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∗CNRS UMR 5800 LaBRI, INRIA Bordeaux Sud-Ouest

Campus Université Bordeaux I
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Abstract—Exploring document collections remains a focus
of research. This task can be tackled using various techniques,
typically ranking documents according to a relevance index or
grouping documents based on various clustering algorithms.
The task complexity produces results of varying quality that
inevitably carry noise. Users must be careful when interpreting
document relevance or groupings. We address this problem
by computing cohesion measures for a group of documents
confirming/infirming whether it can be trusted to form a
semantically cohesive unit. The index is inspired from past
work in social network analysis (SNA) and illustrates how
document exploration can benefit from SNA techniques.
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I. INTRODUCTION

This paper adopts a social network analysis perspective

to investigate the notion of group cohesion in a document

collection. Our contribution exploits structural features of

a network describing how index terms associated with

documents interact with one another. Different indices are

computed to measure how well and how much terms co-

occur with one another. This perspective differs from and

complements more traditional approaches such as document

ranking and topic detection.

Most search engines rank the documents they deliver

when queried using keywords. Document ranking tech-

niques, among which Pagerank [4] is the likely most well

known and widely used, most often order according to their

relevance (with respect to a query) [7]. Ranking, however,

does not necessarily consider relationships between key-

words and terms indexing documents, leading to an ordered

list of documents that concern distinct and often uncorrelated

topics.

Another line of research focuses on the identification of

topics in a document collection. Many approaches rely on

terms to index documents and compute statistics indicating

how relevant and important a word or topic is in a document

or collection [18], [12], [21], [2], [3], [11].

The contribution of this work complements ranking tech-

niques and topic identification approaches. Inspired by so-

cial network analysis [5], we introduce a term interaction

network to measure how much terms indexing documents

interact with one another within a document group. We

refer to term interaction as entanglement, and compute

entanglement intensity and homogeneity. These two statistics

can then be used to assess the overall cohesion among a

group of documents.

The term interaction network can be formed from any set

of relevant terms that have been identified within a document

group using any method (e.g., statistics [18], [2], LSA [12],

[11] or LDA [3]). One particularly interesting use of the

interaction network and entanglement measures is to provide

feedback on any document grouping or clustering, allowing

users to locate more cohesive subgroups that result from an

automated grouping procedure or algorithm.

The next section briefly reviews related work before lay-

ing out the necessary definitions and notations in Section II

to introduce the term interaction network and entanglement

measures. A case study is then discussed to show the

potential use of these devices (Section III). We demonstrate

the interaction network and entanglement measures on data

obtained from TV news excerpt manually indexed by docu-

mentalists at INA1.

A. Related work

Document collection analysis classically considers a co-

occurrence matrix, from which several indices can be de-

rived. A well-known index is the tf-idf index [18], which

computes a weight for terms. Documents d, d′ can then be

seen as vectors of weights indexed by terms, corresponding

to a line in the co-occurrence matrix. These vectors can

be used to evaluate similarities or dissimilarities between

documents. The cosine similarity cos(d, d′) = 〈d,d′〉
‖d‖‖d′‖ is

one well known and vastly used similarity index.

Since the seminal work of Salton [18], researchers have

proposed improvements to the “bag-of-words” model (see

[16], for instance). Latent Semantic Analysis (LSA) [12], or

Latent Semantic Indexing [8], exploits the idea that words

with similar meaning occur close together in text. These

methods evaluate semantic proximity by performing singular

1INA is the French National Multimedia Institute, see www.ina.fr



value decompositions on a word count matrix. Probabilistic

Latent Semantic Indexing (PLSI) [21] is based on a mixture

decomposition derived from a latent class model that can

be adjusted using an expectation-maximisation algorithm.

Latent Dirichlet Allocation (LDA) [3] is a topic model

similar to PLSI, where each document is viewed as a mixture

of various topics. LDA assumes that each document is a

mixture of a small number of topics, where the presence of

words in documents is attributable to one of the document’s

topics.

These models share the common goal of finding the most

relevant terms or topics emerging from a set of documents.

Documents can then be described using either a weighted

vector or probability distribution indexed by terms, thus al-

lowing the user to compute similarities between documents.

These weighted vectors can then feed different algorithms

to mine and/or cluster document collections ([14], [24] or

[20]).

Other authors have developed approaches focusing on

lexical cohesion in relation with document ranking [22] or

text structure [17]. In [22], the authors improve document

ranking by computing various distances between terms. They

exploit the structure of sentences and collocation of query

terms in documents. Our work does not look at document

content but assumes documents have already been indexed,

or terms have already been extracted from documents. In

our case, collocation of terms occurs when two terms index

a same document. We use a term interaction network to

capture multi-partite collocation, instead of considering only

pairwise distance between terms.

Our approach also differs from these indexing and ranking

techniques in various ways. First, we consider the term

interaction network as a central ingredient from which the

entanglement index is derived and several conclusions can

be drawn. Our approach is similar to [1] because it considers

a term-document network rather than the topic-term matrix

used in LDA. The authors in [1] used a document-topic

matrix to estimate the actual number of topics present in a

document collection. Our concern is different, as we aim to

establish whether a document group indeed forms a cohesive

group for a given set of index terms. The network shape,

however, may be a good indicator of the actual number of

different topics that mix within a document collection.

The entanglement index may be computed on any group

of documents and any term set indexing these documents.

Our technique thus appears as a post-process, providing

feedback about any indexing and/or grouping procedure used

on a set of documents. The entanglement index is based

on interactions that occur between terms (Section II) and

fully exploits the interaction network topology. Our work

shows how information retrieval can benefit from ideas and

techniques borrowed from social network analysis (SNA).

To our knowledge, most papers taking advantage of SNA in

information retrieval do so by considering a social network

of (human) actors, as in [13].Our work takes a completely

different perspective and directly applies SNA to a network

of terms seen as interacting entities.

II. DOCUMENT GROUP COHESION

We now define the entanglement index of terms based

on matrix analysis of a term interaction network. Let D be

a collection of documents d ∈ D, each indexed by terms

t ∈ T , where T denotes a collection of terms. Terms here

index documents and correspond to words either taken from

a fixed vocabulary (thesaurus) or extracted from documents.

An example is a video document (e.g., an excerpt from an

evening TV news program) indexed by terms related to the

news excerpt topics. We assume here that terms have already

been identified and/or computed, so all documents come

equipped with a set of index terms. Let M = (md,t)d∈D,t∈T

denote the usual co-occurrence matrix, where md,t denotes

the number of occurrences of term t in document d. Doc-

ument d can then be seen as a vector of weights indexed

by terms t ∈ T , namely d = (md,t)t∈T , corresponding to a

line in the co-occurrence matrix M .

A. Term interaction network

One can define a graph-based representation of the

document-term relations. The co-occurrence matrix indeed

corresponds to a graph GD,T = (V,E), whose vertices

are either documents or terms, V = D ∪ T and edges

e = {d, t} ∈ E connect documents to terms whenever

md,t > 0. This graph is obviously bipartite, as edges never

directly connect any two documents or any two terms. The

top image in Fig. 1 illustrates this construction from a

set of four different documents with index terms; the next

image corresponds to the bipartite graph defined from these

documents and index terms.

Many techniques and algorithms are found in the literature

for exploiting this bipartite graph to mine and cluster either

the document collection [23] [6], term set [19] or both

simultaneously [9].

This bipartite graph is sometimes used to derive a graph

GD = (D,ED), directly linking documents. The graph

is built from GD,T by projecting paths d − t − d′ onto

edges e = {d, d′} ∈ ED. Fig. 1 (third image from top)

illustrates how GD is obtained from GD,T (it does not

include loops connecting a document to itself). Distinct

terms t, t′, . . . may link documents d and d′ in GD,T ,

from which the edge e = {d, d′} is induced. We collect

all such terms and turn them into attributes of edge e.

Terms t may also be seen as types (labels) for edges in

ED. These terms are called the terms associated with the

edge e ∈ ED, common to both documents d and d′. Other

applications turn this term set into a weight on edges e ∈ E
and exploit it when mining the document-document graph

GD = (D,ED). However, projecting a bipartite graph onto

a one-mode network unfortunately leads to information loss



[Indexed documents D with terms T ]

[Bipartite graph G = (D ∪ T,E)]

[Document-document graph GD = (D,ED)]

[Term interaction network I = (T, F )]

Figure 1. Graphs are built from a document collection indexed by
terms (top), from which a bipartite graph linking documents and terms
can be considered (next image). We then consider the projected document-
document graph with terms as edge attributes (third image from top) and
derive the resulting term interaction network (bottom).

[15], [25]. We overcome the situation by considering an

additional network on terms.

We now build a term interaction network. Consider the

graph I = (T, F ), whose vertices are terms t ∈ T . An

edge f ∈ F links terms t, t′ ∈ T whenever they both are

associated with edge e = {d, d′} ∈ ED, i.e., when two

distinct documents d, d′ ∈ D are both indexed by terms

t, t′. Terms t and t′ interact with one another through at

least two distinct documents d, d′.

The graph I = (T, F ) is not built from GD,T by

projecting paths t − d − t′ onto edges e = {t, t′}. Fig. 1

(bottom) illustrates how IT is obtained from graph GD.

The term interaction network I = (T, F ) is at the centre

of our discussion and is actually an object of interest when

exploring the document space. The interaction network is

defined after documents have been indexed. The interaction

network I = (T, F ) relies on the definition of a document-

document graph GD = (D,ED) that may be obtained

from any data linking documents to terms. Nothing prohibits

customizing the graph GD before it is used to define the

interaction network I = (T, F ).
The idea of building the term interaction network is

borrowed from social network analysis [5]. We compute

interaction matrices NI = (nt,t′) and CI = (ct,t′) (where

subscripts are terms t, t′ ∈ T ). Let e ∈ ED be an edge in

GD and τ(e) ⊂ T denote the set of terms associated with e.

Conversely, let τ−1(t) denote the set of edges e ∈ ED with

term t ∈ T as an associated term. We write nt,t = |τ−1(t)|
for the cardinality of that set. We also define nt,t′ as the

number of edges e ∈ ED with {t, t′} ⊂ τ(e), i.e., nt,t′

equals the number of edges e ∈ ED that carry both terms t
and t′. In other words, nt,t′ = |τ−1(t) ∩ τ−1(t′)|, t 6= t′.

Define ct,t =
nt,t

|ED| , and ct,t′ =
nt,t′

nt,t
, t 6= t′. If matrix NI

is symmetric, matrix CI is not. The diagonal entries ct,t in

matrix CI can be informally seen as the probability that an

edge in ED is associated with term t. Non-diagonal entries

ct,t′ would then correspond to the conditional probabilities

that an edge is associated with term t′ given that it is

associated with term t.
Consider the matrices NI (left) and CI (right) shown

below. These matrices are computed from the 5-term clique

in Fig. 2 indexing a collection of 18 documents sharing 103

links. Reading the diagonal, n1,1 = 71 links are associated

with the first term (road safety), and n2,2 = 48 with the

second (accident prevention). The number of links associated

with both the first and second terms is n1,2 = n2,1 = 35.

Reading the first entries in CI , the first term is associated

with c1,1 = 69% of all links, and there is a c1,2 = 73%
chance of finding a link associated with the second term

among those associated with the first term, while only

c2,1 = 49% of the links are associated with the second term

among those associated with the first term.











71 35 61 46 28
35 48 35 41 15
61 35 78 42 45
46 41 42 67 21
28 15 45 21 45
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0.49 0.47 0.45 0.61 0.33
0.86 0.73 0.76 0.63 1
0.65 0.85 0.54 0.65 0.47
0.39 0.31 0.58 0.31 0.44











B. Entanglement index

We now wish to compute the entanglement index λt for

each term t, measuring how much t is entangled with other

terms in the network I = (T, F ), seen as a measure of its

contribution to the cohesion of a document group. Let λ
denote the maximum entanglement index among all terms

and γt denote the fraction that computes the entanglement



for term t. The entanglement index for term t can then be

computed as λt = γt · λ.

Now, the entanglement index of a term is reinforced

through interaction with other well entangled terms. Having

a probabilistic interpretation of the matrix entries ct,t′ in

mind, we postulate the following equation which defines the

values γt:

γt · λ =
∑

t′∈T

ct′,tγt′ (1)

The vector γ = (γt)t∈T , collecting values for all terms t,
thus forms a right eigenvector of the transposed matrix C ′

I ,

as Eq. (1) gives rise to the matrix equation γ · λ = C ′
I · γ.

The maximum entanglement index thus equals the maximum

eigenvalue of matrix C ′
I .

The entanglement indices λt are of lesser interest; we are

actually interested in the relative γt values. Furthermore, we

shall see how the entanglement vector γ and eigenvalue λ
can be used to define global measures to help understand

how cohesion in a document group takes place.

C. Entanglement intensity and homogeneity

This section introduces entanglement intensity and en-

tanglement homogeneity as global network measures for

the term interaction network I = (T, F ). Its topology

provides useful information about how terms contribute to

the cohesion of a document group.

The archetype of an optimally cohesive document group

is when all documents are indexed by the exact same terms.

Indeed, assume either that experts have manually indexed

documents or that terms have been obtained through some

automated procedure(s).

Figure 2. Optimal cohesion is reached when the entanglement of terms
forms into a clique where all terms interact with one another with equal
frequency.

The graph I = (T, F ) then corresponds to a clique, i.e.,

a graph where all nodes connect to all other nodes. In this

case, all matrix entries nt,t′ coincide, so all entries in matrix

CI equal 1. The maximum eigenvalue of C ′
I then equals

λ = |T |, and all γt are equal. That is, all terms indeed

contribute, and they all contribute equally to the overall

document group cohesion. The Perron-Frobenius theory

of nonnegative matrices [10, Chap. 2] further shows that

λ = |T | is the maximum possible value for an eigenvalue

of a non-negative matrix with entries in [0, 1].
An opposite situation occurs when the term interaction

network is not connected. Terms split into two subsets

that never interact and suggests that the document set may

be divided into distinct subgroups. Note that this type of

information is easily revealed by inspecting the interaction

network, although it is not immediately revealed when

looking at a weight vector computed by most indexing tech-

niques. In this case, the connected components in I = (T, F )
must be inspected independently. In the sequel, we assume

I = (T, F ) is connected. In that case, non-negative matrix

theory tells us that the matrix CI has a maximal positive

eigenvalue λ ∈ R with a single associated eigenvector γ
with non-negative real entries [10, Theorem 2.6].

Another typical situation occurs when few terms appear

central and the remaining terms are peripheral. On the

one hand, documents share a few common terms or rally

around a few central topics; on the other hand, documents

form subgroups around secondary terms or subtopics. This

situation is again easy to identify, as the term interaction

network has a fragmented structure (Fig. 4). In this case,

the entanglement index reaches higher values for central

terms while showing a clear decrease in peripheral terms.

Peripheral subgroups may form smaller but denser sub-

networks. When examining them locally and recomputing

the entanglement index based on the term subset involved,

we may expect the entanglement index to adjust to the

clique scenario. The case studies presented below develop

this situation.

Inspired from the clique archetype of an optimally cohe-

sive document group, we wish to compute a entanglement

index at the document group level. Because the eigenvalue is

bounded above by |T |, we define the network entanglement

intensity (or intensity for short) as the ratio λ
|T | ∈ [0, 1] to

measure how intensely interactions occur within a document

group.

We also know that the clique situation with equal ct,t′

weights leads to an eigenvector γ with identical entries.

This eigenvector thus spans the diagonal space generated by

the diagonal vector 1T = (1, 1, . . . , 1). This motivates the

definition of a second measure providing information about

how homogeneously interaction occurs among terms. We

may indeed compute the cosine similarity
〈1T ,γ〉

‖1T ‖‖γ‖ ∈ [0, 1]
to get an idea of how close the document group is to being

optimally cohesive. We will refer to this value as the network

entanglement homogeneity (or homogeneity for short).

III. USE CASES

This section discusses two use cases illustrating how the

various entanglement measures we have defined, together

with the term interaction network topology, can be employed

to explore a document collection and assess the cohesion of

document groups.



Both use cases are built using TV news excerpts that

cover many subjects over a 100-day period. Documents

were manually indexed at INA. Document groups were

identified using classical clustering approaches, outputting

groups of varying sizes and homogeneity. The procedures

used to form these groups are not the focus here. Indeed, the

entanglement index and interaction network are designed to

provide feedback about the groups returned by any grouping

procedures. A term interaction network may be inferred from

any document group one wishes to inspect.

A. Road Safety

We first consider a set of approximately 20 documents,

all relating to road safety. Although small, this document

sample exhibits interesting features that can also be found in

larger samples. Road safety became a topic of interest after

the government established a safety policy promoting the

use of automated radar, with an inevitable increase in traffic

tickets and fines. As expected, this news generated attention,

and all TV channels devoted parts of their news programs

to this subject. Documents involve index terms, including

accident prevention, arrest, danger, driver, driving behavior,

money, offense, policeman, prison,road safety, society, and

speed, speed camera as the resulting interaction network

shows in Fig. 3.

Darker nodes have higher entanglement indices. Node size

relates to the number of links nt,t in GD that are associated

with term t. As we may guess from the layout, central nodes

accident prevention and speed have higher entanglement

indices, 0.38 and 0.44, respectively. Other nodes have lower

values, such as danger and speed camera with 0.30 and 0.07,

respectively. The intensity for the whole network I = (T, F )
is λ/|F | = 0.33, while the homogeneity is 0.81.

Fig. 3 clearly shows that terms split into subgroups

indicating why optimal cohesion might not be reached. The

interaction matrix NI accordingly has a block structure

(greyed background), with corresponding null off-diagonal

blocks. The central terms are centred in the matrix and

appear on top of a blue background. The matrix values

show how terms interact within their components, except

for central terms, which interact with all other terms. The

upper part of the matrix corresponds to the upper part

of the network and clearly shows that all terms interact

with one another with low frequencies (e.g., terms index

a small subset of all documents). The lower part of the

matrix exhibits a completely different behaviour, where

terms interact more vividly, but not with all other terms in

the component.

The network topology suggests closely examining doc-

uments relating to terms at the bottom, positioned below

the central terms accident prevention and speed. We con-

sider a subgraph I ′ formed with the terms fine, policeman,

speed camera, and road safety, etc. Terms in I ′ index all

documents but one. For this sub-network I ′, we have an

Figure 3. Interaction network induced from a document set related to
road safety and speed cameras. The network splits into two overlapping
components organised around two central terms: road safety and speed,
leading to an obvious block structure for the interaction matrix.

entanglement intensity of 0.31 and homogeneity of 0.72,

which is below those of the total network I . These lower

values occur because many terms, e.g., fine, money and

detector, actually index few documents (as suggested by

their sizes) and the terms involved in I ′ distribute less evenly

among documents than all terms in I globally do, as revealed

by the zero entries in the lower right part of the matrix.

We may further discard the low interaction terms and

focus on the 5-node clique in Fig. 2 associated with 18 of

the 20 documents. The clique corresponds to the submatrix

with high integer values near the centre of the image (Fig. 3).

As expected, the clique reaches higher intensity 0.6 and

homogeneity 0.98, confirming that these 18 documents form

a cohesive unit around the five selected terms.

This first example clearly shows that entanglement in-

dices, intensity and homogeneity provides insight on the

structure of the document group. This document group

clearly is homogeneous as all documents after all concern

road safety. Different facets of the group may be investigated

using techniques such as LDA to identify topics [3], with

additional efforts to evaluate the actual number of topics

[1]. However, the shape of the network topology is a

clear indicator of the number of “topics” or “stories” the

group contains, as confirmed when observing the increased

homogeneity of these two components.



Also, LDA provides no information on the relational

structure underlying the term set.

Local inspection of the term interaction network moreover

points at marginal terms that may be discarded in order to

find core terms around which cohesion builds.

B. Students

The second example concerns a group of 36 documents

about students and universities. They gather 3 stories about

student protests in Chile, excessive behaviour during fresh-

men hazing and students’ financial conditions, among other

diverse related subjects. Documents are indexed using many

terms, including Chile, Grande Ecole, higher education,

cost of living, education, hazing, protests, salary, student,

university, and violence, etc. Fig. 4 shows the resulting

interaction network.

The terms with highest entanglement indices sit in the

centre of the network: student and higher education, with

respective values 0.72 and 0.47. The terms hazing and

university immediately follow with entanglement indices of

0.34 and 0.27, respectively. Compared to the the previous

example, the network globally has a low intensity of 0.09

and homogeneity 0.44. This is due to a more intricate

topology splitting into three denser regions together with

satellite terms.

Let us now focus on denser areas in the quest for more

cohesive subgroups. The lower part of the network organises

around the term protests and links to documents related to

student protests in Chile and London. These terms (with

10 related documents) lead to a sub-network with increased

intensity 0.23 and homogeneity 0.81. Further focusing on

Chile leads to a 5-node clique with slightly higher inten-

sity 0.30 and homogeneity 0.90. After foreign newspapers

reported student protests in Chile and London, the French

press raised interest about the condition of French students

in universities. The terms salary, cost of living and part

time thus link within the network (rightmost area of the

network in Fig. 4), as they index documents concerned

with students’ life conditions both in France and abroad.

Focusing solely on these three terms, we get a smaller

sub-network (and four associated documents) with much

higher intensity 0.64 and homogeneity 0.93; again, smaller

term and document subsets typically reach higher cohesion.

The upper part of the network in Fig. 4 gathers documents

related to initiation rites in Grande Ecole. The press got

interested in these rites after freshmen students complained

about abuse during the hazing rites and brought their cases

to court. The four terms at the top (with related documents)

induce a sub-network with intensity 0.41 and homogeneity

0.76. Although intensity and homogeneity are higher than

the overall network, they remain far from the optimal case

and can be considered low. When more closely examining

the situation, these low values occur because terms are

nested: edges in GD associated with law are all associated

with Grande Ecole, which are all associated with customs,

ultimately contained in the set of edges associated with

hazing.

Figure 4. Interaction network induced from a set of documents related to
students and universities. This network has a much more intricate topology
and twice as many terms as the previous example (Fig. 3).

This perfectly exemplifies how network topology can

guide the document collection exploration. Identifying

denser areas in the network is a useful strategy for selecting

more cohesive documents from within the originally queried

document set.

C. Structure of the (Intensity × Homogeneity) space

Now that we have put forward how the interaction net-

work supports storytelling, and entanglement indices support

term ranking, we can conclude this section and return to

entanglement profiles considering the previously discussed

examples. We have used intensity λ
|F | and homogeneity

〈1T ,γ〉
‖1T ‖‖γ‖ as two distinct measures to provide complementary

information about the term interaction network. The exam-

ples exhibit situations where intensity and homogeneity can

be either low or high. Although we may suspect that these

quantities do not vary independently, we nevertheless design

a 2D plot where homogeneity is plotted along the x-axis

and intensity is plotted along the y-axis (Fig. 5). Any term

interaction network would then be plotted as a 2D point

(x, y) = ( 〈1T ,γ〉
‖1T ‖‖γ‖ ,

λ
|F | ) in the plane, and we may expect the

plot to divide into areas that correspond to network profiles.

There is an obvious dependency between intensity and

homogeneity: high intensity cannot be achieved without

some amount of homogeneity so the space cannot spread

The clique was presented as the archetype of an optimal

interaction network located at the top rightmost position

(x, y) = (1, 1) in the plot. The top-right area thus collects

these relatively dense and evenly interacting networks. The

5-node clique in Fig. 2 falls into this profile category, as

does the “Road safety” upper sub-network considered in

the first use case (Fig. 3, Section III-A). Higher intensity



and homogeneity are much easier to achieve with smaller

document and term subsets.

Figure 5. Entanglement profiles can roughly be categorised by combining
intensity and homogeneity. Measures on INA’s document groups are in red.
Randomly generated bipartite graphs are in yellow. Use cases examples are
in blue with labels.

The lowest-right area corresponds to relatively high ho-

mogeneity and lower intensity: terms almost all interact

with one another, but not as much as the document graph

GD theoretically allows. NI matrices are non-sparse, and

they have large diagonal but rather low off-diagonal entries.

Example networks in this category are the “Road safety”

lower sub-network (Fig. 3, Section III-A), and the Chile

sub-network with intensity 0.30 and homogeneity 0.90 is

also part of this category.

The most left area is tricky. This case occurs when terms

are nested, as if they were expressing similar concepts

at different generality levels. This situation translates into

consecutive inclusion of terms among documents links (i.e.,

links in GD associated with term t include all links as-

sociated with term t′ plus some other links). We pointed

out the “Hazing” sub-network in the second use case as a

prototype of this phenomenon. The fact that it nevertheless

has intensity 0.44 and homogeneity 0.76 stresses the fact

that the areas defined by the orthogonal dotted lines must

be refined and/or revised.

The lower-left case gathers networks with low intensity

and low homogeneity. This is a rather common case, usually

gathering more documents and terms with loose interaction.

This is a situation where many terms could appear as

satellites of more central terms. A term set covering a wider

semantic scope inevitably induces a network falling in this

category. A typical network would have a low density (few

edges) and a random link structure, leading to a sparse

NI matrix with ǫ entries. We could argue that the starting

interaction network in the Students use case, with a intensity

of 0.09 and a homogeneity of 0.44, falls within this category.

Although we have generated some random graphs to

illustrate the span of homogeneity and intensity, more exper-

imentation is needed to assess these prospective categories,

determine thresholds defining the profile areas and estimate

how they are populated.

IV. CONCLUSION

This paper introduced a term interaction network (Section

II) as a device from which term entanglement indices can

be computed. The cohesion indices can then be translated

into global cohesion intensity and homogeneity measures

among terms in a group of documents. The cohesion index,

cohesion intensity and homogeneity can be computed for

any group of documents. They can be used to provide

feedback about procedures used to group documents, helping

users decide whether documents can be trusted to form a

genuine cohesive semantic unit.

The case study (Section III) clearly shows the added

value brought by the interaction network topology. The

network shape is a clear indicator of possible profiles with

an obvious archetype profile of an optimally cohesive group

as a clique. The examples show how the topology organises

into different areas: some terms are deeply nested into a

region, while others act as pivot between regions. Diagram

5 was used to distinguish four generic profiles induced from

different cohesion intensity and cohesion homogeneity pairs

( λ
|F | ,

〈1T ,γ〉
‖1T ‖‖γ‖ ).

Our technique is independent of the procedure used to

extract or define the terms used to index documents; it

thus usefully complements existing indexing techniques.

LDA assumes that each document contains a mixture of

topics that are revealed in a document collection as a

mixture of terms. Determining the exact number of topics

combined in a document collection is a difficult problem

[1]. The case studies suggest that this number may correlate

or be derived from the term interaction network shape.

Denser sub-networks coupled with relatively high interaction

weights ct,t′ correspond to higher local cohesion. Although

a document group may be loosely cohesive, the interaction

network may lead to discovering more cohesive term and

document subsets.

The examples used have relatively small sizes. The largest

document samples we considered gather hundreds of doc-

uments and terms, but this limitation is apparent, as using

the interaction network occurs after documents have been

indexed and grouped. Although a query might return thou-

sands of documents, we may expect the grouping procedure

to form much smaller groups before closer examination

occurs. We also suspect that larger document samples gather

larger term sets, typically leading to sparser term interaction

matrices. This is confirmed by the examples discussed in

Section III. Conversely, a close examination of the term

interaction network helps to identify the core terms from

which documents form a cohesive unit.



We plan to examine strategies to automatically identify

term and document subsets with optimal (maximal) cohesion

intensity and homogeneity. These problems, however, will

inevitably bring us to combinatorial optimisation problems,

and we may expect to have no choice but to rely on heuristics

to avoid typical algorithmic complexity issues.
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