has highlighted the issue of the adaptivity
w.r.t. the link function as follows:

“It happens that the link function is involved in a rather natural way in the construction of com-
plexity penalties that provide optimal convergence rates in many problems. Since the link function is
generally distribution dependent, the development of adaptive penalization methods of model selection is
a challenge, for instance, in classification setting.”

An interesting and challenging open problem would be to employ the gradient approach in
the model selection framework in order to propose a more robust penalization technique
(i.e. which does not depend on the parameter λmin).

Our paper solves the general bandwidth selection issue in ERM by using a new universal
selection rule, based on the minimization of an estimate of the bias-variance decomposition
of the gradient excess risk. It allows us to extend to non-linear estimators the anisotropic
issue in bandwidth selection. However, this requires two main ingredients: the first one
concerns the smoothness of the loss function in terms of differentiability; the second one
affects the dimension of the statistical model that we have at hand, which has to be
parametric, i.e. of finite dimension m ∈ N∗. From our point of view, the smoothness of the
loss function is not a restriction, since modern algorithms are usually based - in order to
reduce computational complexity - on some kind of gradient descent methods in practice.
On the other hand, the second ingredient might be more restrictive. An interesting open
problem would be to employ the same path when the risk functional R is measured over
a functional set. For this purpose, we should consider some functional derivative in order
to apply the gradient approach.

7. Appendix.

7.1. Proofs of Section 1.

Proof of Lemma 1. The proof of the lemma is based on standard tools from differential
calculus applied to the multivariate risk function R ∈ C2(U), where U is an open ball
centered at θ?. The first step is to apply a Taylor expansion of first order which gives, for
all θ ∈ U :

R(θ)−R(θ?) = (θ − θ?)>∇R(θ?) +
∑

k∈Nm:|k|=2

2(θ − θ?)k

k1! . . . km!

∫ 1

0
(1− t) ∂

2

∂θk
R(θ? + t(θ − θ?))dt,
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where ∂2

∂θk
R = ∂2

∂θ
k1
1 ···∂θ

km
m

R, |k| = k1 + · · · km and (θ − θ?)k =
∏d
j=1(θj − θ?j )kj . Now, by

the property ∇R(θ?) = 0 and the boundedness of the second partial derivatives, we can
write:

R(θ)−R(θ?) ≤ κ1

∑
k∈Nm:|k|=2

|θ − θ?|k ≤ κ1

m∑
i,j=1

|θi − θ?i | × |θj − θ?j | ≤ mκ1|θ − θ?|22.

It then remains to show the inequality

|θ − θ?|2 ≤ 2|G(θ, θ?)|2/λmin,(7.1)

where λmin is defined in the lemma. This could be done by using standard inverse function
theorem and the mean value theorem for multi-dimensional functions. Indeed, since the
Hessian matrix of R - also viewed as the Jacobian matrix of G - is positive definite at
θ? and since R ∈ C2(U), the inverse function theorem shows the existence of a bijective
function G−1 ∈ C1(G(U)) such that:

|θ − θ?|2 =
∣∣G−1 ◦G(θ)−G−1 ◦G(θ?)

∣∣
2
, for any θ ∈ U,

provided that δ > 0 is chosen small enough. We can then apply a vector-valued version of
the mean value theorem to obtain:

|θ − θ?|2 ≤ sup
u∈[G(θ),G(θ?)]

|||JG−1(u)|||2|G(θ?)−G(θ)|2, , for any θ ∈ U,(7.2)

where [G(θ), G(θ?)] denotes the multi-dimensional bracket between G(θ) and G(θ?), and
||| · |||2 denotes the operator norm associated to the Euclidean norm | · |2. Since |θ−θ?|2 ≤ δ
and G is continuous, we now have:

lim
δ→0

sup
u∈[G(θ),G(θ?)]

|||JG−1(u)|||2 = |||JG−1(G(θ?))|||2.

Then, for δ > 0 small enough, we have with (7.2):

|θ − θ?|2 ≤ 2|||JG−1(G(θ?))|||2|G(θ?)−G(θ)|2
= 2|||J−1

G (θ?)|||2|G(θ?)−G(θ)|2
= 2|||H−1

R (θ?)|||2|G(θ?)−G(θ)|2,

where HR is the Hessian matrix of R. (7.1) follows easily and the proof is completed.

Proof of Lemma 2. We first apply mean value Theorem to the function `(x, ·) for all
x ∈ Rp. By integration, it yields

E [`(X , θ)− `(X , θ?)]2 ≤ κ2|θ − θ?|22.
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Thanks to the smoothness of the risk, a Taylor expansion and the property ∇R(θ?) = 0
lead to:

R(θ)−R(θ?) = (θ − θ?)>∇R(θ?) +
1

2
(θ − θ?)>HR

(
θ?
)

(θ − θ?) +O(|θ − θ?|32),

≥ λmin

3
|θ − θ?|22.

where the last inequality is obtained choosing δ sufficiently small. This completes the
proof.

7.2. Proofs of Section 4.

Proof of Lemma 3. For a given x ∈ Rd, it is easy to see that c 7→ minj=1,...,k |x− cj |22
is infinitely differentiable on [0, 1]dk \∆x. Then, if X admits a density w.r.t. the Lebesgue
measure, we coarsely have PX(∂V (c)) = 0 and c 7→ minj=1,...,k |x − cj |22 is a.s. infinitely
differentiable on C = [0, 1]dk \ {c = (c1, . . . , ck) ∈ Rdk : ∃i 6= j such that ci = cj}. Hence,
from Pollard’s regularity conditions, using a dominated convergence theorem, c 7→ W(c)
is infinitely differentiable on C.

Let us consider c? an oracle, we can then show that c? ∈ C. Indeed, any optimal c?

satisfies the centroid condition (see [19] for the definition). Therefore ([19, Theorem 4.2]),
for any i 6= j, we have:

PX({x ∈ Rd : |x− c?i |2 = |x− c?j |2}) = 0.

Besides, from the centroid condition, we have P (Vi(c
?)) > 0, for any i ∈ {1, . . . , k}.

Suppose c?i = c?j for some i 6= j. Hence, for any x ∈ Vi(c?), |x− c?i |2 = |x− c?j |2 and this

leads to a contradiction since P (Vi(c
?)) ≤ P ({x ∈ Rd : |x − c?i |2 = |x − c?j |2}) = 0. Due

to the centroid condition and the existence of a density w.r.t. the Lebesgue measure, we
finally have c? ∈ (0, 1)dk \ {c = (c1, . . . , ck) ∈ Rdk : ∃i 6= j such that ci = cj} and the
existence of an open set U ⊂ C containing c? is guaranteed.

To conclude Lemma 3, it is sufficient to apply Lemma 1 with κ1 = 2 since HW(c?) is
positive definite for any minimizer c?.

Proof of Theorem 2. The first assertion is based on the control of a supremum of an
empirical process. For ease of exposition, we denote by Pn the empirical measure with
respect to the sample Xi, i = 1, . . . , n and by P the expectation w.r.t. the distribution P .
Then, we obtain by the heuristic (2.1), for n great enough:

|∇W(ĉ, c?)|2 ≤ sup
c∈C
|∇Ŵ(c)−∇W(c)|2

= sup
c∈C

√√√√ d∑
i,j=1

((Pn − P )(2(Xi − cij)1l(X ∈ Vj(c))))2

≤
√
kd sup

c∈C,i,j

∣∣(Pn − P )(2(Xi − cij)1l(X ∈ Vj(c)))
∣∣ ,



BANDWIDTH SELECTION VIA THE GRADIENT 27

where the supremum over i (and respectively j) is taken on {1, . . . , d} (respectively
{1, . . . , k}) and Xi is the ith coordinate of X. We hence have to use a Talagrand’s in-
equality to the random variable:

ζn = sup
c∈C,i,j

∣∣(Pn − P )(2(Xi − cij)1l(X ∈ Vj(c)))
∣∣ .

With Bousquet’s Inequality (see [9]), we have with probability 1− a (a > 0) that:

|∇W(ĉ, c?)|2 ≤ kd

[
Eζn +

√
2 log a−1

n
[σ + (1 + b)Eζn

]
+

log(a−1)

3n
,

where σ = supc∈C,i,j E[2(Xi − cij)1l(X ∈ Vj(c))]2, b = supc∈C,i,j,x |2(xi − cij)1l(x ∈ Vj(c))|.
Firstly, it is easy to see that since C ⊂ [0, 1]dk, σ2 ≤ 4 and b ≤ 2. Last step is then to
control the quantity:

Eζn = E sup
c∈C,i,j

∣∣(Pn − P )(2(Xi − cij)1l(X ∈ Vj(c)))
∣∣ .

For this purpose, we use a chaining argument. Let us consider, for any v ∈ N?, Γv a av-net
of C (0 < a < 1) w.r.t. the Euclidean distance. Let us denote uv(c) := arg infu∈Γv |u− c|2
and u0(c) an arbitrary point on C. Thus, we have uv(c) → c a.s. and in L1(P ). By
dominated convergence Theorem, for any couple (i, j), we have:

Fij(c) = Fij(u0(c)) +
∑
v∈N?

(Fij(uv(c))− F (uv−1(c))),

where Fij(c) = 2(Xi − cij)1l(X ∈ Vj(c)). Then, we can write:

Eζn = E sup
i,j
|(Pn − P )(Fij(u0(c)))|

+
∑
v∈N?

E sup
i,j

sup
u,u′∈Γv×Γv−1:|u−u′|2≤av

∣∣(Pn − P )(Fij(u)− Fij(u′))
∣∣

:= A1 +A2.

The control of A1 and A2 is based on a maximal inequality due to [39].

Lemma 8 (Maximal Inequality). Let X1, . . . ,Xn be a sequence of independent random
variables. For any finite subset Φ of real functions, assume there exists some constants
σ, b > 0 such that for any φ ∈ Φ, 1

n

∑n
i=1 Eφ2(Xi) ≤ σ2 and ‖φ‖∞ ≤ b. Then:

E sup
φ∈Φ

∣∣∣∣∣ 1n
n∑
i=1

φ(Xi)− Eφ(Xi)

∣∣∣∣∣ ≤ 2σ√
n

√
2 log(|Φ|) +

2b

3n
log(|Φ|),

where |Φ| denotes the cardinal of the set Φ.
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Then, using the previous lemma with σ2 = 4 and b = 2, we have:

A1 ≤
4√
n

√
2 log(kd) +

4

3n
log(kd|M|).

For A2, using the same path and the fact that E[(Xi−uij)1l(X ∈ Vj(u))−(Xi−u′ij)I(X ∈
Vj(u

′))]2 ≤ |u− u′|2 ≤ av, we have for any v ∈ N?:

E sup
i,j

sup
u,u′∈Γv×Γv−1:|u′u|2≤av

∣∣(Pn − P )(Fij(u)− Fij(u′))
∣∣

≤ 2av/2√
n

√
2 log(kd|γv × Γv−1|) +

8

3n
log(kd|γv × Γv−1|).

Now, it is easy to see that |Γv × Γv−1| ≤ akd(−2v+1) by construction. Choosing a = 1/4,
we hence have for A2 by simple algebra:

A2 ≤
∑
v∈N?

(
2av/2√
n

√
2 log(kdakd(−2v+1)) +

8

3n
log(kdakd(−2v+1))

)

≤ 4
√

2√
n

√
log(kd) + 4

(
8
√

2kd√
n

√
log 4 +

8kd

3n
log 4

)
+

4

3n
log(kd).

Gathering with the previous inequalities, and integrating with respect to the sample, we
arrive at:

E|∇W(ĉ, c?)|2 ≤ b1/
√
n,

where b1 > 0 can be explicit. Now, from Pollard [44], we have the a.s. convergence of the
ERM ĉ defined in (4.2) to the oracle c? w.r.t. the Euclidean distance. Eventually, from
Lemma 3, ĉ satisfies a.s. the inequality:

√
W(ĉ)−W(c?) ≤ 2

√
kd

λmin
|∇W(ĉ, c?)|2,

where λmin > 0 is the smallest eigenvalue of HW(c?). This concludes the proof.

Proof of Lemma 4. We start with the study of |∇Ŵh−E∇Ŵh|2,∞. For ease of exposi-
tion, we denote by PZn the empirical measure with respect to Zi, i = 1, . . . , n and by PZ

the expectation w.r.t. the law of Z. Then, we have:

|∇Ŵh − E∇Ŵh|2,∞ = sup
c∈[0,]dk

|∇Ŵh(c)− E∇Ŵh(c)|2

≤
√
kd sup

c,i,j

∣∣∣∣∣(PZn − PZ)
(∫

Vj(c)
2(xi − cij)K̃h(Z − x)dx

)∣∣∣∣∣ .(7.3)

The cornerstone of the proof is to apply a concentration inequality to this supremum of
empirical process. We use in the sequel the following Talagrand-type inequality (see e.g.
[12]).
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Lemma 9. Let X1, . . . ,Xn be i.i.d. random variables and let S be a countable subset
of Rm. Consider the random variable Un(S) := supc∈S

∣∣ 1
n

∑n
l=1 ψc(Xl)− Eψc(Xl)

∣∣ , where
ψc is such that supc∈S |ψc|∞ ≤ M, EUn(S) ≤ E and supc∈S E

[
ψc(Z)2

]
≤ v. Then, for

any δ > 0, we have:

P (Un(S) ≥ (1 + 2δ)E) ≤ exp

(
−δ

2nE

6v

)
∨ exp

(
−(δ ∧ 1)δnE

21M

)
.

We hence have to compile the quantities E, v and M associated with the random variable:

ζ̃n = sup
c,i,j

∣∣∣∣∣(PZn − PZ)
(∫

Vj(c)
2(xi − cij)K̃h(Z − x)dx

)∣∣∣∣∣ := sup
c,i,j

∣∣∣∣∣ 1n
n∑
l=1

ψc,i,j(Zl)− Eψc,i,j(Z)

∣∣∣∣∣ .
The compilation of E := E(h) > 0 uses the same path as in the proof of Theorem 2,
gathering with [11, Lemma 3]. More precisely, we can use a chaining argument to the
function:

F̃ij(u) =

∫
Vj(u)

2(xi − uij)K̃h(Z − x)dx,

for any u ∈ (0, 1)dk. Then, we have, gathering with the maximum inequality of Lemma 8:

Eζ̃n ≤
b3

2
√
nΠh(β)

+
b4

2
√
nΠh(β + 1/2)

≤ b5√
nΠh(β)

:= E(h),

where Πh(β) := Πd
i=1h

βi
i for β ∈ Rd+ provided that Πd

i=1h
−1/2
i ≥ b1/b

′
1 (thanks to the

definition of Ha and n sufficiently large). The constant b3, b4, b5 > 0 can be explicitly
computed using the proof of Theorem 2 above and a precise look at [11, Lemma 3].
This calculation is omitted for simplicity. Besides, using [11, Lemma 1] and denote by
ψc,i,j(Z) =

∫
Vj(c) 2(xi − cij)K̃h(Z − x)dx, we have:

sup
c,i,j

E
[
ψc,i,j(Z)2

]
≤ b6

Πh(2β)
:= v(h),

whereas [11, Lemma 2] allows us to write:

sup
c,i,j
|ψc,i,j |∞ ≤

b7
Πh(β + 1/2)

:= M(h),(7.4)

where b6, b7 are absolute constants. Hence, Lemma 9 gathering with (7.3)-(7.4) gives us,
for all δ > 0,

P
(
|∇Ŵh − E∇Ŵh|2,∞ ≥

√
kd(1 + 2δ)E(h)

)
≤ exp

(
−δ

2nE(h)

6v(h)

)
∨exp

(
−(δ ∧ 1)δnE(h)

21M(h)

)
.

Moreover, note that from the previous calculations, we have nE(h)/v(h) = c
√
n/Πh(β) and

nE(h)/M(h) = c′
√
n
√

Πh(1/2), where c, c′ > 0 depends on b5, b6 and b5, b7 respectively.
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Provided that
√
n(cΠh(β)∧ c′

√
Πh(1/2)) ≥ (log n)2 (thanks to the definition of Ha and n

sufficiently large), we come up with:

P
(
|∇Ŵh − E∇Ŵh|2,∞ ≥

√
kd(1 + 2δ)E(h)

)
≤ exp

{
−
(
δ2

6
∧ (δ ∧ 1)δ

21

)
(log n)2

}
.

This gives us the first part of the majorant of Lemma 4.
Last step is to give the same kind of result for the auxiliary empirical process |∇Ŵh,η−

E∇Ŵh,η|2,∞. This can be easily done by using again Lemma 9 together with the previous
results. Then, one obtains for any h, η ∈ Ha:

P
(
|∇Ŵh,η − E∇Ŵh,η|2,∞ ≥

√
kd(1 + 2δ)E(h ∨ η)

)
≤ exp

{
−
(
δ2

6
∧ (δ ∧ 1)δ

21

)
(log n)2

}
,

where with a slight abuse of notations, the maximum ∨ is understood coordinatewise.
Using the union bound, the definition of Mk

l (·, ·) finally allows us to write:

P

(
sup
h,η

{
|∇Ŵh,η − E∇Ŵh,η|2,∞ + |∇Ŵh − E∇Ŵh|2,∞ −Mk

l (h, η)
}
> 0

)
≤ (cardHa)2 sup

h,η
P
(
|∇Ŵh,η − E∇Ŵh,η|2,∞ + |∇Ŵh − E∇Ŵh|2,∞ −Mk

l (h, η) > 0
)

≤ (cardHa)2 sup
h,η

{
P
(
|∇Ŵh − E∇Ŵh|2,∞ −

√
kd(1 + 2δ)E(h) > 0

)
+ P

(
|∇Ŵh,η − E∇Ŵh,η|2,∞ −

√
kd(1 + 2δ)E(h ∨ η) > 0

)}
≤ 2 (cardHa)2 exp

(
−δ

2

6
∧ (δ ∧ 1)δ

21
(log n)2

)
≤ n−l,

where we choose b′1 = b5(1 + 2δ) with δ := δ(l) = 1 ∨ (21(l + 2)/(log n)).

Proof of Theorem 3. The proof of Theorem 3 is a direct application of Theorem 1 and
Lemma 4. Indeed, for any l ∈ N?, for n large enough, we directly have with proba 1−n−l:

|∇W(ĉ
ĥ
, c?)|2 ≤ 3 inf

h∈Ha

{
B(h) +Mk,∞

l (h)
}
,

where B(h) is defined as:

B(h) := max

(
|E∇Ŵh −∇W|2,∞, sup

η
|E∇Ŵh,η − E∇Ŵη|2,∞

)
, ∀h ∈ Ha.
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The control of the bias function is as follows:

|E∇Ŵh,η − E∇Ŵη|22,∞ =
∑
i,j

{∫
Vj

2(xi − cij)
(
EPZ K̃h,η(Z − x)− EPZ K̃η(Z − x)

)
dx

}2

=
∑
i,j

{∫
Vj

2(xi − cij) (EPXKh,η(X − x)− EPXKη(X − x)) dx

}2

≤ 4
∑
i,j

∫
Vj

(xi − cij)2dx|Kη ∗ (Kh ∗ f − f)|22

≤ 4k|F [K]|∞|fh − f |22,

where |fh − f |2 = |Kh ∗ f − f |2 = |EPX f̂h − f |2 is the usual nonparametric bias term in
deconvolution estimation. Besides, note that:

|E∇Ŵh −∇W|22,∞ =
∑
i,j

{∫
Vj

2(xi − cij) (EPXKh(X − x)− f(x)) dx

}2

≤ 4
∑
i,j

∫
Vj

(xi − cij)2dx|Kh ∗ f − f)|22.

The expression of Bk easily follows.

Proof of Theorem 4. We start with a control of the bias function involved in Theorem
3, namely the quantity:

Bk(h) := 2
√
k (1 ∨ |F [K]|∞) |Kh ∗ f − f |2, ∀h ∈ H.

By using for instance Proposition 3 in Comte and Lacour [12], we directly have for all
f ∈ N2(s, L):

Bk(h) ≤ 2
√
k (1 ∨ |F [K]|∞)L

d∑
j=1

h
sj
j , ∀h ∈ H.

Now, we have to use a result such as Lemma 3, for our family of kernel ERM {ĉh, h ∈ Ha}.
In other words, we need to check that this family is consistent w.r.t. the Euclidean norm
in Rdk.

Lemma 10. Assume f is continuous, |X|∞ ≤ 1 a.s. and the Hessian matrix of W is
positive definite for any c? ∈ M. Consider the family {ĉh, h ∈ Ha} with Ha defined in
Lemma 4. Then, for any t > 0:

P (|ĉh − c?(ĉh)|2 → 0) ≥ 1− e−t,

where c?(ĉh) = arg minc?∈M |ĉh − c?|2.
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Proof of Lemma 10. Using [1] and the continuity of f , we have, for some constant
A1 > 0, |ĉh−c?(ĉh)|2 ≤ A1(W(ĉh)−W(c?(ĉh))). Moreover, by definition of Ha in Lemma
4, W(ĉh)−W(c?(ĉh))→ 0 as n tends to infinity. This could be seen easily from Loustau
[34][Theorem 3], which gives the order of the bias term and the variance term for such a
problem. At this stage, we can notice that localization is used in [34], and then appears to
be necessary here. However, using a global approach (i.e. a simple Hoeffding’s inequality
to our family of kernel ERM), we can have, for any t > 0, on an event Ωt such that
P(Ωt) ≥ 1− e−t:

W(ĉh)−W(c?) .
Πh(−2β)√

n
+

d∑
j=1

h
sj
j , ∀h ∈ Ha.

It is finally clear that the RHS of this inequality tends to 0 as n tends to infinity, for any
h ∈ Ha. The proof of Lemma 10 is completed.

Then, for any h ∈ Ha, for any t > 0, and n great enough, Lemma 3 allows us to write
on Ωt: √

W(ĉh)−W(c?) ≤ 2

√
kd

λmin
|∇W(ĉh, c

?)|2.

Using Theorem 3 with l = q, the bias control (7.2) and the last inequality for a proper
t > 0, there exists an absolute constant b8 > 0 such that for n great enough:

sup
f∈N2(s,L)

E
[
W(ĉ

ĥ
)−W(c?)

]
≤ b8 inf

h∈Ha


d∑
j=1

h
sj
j +

Πh(−2β)

n


2

+ b8n
−q.

Let h? denote the oracle bandwidth as h? := arg infh∈H

{∑d
j=1 h

sj
j + Πh(−2β)

n

}
, and define

the oracle bandwidth h?a on the net Ha such that ah?a,j ≤ h?j ≤ h?a,j , for all j = 1, . . . , d.
We finally get:

sup
f∈N2(s,L)

E
[
W(ĉ

ĥ
)−W(c?)

]
≤ b8a−qd/2 inf

h∈H


d∑
j=1

h
sj
j +

Πh(−2β)

n


2

+ b8n
−q.

By a standard bias variance trade-off, we obtain the assertion of the theorem, provided
that q ≥ 2.

7.3. Proofs of Section 5.

Proof of Lemma 5. By definition, we first note that:∣∣∣Gloc
(
f̂h(x0)

)
−Gloc

(
f?(x0)

)∣∣∣ = |Eρ′γ
(
ξ1 + f?(x0)− f̂h(x0)

)
− Eρ′γ

(
ξ1

)
|.
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Using the mean value theorem and the assumption suph∈H |f̂h(x0)− f?(x0)| ≤ Eρ′′γ(ξ1)/4,
there exists c ∈ [−Eρ′′γ(ξ1)/4,Eρ′′γ(ξ1)/4] such that:∣∣∣Gloc

(
f̂h(x0)

)
−Gloc

(
f?(x0)

)∣∣∣ = Eρ′′γ(ξ1 + c)|f?(x0)− f̂h(x0)|.

Since Eρ′′γ(ξ1 + ·) is a 2-Lipschitz function, it yields :∣∣∣Gloc
(
f̂h(x0)

)
−Gloc

(
f?(x0)

)∣∣∣ ≥ Eρ′′γ(ξ1)

2
|f?(x0)− f̂h(x0)|.

The proof is completed.

Proof of Lemma 6. By simple algebra, we have:

P

(
sup

h,η∈Ha

{
|Ĝloc

h,η − EĜloc
h,η|∞ + |Ĝloc

η − EĜloc
η |∞ −Mloc

l (h, η)
}

+
> 0

)
≤

∑
λ,η∈Ha

P
(
|Ĝloc

λ,η − EĜloc
λ,η|∞ > Γl(λ ∨ η)

)
+
∑
η∈Ha

P
(
|Ĝloc

η − EĜloc
η |∞ > Γloc

l (η)
)
.

Using [10, Proposition 2] with Λ = {ργ} and F = [−B,B], it yields:

P

(
sup

h,η∈Ha

{
|Ĝloc

h,η − EĜloc
h,η|∞ + |Ĝloc

η − EĜloc
η |∞ −Mloc

l (h, η)
}

+
> 0

)
≤

∑
λ,η∈Ha

exp{−(l + 2) log(n)}/2 +
∑
η∈Ha

exp{−(l + 2) log(n)}/2

≤ |Ha|2 exp{−(l + 2) log(n)}/2 + |Ha| exp{−(l + 2) log(n)}/2
≤ n−l

Proof of Theorem 5. From [10, Theorem 1], we notice that all estimators {f̂h(x0), h ∈
H} are consistent, and thus, for n sufficiently large, the assumption of Lemma 5 holds for
all x0 ∈ T . Using Theorem 1 with l > 0 and Lemma 5, it yields:

|f̂
ĥloc

(x0)− f?(x0)| ≤ 6

Eρ′′γ(ξ1)
inf
h∈Ha

{
B(h) + 2Γloc

l (h)
}
,

with B(h) = max
(
|EĜloc

h −Gloc|∞, supη∈H |EĜloc
h,η − EĜloc

η |∞
)

with the term Gloc(·) :=

EY |W=x0ρ
′
γ(Y −·). The control of the bias term is based on the same schema of [14] applied

to the function Ft(·) := Eρ′γ(f?(·)− t+ ξ1). For any h ∈ H, it then remains to show:

B(h) ≤ sup
t∈[-B,B]

sup
y∈T

∣∣∣∣∫ Kh(x− y)
[
Ft(x)− Ft(y)

]
dx

∣∣∣∣
≤ sup

y∈T

∣∣∣∣∫ Kh(x− y)(f?(x)− f?(y))dx

∣∣∣∣ .(7.5)
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By definition, we see that |EĜloc
h −Gloc|∞ = supt∈[-B,B]

∣∣EKh(W − x0)
[
Ft(W )− Ft(x0)

]∣∣
and by definition of EĜloc

h,η and Ft, we have:

−EĜloc
h,η(t) =

∫
Ft(x)Kh,η(x− x0)dx =

∫
Ft(x)

(∫
Kh(x− y)Kη(y − x0)dy

)
dx.

Using Fubini theorem and the equation
∫
Kh(x− y)dx = 1 for all y ∈ T , we get

−EĜloc
h,η(t) =

∫
Kη(y − x0)Ft(y)dy +

∫
Kη(y − x0)

∫
Kh(x− y)

[
Ft(x)− Ft(y)

]
dxdy.

Then, it holds for any x0 ∈ T :

|EĜloc
h,η(t)− EĜloc

η (t)| =
∣∣∣∣∫ Kη(y − x0)

∫
Kh(x− y)

[
Ft(x)− Ft(y)

]
dxdy

∣∣∣∣
≤ ‖Kη(· − x0)‖1 sup

y∈T

∣∣∣∣∫ Kh(x− y)
[
Ft(x)− Ft(y)

]
dx

∣∣∣∣
= sup

y∈T

∣∣∣∣∫ Kh(x− y)
[
Ft(x)− Ft(y)

]
dx

∣∣∣∣ .
We have then shown the first inequality in (7.5). Using the smoothness of ρ′γ , we have:∣∣∣∣∫ Kh(x− y)

[
Ft(x)− Ft(y)

]
dx

∣∣∣∣ =

∣∣∣∣∫ Kh(x− y)E
[
ρ′γ
(
f?(x)− t+ ξ1

)
− ρ′γ

(
f?(y)− t+ ξ1

)]
dx

∣∣∣∣
≤
∫
Kh(x− y) |f?(x)− f?(y)| dx

Therefore, (7.5) holds and the proof is completed.

Proof of Theorem 6. For all f ∈ Σ(s, L), we have :∫
Kh(x− y) |f?(x)− f?(y)| dx ≤ L‖K‖∞

d∑
j=1

h
sj
j .

Using Theorem 5 with l = q, there exists an absolute constant T1 > 0 such that

sup
f∈Σ(s,L)

E
∣∣∣f̂ĥ(x0)− f?(x0)

∣∣∣q ≤ T1 inf
h∈Ha


d∑
j=1

h
sj
j +

√
log(n)

nΠh


q

+ T1n
−q.

Let h? denote the oracle bandwidth as h? := arg infh∈H

{∑d
j=1 h

sj
j +

√
log(n)
nΠh

}
, and define

the oracle bandwidth h?a on the net such that ah?a,j ≤ h?j ≤ h?a,j , for all j = 1, . . . , d. Then,
we have

sup
f∈Σ(s,L)

E
∣∣∣f̂ĥ(x0)− f?(x0)

∣∣∣q ≤ T1a
−qd/2 inf

h∈H


d∑
j=1

h
sj
j +

√
log(n)

nΠh


q

+ T1n
−q

By a standard bias variance trade-off, we obtain the assertion of the theorem.
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Proof of Theorem 7. Note that {f̂h(x0), h ∈ H} is a family of consistent estimators
(see [10, Theorem 1]) and thus the assumption of Lemma 5 holds for n sufficiently large
and for all x0 ∈ T . Gathering with Theorem 1 with l > 0 and adding the Lq-norm, it
gives:

‖f̂
ĥgloq
− f‖q ≤

6

Eρ′′γ(ξ1)
inf
h∈H

{
B(h) + 2Γglo

l,q (h)
}
,

where B(h) = max
(
‖EĜglo

h −G
glo‖q,∞, supη∈H ‖EĜ

glo
h,η − EĜglo

η ‖q,∞
)

and Gglo(·, x0) :=

EY |W=x0ρ
′
γ(Y − ·), ∀x0 ∈ T . The control of the bias term is based on the schema of [16]

for linear estimates: for any h ∈ H, it remains to show:

(7.6) B(h) ≤
∥∥∥∥∫ Kh(x− ·)

∣∣f?(x)− f?(·)
∣∣dx∥∥∥∥

q

By definition, we see that ‖EĜglo
h −G

loc‖q,∞ = supt∈[-B,B]

∥∥∥EKh(W −·)
[
Ft(W )−Ft(·)

]∥∥∥
q
,

where we recall Ft(x) := Eρ′γ(f?(x) − t + ξ1). Moreover, in the proof of Theorem 6, we
have shown that for any x0 ∈ T

EĜglo
η (t, x0)− EĜglo

h,η(t, x0) =

∫
Kη(y − x0)

∫
Kh(x− y)

[
Ft(x)− Ft(y)

]
dxdy.

By Young inequality and the definition of the kernel in Section 2.2, it yields

‖EĜglo
η − EĜglo

h,η‖q,∞ = sup
t∈[-B,B]

∥∥∥∥∫ Kλ(y − ·)
∫
Kh(x− y)

[
Ft(x)− Ft(y)

]
dxdy

∥∥∥∥
q

≤ sup
t∈[-B,B]

∥∥∥∥∫ Kh(x− ·)
∣∣Ft(x)− Ft(·)

∣∣dx∥∥∥∥
q

.

Using the smoothness of ρ′γ , we have for any x, y ∈ T and any t ∈ [-B,B]:

Ft(x)− Ft(y) = E
[
ρ′γ
(
f?(x)− t+ ξ1

)
− ρ′γ

(
f?(y)− t+ ξ1

)]
≤
∣∣f?(x)− f?(y)

∣∣.
Therefore, (7.6) holds and the proof is completed.

Proof of Theorem 8. We first notice that for all f ∈ Nq(s, L), we have∥∥∥∥∫ Kh(x− ·)
∣∣f?(x)− f?(·)

∣∣dx∥∥∥∥
q

≤ L
d∑
j=1

h
sj
j .

Using Theorem 7 with l = q, there exists an absolute constant T2 > 0 such that

sup
f∈Nq,d(s,L)

E‖f̂
ĥgloq
−f‖qq ≤ T2


infh∈H

{∑d
j=1 h

sj
j + (nΠh)−(q−1)/q

}q
+ n−q if q ∈ [1, 2[

infh∈H

{∑d
j=1 h

sj
j + (nΠh)−1/2

}q
+ n−q if q ∈ [2,∞[

.

By a standard Bias/Variance trade-off, we obtain the assertion of the theorem.



36 CHICHIGNOUD & LOUSTAU

References.
[1] Antos, A., Györfi, L. and György, A. (2005). Individual convergence rates in empirical vector

quantizer design. IEEE Trans. Inform. Theory 51 4013–4022.
[2] Arias-Castro, E., Salmon, J. and Willett, R. (2012). Oracle inequalities and minimax rates for

nonlocal means and related adaptive kernel-based methods. SIAM J. Imaging Sci. 5 944–992.
[3] Arlot, S. and Massart, P. (2009). Data-driven Calibration of Penalties for Least-Squares Regres-

sion. Journal of Machine Learning Research 10 245–279.
[4] Astola, J., Egiazarian, K., Foi, A. and Katkovnik, V. (2010). From Local Kernel to Nonlocal

Multiple-Model Image Denoising. Int. J. Comput. Vision 86 1–32.
[5] Bartlett, P. L., Linder, T. and Lugosi, G. (1998). The minimax distortion redundancy in em-

pirical quantizer design. IEEE Trans. Inform. Theory 44 1802–1813.
[6] Bartlett, P. L. and Mendelson, S. (2006). Empirical minimization. Probability Theory and Related

Fields 135 (3) 311-334.
[7] Blanchard, G., Bousquet, O. and Massart, P. (2008). Statistical performance of support vector

machines. Ann. Statist. 36 489–531.
[8] Boucheron, S., Bousquet, O. and Lugosi, G. (2005). Theory of classification: a survey of some

recent advances. ESAIM: Probability and Statistics 9 323-375.
[9] Bousquet, O. (2002). A Bennett concentration inequality and its application to suprema of empirical

processes. C. R. Math. Acad. Sci. Paris 334 495–500.
[10] Chichignoud, M. and Lederer, J. (2013). A Robust, Fully Adaptive M-estimator for Pointwise

Estimation in Heteroscedastic Regression. To appear in Bernoulli, arXiv:1207.4447v3.
[11] Chichignoud, M. and Loustau, S. (2013). Adaptive noisy clustering. Submitted, arXiv:1306.2194.
[12] Comte, F. and Lacour, C. (2013). Anisotropic adaptive kernel deconvolution. Ann. Inst. Henri
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