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Abstract—The analysis and exploration of a social network
depends on the type of relations at play. Borgatti had proposed
a type taxonomy organizing relations in four possible categories.
Homophily (similarity) relationships form an important category
where relations occur when entities of the network link whenever
they exhibit similar behaviors. Examples are networks of co-
author, where homophily between two persons follows from
co-authorship; or network of actors having played under the
supervision of the same movie director, for instance. Homophily
is often embodied through a bipartite network where entities of a
given type A (authors, movie directors) connect through entities
of a different type B (papers, actors). A common strategy is then
to project this bipartite graph onto a single-type network with
entities of a same type A , possibly weighting edges based on how
the type A entities interact with the type B entities underlying
the edge. The resulting single-type network can then be studied
using standard techniques such as community detection using
edge density, or the computation of various centrality indices. This
paper revisits this type of approach and introduces a homogeneity
measure inspired form past work by Burt. Two entities of type
B interact when they both induce a same edge between two
entities of type A . The homogeneity of a subgroup thus depends
on how intensely and how equally interactions occur between
entities of type B giving rise to the subgroup. The measure thus
differentiates between subgroups of type A exhibiting similar
topologies depending on the interaction patterns of the underlying
entities of type B. The method is validated using two widely used
datasets. A first example looks at authors of the IEEE InfoVis
Conference (InfoVis 2007 Contest). A second example looks at
homophily relations between movie actors that have played under
the direction of a same director (IMDB).

I. INTRODUCTION

The analysis and exploration of a social network depends
on the type of relations at play. Borgatti [4] had proposed a
type taxonomy organizing relations in four possible categories.
The first type is homophily (also referred to as similarity)
where connected members exhibit similar attributes such as
membership in a club or interest group [15]. These types of
ties do not represent actual social ties themselves, but might
lead to a higher probability of a tie to develop between the
members sharing similar attributes. Examples are networks of
co-author, where homophily between two persons follows from
co-authorship; or network of actors having played under the
supervision of the same director, for instance.

The second type of ties are social relationships that can be
affective relationships, friendship, . . . , usually spanning over a
long period of time. The third type captures joint interactions

usually observed through discrete events such as calling each
other or travelling together. The last type of ties describes
flow (tangible or intangible) between entities (migrants moving
between places, passengers between airports, etc.).

This paper focuses on networks induced from homophily
relations,often embodied through a bipartite network where
entities of a given type A (authors; movie actors) connect
through entities of a different type B (papers; directors).
Guillaume and Latapy [9] advocate bipartite graphs as being
universal models for complex networks, hence offering addi-
tional motivations to use of these graphs to describe homophily
relations.

When dealing with bipartite graphs, a common strategy is
to project them onto a single-type network with entities of a
same type A , possibly weighting edges based on how the type
A entities interact with the type B entities underlying the
edge. The resulting single-type network often tends to have
high edge density, with an increased propensity to contain
cliques (depending on the affiliation data used to build the
bipartite graph) [9]. It may nevertheless be studied using
standard techniques such as community detection using edge
density, or the computation of various centrality indices.

Referring to the work of Manski [14], we take the notion
of a group as a central paradigm guiding the analysis of
homophily networks. Numerous authors have indeed con-
fronted homophily to many social behaviors or phenomenon
(influence, contagion, information diffusion, e.g.) [1], [2],
[19] questionning Manski’s group effect as the driving force
explaining the observed phenomenon.

This paper introduces a homogeneity measure inspired from
past work by Burt [5] as a mean to inspect and assess group
cohesion in a homophily network modeled as a bipartite graph.
Two entities of type B interact when they both induce a
same edge between two entities of type A . When inspecting a
subgroup of entities of type A (in the single-type network), we
evaluate its homogeneity by measuring how intensely and how
equally interactions occur between entities of type B giving
rise to the subgroup. The measure differentiates subgroups
of type A exhibiting similar topologies depending on the
interaction patterns of the underlying entities of type B.

Fig. 1 underlines the “nuance” we wish to bring into
the analysis of homophily networks. Consider authors with
attributes A, . . . ,E in two different manners as shown in the
Figure. Authors in the square node graphs (left) are linked by



Fig. 1. An example underlining the “nuance” we emphasize by looking at
how type B entities interact. In both figures, the square node graph (left) link
type A entities (authors, movie directors, e.g.) whenever they are linked to
a same entity of type B (keywords, movie actors, e.g.). Entities of type B

appear as labels on induced links. The round node graph (right) describes how
type B entities interact, that is when they co-occur as labels on an edge. The
type B interaction network clearly distinguishes the two situations, whereas
the projected single-type A networks show identical topologies.

an edge whenever they share an attribute. Observe that in both
situations the pairwise “distance” between authors is the same,
because any two authors share exactly two attributes, ending
in identical topologies. As a consequence, based on pairwise
distance, these two groups are somehow equivalent.

Now, consider the circle node graphs (right) describing
how attributes interact within the whole group of actors.
Clearly, all actors having attribute A gives this attribute a
central position. The second situation is much more balanced
(although attributes do not mix as intensely as they could). This
small example points at situations where the analysis may be
mislead when solely inspecting the single-type author network.

Groups can be computed using a variety of methods, from
data clustering to community detection.Although advances
have been made on that front in the past decades [11], [18]
no algorithm or solution imposes itself as being superior in all
situations. Understanding and validating the output of these
algorithms is a challenging analysis task.

Our paper contributes an approach designed to help users
evaluate the reliability of a proposed group structure. Because
homophily (similarity) of actors is most often measured based
on co-occcurences of attributes, we provide a mean to simulta-
neously work on the actor network and the attibute interaction
network derived from the original homophily bipartite graph.
The notion of a group here depends on the context: it may be
a cluster computed from any algorithm, or a subset of authors
selected by a user, for instance.

Our work exploits two statistics computed on any group of
authors indicating the overall cohesion of the group measured
through the intensity and homogeneity of interactions of their
co-occurring attributes. Exploring the network, selecting a
group or subset of co-occurring attributes and getting feedback
on internal homogeneity, analysts can validate the model
implicitly supported by the grouping procedure.

Our method has been validated based on two widely used
datasets. A first example looks at homophily relations between
movie directors that have directed the same movie actors
(IMDB). A second example looks at co-authors of the IEEE
InfoVis Conference where homophily is defined in terms of
topics (keywords) associated with co-authored papers.

Related work. Bipartite graphs form an important mod-
eling tool in social network analysis, supporting two-mode
concepts [3]. They form an important analytical artifact to
study homophily relations [8], and were even claimed as
universal models for complex networks [9]. The literature

covers a wide variety of approaches dealing with different
properties of bipartie graphs and homophily networks. An
optional but common strategy consists in projecting the graph
inducing relationships between entities of a same type (see
[10], [17], [20], for instance), with the obvious disadvantage
of containing lots of cliques.

Because of their wide applicability and because they also
offer a straightforward graphical representation of the data,
bipartite graphs have been recently used in the design of a
website traffic analysis system [6]. Finally, Kaski et al. [12]
studied homophily in gene networks (similarity in gene expres-
sions) in bio-informatics with emphasis on the trustworthiness
of similarities, which places it close in spirit to our work.

II. HOMOPHILY, ATTRIBUTES AND ENTANGLEMENT

INDEX

This section takes a closer look at homophily networks and
describes the general framework we use.

As we shall see, group cohesion is easier to achieve with
smaller groups. Inspecting a group, in an effort to understand
why and how cohesion is embodied in the group certainly
requires to be validated based on user knowledge. This only
makes sense when conducted on small scale groups, gathering
hundreds of nodes at most.

Simple questions come to mind when inspecting a group,
such as “How can we assess a group of actors really forms
a cluster?” “How can we make sure all actors of a cluster
really belong to it?” “Should we suspect the group to contain
marginal (outlier) actors?”, etc.

A central ingredient we used to answer these questions is
a set of metrics that capture the intensity and homogeneity
of interaction between attributes in a group of actors. These
metrics can be viewed as an aid to assess of the internal
homogeneity of a group.

A. Interaction network

Our starting point is a set of actors A ∗ with associated
attributes A,B,C . . . ∈ B∗, as shown in Fig. 2 (a). Most tech-
niques use vector of attributes to compute distances between
actors and infer semantically close groups of actors.

The inspection of a group of actors and associated attributes
raises several questions. It might be important to know whether
attributes equally map to all actors in the group, for instance.
Conversely, a misleading transitivity effect may be suspected
to take place. Indeed, we may have attributes t, t ′ co-occurring
between actors a and a′, and attributes t ′, t ′′ co-occurring
between actors a′ and a′′, may lead one to believe that
attributes t, t ′, t ′′ simultaneously co-occur between all three
actors a,a′,a′′.

We addressed this issue by looking at how well attributes
mix within a group. This is accomplished using the entan-
glement index computed for each attribute t, measuring how
homogeneously an attribute co-occurs with all other attributes
in a group of actors. Global homogeneity, at the group level, is
then computed from the individual attribute entanglement in-
dices. For instance, optimal homogeneity is reached whenever
attributes have equal entanglement indices. This is the case



(a) Actors (authors) A ∗ writing papers with keywords B∗

(b) Bipartite graph G = (A ∗ ∪B∗,E)

(c) Actor-actor graph GA = (A ,EA )

(d) Attribute (keywords) interaction network GB = (B,EB)

Fig. 2. The initial data is formed of actors (authors) having associated
attributes A,B,C, . . . (a) (keywords indexing papers). This situation is modeled
by a bipartite graph linking actors to attributes (b) (authors having co-published
papers on a given topic – keyword, see section III-B). We then consider the
projected actor-actor network with attributes as edge labels (c) and derive the
resulting attribute interaction network (d).

when all actors have the exact same associated attributes, and
that all attributes equally co-occur within actors.

We now provide more details on these indices. The data can
be usefully modeled as a bipartite actor-attribute network G =
(A ∗∪B∗,E) with edges a−t whenever actor a has associated
attribute t (see Fig. 2 (b)). Two other networks are derived
from the actor-attribute network, namely an actor network GA

and an attribute interaction network GB . A actor network is
usually built from the actor-attribute network by projecting
paths a− t −a′ (linking actors a,a′ ∈ A through attribute t ∈
B) onto an edge a−a′ directly linking actors. We also need
to store the attribute t as a label for the edge a− a′. Edges
in GA are thus labelled by subsets of attributes (all attributes
t, t ′, . . . collected from triples a− t −a′, a− t ′−a′, . . . ).

Because we are focusing on actor group cohesion and on
attribute co-occurrence, we filtered out some of the edges.
Loops were discarded, as well as edges a−a′ inferred from a
single attribute t to obtain the actor network GA = (A ,EA ).
We moreover only kept edges a−a′ inferred from at least two
different attributes t, t ′. The resulting network is shown in Fig.
2 (c).

The attribute interaction network GB = (B,EB) is built
from attributes t that co-occur at least once with another
attribute t ′ (through at least two actors). That is, there must
exist at least two paths a− t − a′ and a− t ′− a′ to infer the
edge t − t ′ in EB . Note that this network is not obtained
by projecting paths t − a− t ′ onto edges t − t ′. For instance,
EB does not contain edges connecting descriptors that only
concern a single actor. The attribute interaction network is a
central artifact in computing group homogeneity.

Edges t − t ′ moreover carry weights nt,t ′ indicating how
often attributes co-occur between actors in the considered
group. We also define nt,t to count the number of edges in
EA carrying the attribute t. The matrix NB collecting all these
nt,t ′ entries gives rise to another matrix CB filled with ratios
ct,t ′ = nt,t ′/nt ′,t ′ . The value ct,t ′ may be viewed as computing
the (conditional) probability that an edge be of type t given
it is of type t ′, while ct,t = nt,t/N is the proprtion of edges
carrying attribute t among all N edges in GA = (A ,EA ).

Consider the example in Fig. 2. Starting from authors
(actors) a ∈ A ∗ having published papers on topics t ∈ B∗

(attributes), we build a bipartite graph where authors a,a′ link
through topic b whenever a and a′ have co-authored a paper
on topic b (Fig. 2 (b)). A single-type graph is obtained by
inducing edges between authors labeled with topics (Fig. 2
(c)). The resulting attribute interaction network directly linking
topics in shown in Fig. 2 (d). The matrices NB and CB (built
over attributes C,E,H and L) then read:

NB =







3 3 2 0
3 3 1 0
1 1 2 1
0 0 1 1






CB =







0.3 1.0 1.0 0
1.0 0.3 0.5 0
0.3 0.33 0.2 1.0
0 0 0.5 0.1







B. Entanglement index

Inspired by Burt’s work on relations ambiguity in multiple
networks [5], we now wish to compute the entanglement
index for each attribute, ,measuring how much an attribute t
contributes to the overall cohesion of an actor group.



The entanglement value of an attribute t is reinforced
through interactions with other highly entangled attributes.
Denote by λ the maximum value among entanglement indices
λt of attributes t ∈ B. In other words, the entanglement index
of attribute t is a fraction of λ , namely λt = γt ·λ . Having a
probabilistic interpretation of the matrix entries ct,t ′ in mind,
we can thus postulate the following equation which defines the
values γt .

γt ′ ·λ = ∑
t∈T

ct,t ′γt (1)

The vector γ = (γt)t∈T collecting values for all attributes t, thus
forms a right eigenvector of the transposed matrix C′

I , as Eq. (1)
gives rise to the matrix equation γ ·λ =C′

I · γ . The maximum
entanglement index thus equals the maximum eigenvalue λ of
matrix C′

I .

The actual entanglement index values λt are of lesser
interest; we are actually interested in the relative γt values.
Furthermore, we shall see how the entanglement vector γ and
eigenvalue λ can be translated into a network measures to help
understand entanglement in a group of actors.

C. Homogeneity and intensity

Let us see how our indices can help measure global
entanglement intensity and homogeneity. The topology of the
attribute interaction network GB = (B,EB) provides useful
information about how attributes contribute to the overall
cohesion among actors of a group. The focus here is on
interactions among attributes and aims to reveal how cohesive
the group of actors is considering this set of attributes.

The archetype of an optimally cohesive actor group is
when all actors have the exact same associated attributes. In
that case, the graph GB = (B,EB) then corresponds to a
clique. As a consequence, all matrix entries nt,t ′ coincide, so
all entries in matrix CI equal 1. The maximum eigenvalue
of C′

I then equals λ = |B|, and all γt coincide. That is, all
attributes indeed contribute, and they all contribute equally
to the overall actor group cohesion. The Perron-Frobenius
theory of nonnegative matrices [7, Chap. 2] further shows that
λ = |B| is the maximum possible value for an eigenvalue of
a non-negative matrix with entries in [0,1].

The Perron-Frobenius holds for irreducible matrices, that is
when the graph GB is connected. Hence, the connected com-
ponents in GB = (B,EB) must be inspected independently.
When When the matrix CB is irreducible, the theory of non-
negative matrices tells us that it has a maximal real positive
eigenvalue λ ∈ R, and that the corresponding eigenvector γ
has non-negative real entries [7, Theorem 2.6]. We hereafter
assume that CI is irreducible.

Inspired from the clique archetype of an optimally cohesive
actor group, we wish to compute a cohesion index at the actor
group level. We already know that the eigenvalue is bounded

above by |B|, so the ratio λ
|B| ∈ [0,1] measures how intensely

interactions take place within the actor group. This ratio thus
provides a measure for cohesion intensity among all actors
with respect to attributes in B.

We also know that the clique situation with equal ct,t ′

matrix entries leads to an eigenvector γ with identical entries.
This eigenvector thus spans the diagonal space generated

by the diagonal vector 1B = (1,1, . . . ,1). This motivates the
definition of a second measure providing information about
how homogeneously cohesion distributes among attributes. We

may indeed compute the cosine similarity
〈1B ,γ〉

||1B ||·||γ|| ∈ [0,1] to

get an idea of how close the actor group is to being optimally
cohesive. We will refer to this value as cohesion homogeneity.

A thorough study of the entanglement indices, and the
homogeneity and intensity network indices is out of the scope
of this paper (see [16]).

D. Analysis of homophily networks

Attributes entanglement indices, and the homogeneity and
intensity measures may thus be used to inspect homophily
networks and assess cohesion in subgroups of actors. These
computational devices suggest to use a synchronized dual view
of a homophily network splitted into two distinct but comple-
mentary networks: the networks of actors GA = (A ,EA ) and
the interaction network of attributes GB = (B,EB).

Typically, when using a node-link view of these networks,
the selection of a set of actors should automatically trigger
the selection of the relevant attributes and compute the cor-
responding entanglement, homogeneity and intensity values.
This is illustrated in Fig. 4), where a set of movie directors
has been selected (top panel). Movie actors that played under
their direction, here seen as attributes of movie directors, are
highlighted (bottom panel). The corresponding homogeneity
index, restricted to these four selected directors, are displayed
as a background of the selection lasso, while the actual
values are reported in a side panel. The size of movie actors
nodes corresponds to their entanglement index: a larger node
indicates a movie actor weighs more in bringing these movie
directors together as a group.

III. CASE STUDIES

The use cases we describe in this section aim at showing
how the entanglement indices, and the homogeneity and in-
tensity indices of networks help users explore social networks
and reason about the homophily content. The examples are
designed to highlight different aspects of the exploration,
each time underlining how the indices contribute to better
understand the group structure of the homophily network.

Roughly speaking, the knowledge users gain after applying
a grouping procedure (clustering, community detection) is that
“a group of actors” share “a list of attributes”. This is where
the entanglement index enters the scene. What does “a list of
attributes” really mean? Do all actors share all attributes? Do
actors more or less split between attributes? What particular
attribute(s) make(s) the split explicit? In other words, users
must be able to elucidate to what extent, and possibly how/why,
the group of actors form a more or less homogeneous unit.

A. IMDB

This first use case is built from the Internet Movie
DataBase, a largely used dataset (www.imdb.com).Starting
from the main actors in a chosen subset, we have additionally
extracted the corresponding movie directors to form a bipartite
network where directors connect to movie actors they have
directed. Applying our methodology we compute (i) a movie



director network, where two directors connect when the set of
actors they have directed share at least two actors, together
with (ii) the corresponding actor interaction network. The data
may thus be used to find homogenous subgroups of movie
directors, those whose artistic signature rely on similar movie
casts.

Fig. 3. IMDB - directors appear on top; actors on bottom. Selecting a group
of directors highlights the corresponding actors, with node size mapped to
their entanglement index. This group of directors shows low homogeneity
and intensity. We can clearly see that the distribution of actors is unbalanced,
partly because Sharon Stone plays by far a central role in the interactions
between directors – the directors all have, at some point, directed her.

This first example gathers 15 actors and 16 directors (see
Fig. 3). A low intensity and medium homogeneity, together
with a loosely connected actor interaction network topol-
ogy suggest that actors and directors roughly split into two
communities. The director network has medium homogeneity
that corresponds to a quite balanced distribution of actors
among them. Homogeneity is not optimal: the directors did
not individually direct each of these actors although, as a
group, they did direct all of these actors. This indicates the
need to dig further and try to “nuance” the homogenity of this
group. Roughly speaking, low intensity is explained since most
directors have directed only a small number of actors relatively
to the whole set. As can be seen from Fig. 3 (bottom), the two
communities of actors are connected through R. Duvall, and
the two communities of directors are connected through S.
Lurnet.

The “M. Brando” sub-community (bottom right) shows
higher intensity (with homogeneity similar to the overall
network). These actors appear as attributes for a subgroup of
directors centred around F.F. Coppola, J. Huston, and others.
Higher intensity means they played with many other actors
under the direction of these movie directors.

The community of actors located in the top left part of the

Fig. 4. A group of directors (top) and the corresponding actors they co-
directed (bottom, highlighted) with node size mapped to their entanglement
index. This clique of 4 directors shows higher homogeneity and intensity than
the selected group on Fig. 3.

panel correspond to a different group of directors (connecting
to the previous group through S. Lurnet). It gathers S. Lee, J.
Jarmusch, M.Scorsese, W. Allen and others. This community
has similar intensity but higher homogeneity when compared
to the overall network. This means these actors have equal
influence within this group and better capture altogether the
artistic signature of these directors as a group.

The upper left subgroup in the director network (see Fig. 4)
actually divides into three overlapping cliques. Two cliques
reach maximal homogeneity and intensity (the exact same
actors have all played under their direction). The third clique
(B. Beresford, J. Jarmusch, B. Levinson, and S. Lurnet) –
selected in the top panel of Fig. 4 – focuses on E. Barklin
and S. Stone. It has lower homogeneity and intensity indices:
they don’t mix that well with the other actors.

This use case thus underlines the fact that although a group
involve a well identified and distinct set of attributes (movie
actors), the homogeneity of the considered group may rely only
on a subset of these attributes. Clearly, group cohesion must
not solely rely on the topology of the projected single-type
network obtained from the original bipartite network.

B. InfoVis 2004 contest

Our second example brings data of a different nature, where
topics (keywords) link to authors, showing that the notion of
homogeneity can actually apply to a wide variety of entities.

We selected a subset of the InfoVis 2004 Contest dataset
giving papers published in InfoVis between 1994 and 2004
[13]. The data we consider are authors indexed by keywords
gathered from papers they published. We thus compute a



bipartite graph where authors link to keywords. To some
extent, with respect to Borgatti’s taxonomy of relations [4], this
network could be considered as an interaction network since
co-authorship indeed involves direct contact with collaborators.

Fig. 5. The InfoVis 2004 Contest data gives rise to a topic (keywords)
interaction network paired with an author social network. The three selected
authors (top panel) hold a central position in the social network (top). Their
co-publications cover a wide spectrum of topics as shows the clique of terms
in the bottom image. Homogeneity, although good, is however not optimal:
they did not pairwise co-published on all these topics. We may indeed suspect
each of them to have different co-authors in the network.

When we consider authors and keywords, groups may form
because authors are socially very close – working in same
laboratories, graduated same institutions – or just formed an
opportunistic association around trendy topics. We took this
aspect in consideration by making sure that authors were
connected through a keyword only when they indeed had co-
published a paper on that topic – not just because they both
had published a paper on that topic.

We show how our approach helps to solve two tasks
of the InfoVis 2004 Contest: Where does a particular au-
thor/researcher fit within the research areas? What, if any,
are the relationships between two or more or all researchers?

The author-keyword bipartite graph gives rise to a keyword
interaction network GB and an author social network GA . The
full social network contains about 1000 authors and breaks

into several connected components. We will focus on the
component lead by Woodruff, Olston and Stonebraker (see [13,
leftmost part of Fig. 4]) gathering 16 authors (see Fig. 5 – top).

Fig. 6. Browsing around “obvious” sub-communities of authors, the keywords
portals and data visualization never pop up. Directly selecting them in the
keyword network brings two co-authors up front: Woodruff and Olston (top).
Selecting these authors shows their common topics of interest to be marginally
positioned with respect to the main clique (bottom).

The answer to the first question is straightforward. Select-
ing a single author, its associated keywords are highlighted
while positioned in the context of neighbor topics. The social
network displays the co-authors of any selected author.

Inspecting the whole network author by author is lengthy
and tiresome and cannot reasonably be performed on larger
networks. This brings us to the second task requiring a more
elaborated exploration strategy. In our case, we may take
benefit of the apparent community structure of the social
network. Conversely, we may select a subset of keywords and
look at authors who have published on these topics to see how
homogeneous a community they form, for instance.

The topology of the author network (Fig. 5 – top) clearly
shows three authors as central actors (A. Woodruff, M. Stone-
braker and A. Aiken) at the intersection of two different
cliques. Their associated keywords form a large clique cover-
ing a large part of the keyword network (Fig. 5 – bottom). The
entanglement values (node sizes) widely vary among keywords



explaining why homogeneity is low, moreover suggesting that
each of these three authors have her/his own set of topics.

Selecting the authors that are part of the top clique in
the social network (Paxson, Wisnovsky, . . . ), except those
central actors leaves us with a subset of authors with optimal
homogeneity: they all co-published on the exact same topics.
The same is true with the authors of the bottom clique (except
the central authors – Olston, Spalding, . . . ).

We may also select two marginal authors sitting on the
left side (Baldonaldo & Kuchinsky) and observe that they link
to keywords located out of the “Woodruff clique” keyword
subsets. Strikingly,none of these sub-communities seem to
address the topics portals and data visualization located at
the bottom left of the keyword network. Grasping these two
keywords, we find that they solely concern Woodruff and
Olston. Going back to the author network, selecting Woodruff
and Olston we then see the additional topics these two authors
have in common. Observe how these topics are marginally
positioned with respect to the main clique (Fig. 6 – top).

This second use case pointed at fully homogeneous sub-
groups where authors have co-published papers on the exact
same topics. This also suggest that the analysis may be con-
ducted either from the actor (author) network or the attribute
(keywords) network. Going back and forth between these two
perspectives seems a fruitful strategy to get the most out of
the entanglement index and the dual GA – GB representation.

IV. CONCLUSION AND FUTURE WORK

This paper addressed the issue of assessing cohesion in
groups from homophily networks mixing actors and attributes
into a bipartite graph. Our approach considers splitting the
bipartite into two single-type networks used in conjunction
when analyzing the homophile relations between actors. To
answer this question, we have defined the entanglement index
on attributes, together with the homogeneity and intensity
indices computed on any subset of attributes.

These attributes can be used to question the homogeneity
of a group, where optimal homogeneity requires that actors si-
multaneously involve the exact same attributes, and maximum
intensity occurs when actors cover all available attributes. A
group of lower or unbalanced homogeneity indeed requires
more careful analysis, and typically leads to the discovery of
subgroups or regions locally showing higher homogeneity.

The case studies clearly show the relevance of questioning
the attribute homogeneity of actors to potentially confirm the
community structure derived from edge density, for instance.
They focused on small size examples for sake of readability.
This limitation is but apparent, as using the interaction network
occurs after actors have been indexed and grouped. Although a
query might return hundreds (or thousands) of actors, we may
expect the grouping procedure to form much smaller groups
before closer examination occurs. We also suspect that larger
samples gather larger attribute sets, typically leading to less
tangled attribute interactions and less homogeneous groups.

Our second case study suggests our approach applies to
other types of networks modeled using a bipartite graph,
namely interaction relations. There even is a potential to extend
our approach to the study of multivariate networks. Extending

the methodology to weightened relationships is also an avenue
we plan to explore. These are design choices we suspect may
depend on the nature and/or on the size of the dataset.

We also plan to examine strategies to automatically identify
attribute and actor subsets with optimal (or maximum) homo-
geneity and/or intensity, suggesting potential areas of interest
in the network under study. These problems, however, will
inevitably bring us to combinatorial optimization problems,
and we may expect to have no choice but to rely on heuristics
to avoid typical algorithmic complexity issues.
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