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Transition models from the quenched to ignited

states for flows of inertial particles suspended in

a simple sheared viscous fluid
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A review of existing theories for flows of inertial particles suspended in an unbounded

sheared viscous fluid is presented first. A comparison between theoretical predictions

and numerical simulation results is made for Stokes numbers from 1 to 10 in dilute

and dense flows. Both particle agitation and anisotropy coefficients are examined,

showing that neither of them is able to give satisfactory results in dense flows. A more

precise calculation of collisional contributions to the balance law of the particle stress

tensor is presented. Results of the corresponding theory are in very good agreement

with numerical simulations both in dilute and dense flows.
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1. Introduction

Flows of inertial particles suspended in a sheared viscous fluid have been

extensively studied in the last twenty years (Boelle, Balzer & Simonin 1995; Tsao

& Koch 1995; Sangani et al. 1996; Abbas, Climent & Simonin 2009; Abbas et al.

2010). In dilute flows, two distinct states can exist: the quenched state, in which

particles are slightly agitated, and the ignited state, in which particles are highly

agitated. A transition between one state and the other was observed (Tsao & Koch

1995) when varying the particle volume fraction or the Stokes number of the flow

in dilute flows. This transition was also observed in dense flows at moderate Stokes

number (1 and 3.5) when varying the particle volume fraction (Abbas et al. 2009).

Although Tsao & Koch (1995) proposed a theory to predict this transition in dilute

flows, nothing exists for dense flows in which two distinct theories are needed. The

present paper suggests a new theory, based on a more precise calculation of collisional

contributions to the balance law of the particle stress tensor, enabling prediction of

the transition between the quenched and ignited states in both dilute and dense flows.

After a description of the studied case (§ 2) and a review of existing models (§§ 3

and 4), two methodologies to improve the calculation of collisional contributions are

presented and model predictions are compared with numerical simulation results in

terms of particle agitation and anisotropy coefficient (§ 5).

† Email address for correspondence: jf.parmentier@gmail.com



2. Case description

A simple shear flow is considered in order to validate the theoretical predictions of
the particle agitation and the kinetic and collisional stress tensor as a function of the
Stokes number and the solids volume fraction. Spherical particles are suspended in an
infinite sheared fluid flow. The fluid velocity Ug(x) is given by:

∂Ug,i

∂xj

= γ δi,1δj,3, (2.1)

with γ the shear rate and δi,j the Kronecker delta; γ −1 is the characteristic time scale
of the shear. Particles are considered to be hard spheres that experience only Stokes
drag and binary collisions, which is valid for low to moderate solid concentration.
Between two collisions, the velocity Vp of a particle is given by Newton’s laws of
motion (where particle density is much greater than fluid density, ρp ≫ ρg):

dVp

dt
= −

1

τp

(Vp − Ug(Xp)), (2.2)

where Xp is the position of the particle, τp = ρpd2
p/(18µf ) is the Stokes relaxation time

dp is the particle diameter and µf is the gas dynamic viscosity. Only binary collisions
are considered, without friction. The post-collision velocities c∗

a and c∗
b of colliding

particles a and b are determined as functions of ca and cb, the particle velocities at
impact:

c∗
a = ca − 1

2
(1 + e)(g · k)k, (2.3)

c∗
b = cb + 1

2
(1 + e)(g · k)k, (2.4)

with g = ca −cb the particle relative velocity at the impact and k = (xb −xa)/dp the unit
vector pointing from the centre of particle a to the centre of particle b. The restitution
coefficient e is the only collision parameter and will be assumed to be constant. The
kinetic energy loss of the pair of particles is given by 1Ec = −(1 − e2) (g · k)2 /2.

The multibody hydrodynamic interactions are not taken into account in this study.
This can be seen as a serious limitation but in fact it is not the case. The present study
focuses only on collisional terms appearing in the balance law of the particle stress
tensor (see § 3). As shown by Sangani et al. (1996), the hydrodynamic interactions
can be modelled by a corrective function Rdiss(αp) applied to the Stokes drag, with αp

the particle volume fraction. In this case, collisional contributions are identical with
or without hydrodynamic interactions between particles and results can be compared
using an adjusted Stokes number Sta = St/Rdiss.

The unbounded shear flow is an ideal case that is used here to establish and validate
closure terms for collisional contributions. As will be shown in the paper, it contains
sufficient physical phenomena to measure and compare the accuracy of various models.
Once such models have been established and validated in this configuration, they can
be applied and validated in more complex configurations, such as boundary-driven
flows. However such an application is not the topic of this study.

3. Review of existing models

3.1. General approach

The flows of particles with finite inertia suspended in a sheared viscous fluid have
been studied by Boelle et al. (1995), Tsao & Koch (1995) and Sangani et al. (1996),
and more recently by Abbas et al. (2009) and Abbas et al. (2010). Such models
are based on a statistical description using a Boltzmann–Liouville equation, following



Chapman & Cowling (1970):

∂fp

∂t
+

∂

∂xi

(cp,ifp) +
∂

∂cp,i

(〈
Fi

mp

∣∣∣∣Vp = cp,Xp = x

〉
fp

)
=
(

∂fp

∂t

)

coll

, (3.1)

where fp(cp, x, t) is the one-particle distribution function (x being the space coordinate)
and Fi/mp = dVp,i/dt is the acceleration of a particle given by (2.2). 〈A|B〉 is the
ensemble average of A conditioned by B. The right-hand side of (3.1) is the collisional
rate of change of the distribution function. Equation (3.1) is not directly solved, but
used to derive governing equations of the moments of fp. The average 〈Ψ 〉p of a
function Ψ = Ψ (cp, x) is given by:

np〈Ψ 〉p =
∫

Ψ fp dcp, (3.2)

where np =
∫

fp dcp is the particle number density. The balance law for 〈Ψ 〉p may be
obtained by multiplying (3.1) by Ψ and a subsequent integration over the velocity
phase space.

The local mean particle velocity is defined by Up = 〈cp〉p
and the kinetic stress

tensor is Rp,ij = 〈Cp,iCp,j〉p
, where Cp = cp − Up is the fluctuating velocity relative to

the mean velocity. Granular temperature is defined by T = 〈Cp,iCp,i〉p
/3. In the steady

state, the particle velocity field is equal to the gas velocity field: Up(x) = Ug(x) and
the balance laws for the components of the kinetic stress tensor are given by:

npmpRp,ik

∂Up,j

∂xk

+ npmpRp,jk

∂Up,i

∂xk

= −
2

τp

npmpRp,ij + Cij, (3.3)

where Cij is the collisional rate of change of npmpRp,ij. It is defined by Cij =
C(mpCp,iCp,j) where C(Ψ ) =

∫
Ψ (∂fp/∂t)

coll
dcp which can also be written as:

C(Ψ ) = d2
p

∫ ∫ ∫

g·k>0

δΨa f (2)
p (ca, x, cb, x + dpk, t)(g · k) dk dca dcb, (3.4)

where δΨ is the variation of Ψ during a collision, given by (2.3) and (2.4) and
f (2)
p is the particle pair distribution function. In dilute flows, the assumption of

molecular chaos is generally used to relate the pair distribution function to the one-
particle velocity distribution function. In the case of high volume fraction, the radial
distribution function at contact, g0, is introduced (Chapman & Cowling 1970). In a
homogeneous flow, the particle pair distribution function at contact is given by:

f (2)
p (ca, xa, cb, xa + dpk, t) = g0(αp)fp(ca, xa, t)fp(cb, xa + dpk, t), (3.5)

where αp = npmp/ρp is the solids volume fraction.
Putting (3.5) into (3.4) and using Ca = ca −Up(x) and Cb = cb −Up(x+ dpk) instead

of ca and cb leads to:

C(Ψ ) = g0d2
p

∫ ∫ ∫

G·k>δUp·k

δΨafp(Ca) fp(Cb)((G − δUp) · k) dk dCa dCb. (3.6)

The relative velocity g = ca − cb has been expressed as a function of the relative
fluctuating velocity G = Ca − Cb using:

g = G − δUp, (3.7)

where δUp = Up(x+dpk)−Up(x) is the contribution of the shear to the relative velocity
of the colliding particles. In simple shear flow δUp = γ dpkzex. The first term of the



right-hand side of (3.7) is the contribution of the particle agitation to the colliding
particle relative velocity. In the simple shear flow, the particle agitation is given by the
values of Cii, C33 and C13 and the set of equations (3.3) is reduced to:

0 = −2St R∗
p,13 − 6T∗ + St C

∗
ii, (3.8a)

0 = −2R∗
p,33 + St C

∗
33, (3.8b)

0 = −St R∗
p,33 − 2R∗

p,13 + St C
∗
13, (3.8c)

where St = γ τp is the Stokes number, and C
∗
ij = Cij/(γ

3a2npmp), T∗ = T/ (γ a)2

and R∗
p,ij = Rp,ij/ (γ a)2 are respectively the dimensionless collisional terms, particle

agitation and particle stress tensor. We will focus on the prediction of T∗, R∗
p,33 and

R∗
p,13 and consequently on the calculation of C

∗
ii, C

∗
33 and C

∗
13. In order to close the set

of equations (3.8), the expression for the one-particle velocity distribution function is
needed to calculate Cij.

Two distinct mechanisms cause collisions: the particle agitation, where collisions
occur due to their random velocities; and the mean shear, where particles collide
because the mean velocity varies at the characteristic length scale of a particle
diameter. The characteristic relative velocity of two colliding particles induced by the

agitation can be estimated by
√

T . The characteristic relative velocity of two colliding
particles induced by the shear can be estimated by γ a, where a is the particle radius.
The first mechanism is dominant when the relative velocity between two colliding
particles is mainly due to their agitation corresponding to T∗ ≫ 1, with:

T∗ = T/ (γ a)2 . (3.9)

On the other hand, the second mechanism will be dominant when the relative velocity
between two colliding particles is mainly due to the shear, i.e. T∗ ≪ 1. These two
limits are representative of two distinct states (Tsao & Koch 1995): the ignited state,
where T∗ ≫ 1, and the quenched state, where T∗ ≪ 1. Different closures for the
one-particle velocity distribution are used in these regimes in order to calculate the
collisional terms Cij.

3.2. Quenched-state theories

When both the suspension concentration and the particle inertia are low, the relaxation
time of the particle τp is of the same order as or lower than the average time between
successive collisions τc. Particles have very weak velocity fluctuations as they are more
likely to follow the fluid streamlines after a collision. Tsao & Koch (1995) called this
specific state the quenched state, as opposed to the ignited state for agitated systems.
Tsao & Koch (1995) proposed closing the collisional term (3.4) by assuming a Dirac
function for the velocity distribution function:

fp(cp, x) = npδ(cp − Up(x)). (3.10)

Hence the relative velocity between two colliding particles is assumed to be only due
to the mean shear which means that collisions induced by the particle agitation are
neglected (G = 0 in (3.6)). Consequently, this theory will apply when T∗ ≪ 1.

Tsao & Koch (1995) assumed perfectly elastic conditions (e = 1) and a dilute flow
(g0 = 1). These two conditions can be broken and one can simply put (3.10) into (3.6),
leading for C

∗
ij to:

C
∗
ij =

(
1 + e

2

)2

αpg0

24

π

Iij, (3.11)



with Iij defined by Iij = −
∫∫

k1k3<0
(k1k3)

3 kikj dk. Resulting collisional terms are

independent of the granular temperature; in particular, they are not null when T is
null. All collisions contribute positively to the production of granular temperature
which is expressed as:

T =
128

945π

(
1 + e

2

)2

αpg0 (γ a)2 St3

(
1 +

9π

16
St−1 +

9

2
St−2

)
. (3.12)

Table 1 compares the collisional terms given by the original theory proposed by
Tsao & Koch (1995) with the extended one (e 6= 1 and g0 6= 1). Note that the terms
given by Tsao & Koch (1995) have been corrected by a factor 2 (Abbas et al. 2009).

3.3. Ignited-state theories

In the ignited state, the particles are highly agitated and between two collisions the
particle velocities are only slightly affected by the drag from the surrounding gas.
Following Jenkins & Richman (1985), Boelle et al. (1995), Tsao & Koch (1995)
and Sangani et al. (1996) propose closing the velocity distribution function using a
deviated Maxwellian (Grad 1949):

fp(Cp) =

(
1 +

R̂p,ij

2T2
Cp,iCp,j

)
f0(Cp), (3.13)

where R̂p,ij = Rp,ij − Tδij is the anisotropic part of the kinetic stress tensor and f0 is the
Maxwellian defined by:

f0 =
np

(2πT)3/2
exp

(
−
C2

p

2T

)
. (3.14)

The theory of Tsao & Koch (1995) focuses on dilute flows of perfectly elastic
particles (e = 1). The authors put (3.13) into (3.6) and assume moreover that δUp = 0,
which means that collisions only occur due to particle agitation. Resulting expressions
are given in table 1.

The theories of Boelle et al. (1995) and Sangani et al. (1996) (for moderately large
St) extend the work of Tsao & Koch (1995) to dense flows. Sangani et al. (1996)
take into account hydrodynamic interactions between particles. However, the present
study focuses only on collisional terms. From this point of view, the theories of
Boelle et al. (1995) and Sangani et al. (1996) are identical. They used the deviated
Maxwellian (3.13) to close the velocity distribution function into (3.6). Moreover,
following Jenkins & Richman (1985), they performed a first-order Taylor development
of (3.6) in γ , or similarly in δUp. This means that shear-induced collisions have been

slightly taken into account. Second-orders terms in R̂p,ij have been neglected. Resulting
collisional terms are given in table 1.

The Tsao & Koch (1995) theory for the dilute ignited state takes into account

second-order terms in R̂p,ij, leading to a term proportional to R̂2
p,13 in C

∗
33. This term

is not present in the theories of Boelle et al. (1995) and Sangani et al. (1996) for
the dense ignited state. However, as mentioned by Tsao & Koch (1995), the primary
effect of this term is only to produce a slight difference between Rp,zz and Rp,yy, and
can be neglected. In this case, the theory of Tsao & Koch (1995) is contained in
the theories of Boelle et al. (1995) and Sangani et al. (1996). The collisional terms

of Tsao & Koch (1995) have only terms of O(
√

T∗R̂∗
p,ij). In the case where e = 1,



C
∗
ii C

∗
33 C

∗
13

Quenched state
(Tsao & Koch 1995)

128

35π
αp

512

315π
αp −

16

35
αp

Ignited state
(Tsao & Koch 1995)

0 −
48

5
√
π

αp

√
T∗(R̂∗

p,33 +
1

21
R̂2

p,13) −
48

5
√
π

αp

√
T∗R̂∗

p,13

Linear transition theory +
128

35π
αp −

48

5
√
π

αp

√
T∗(R̂∗

p,33 +
1

21
R̂2

p,13) −
48

5
√
π

αp

√
T∗R̂∗

p,13

(Tsao & Koch 1995) +
512

315π
αp −

16

35
αp

Dense inelastic
quenched-state theory

128

35π

(
1 + e

2

)2

αpg0

512

315π

(
1 + e

2

)2

αpg0 −
16

35

(
1 + e

2

)2

αpg0

Dense inelastic
ignited-state theory

−
12
√
π

(1 − e2)αpg0T∗3/2 −
4

√
π

(1 − e2)αpg0T∗3/2 −
12

5
√
π

(1 + e)(3 − e)αpg0

√
T∗R̂∗

p,13

(Boelle et al. 1995,
Sangani et al. 1996)

−
8

5
(1 + e)αpg0R̂∗

p,13 −
12

5
√
π

(1+e)(3−e)αpg0

√
T∗R̂∗

p,33 −
2

5
(1 + e)(3 − e)αpg0T∗

16

5
√
π

(1 + e)αpg0

√
T∗ −

4

5
(1 + e)αpg0R̂∗

p,33

Dense inelastic linear
transition theory

−
12
√
π

(1 − e2)αpg0T∗3/2 −
4

√
π

(1 − e2)αpg0T∗3/2 −
12

5
√
π

(1 + e)(3 − e)αpg0

√
T∗R̂∗

p,13

−
8

5
(1 + e)αpg0R̂∗

p,13 −
12

5
√
π

(1+e)(3−e)αpg0

√
T∗R̂∗

p,33 −
2

5
(1 + e)(3 − e)αpg0T∗

TABLE 1. (Continued on next page)



C
∗
ii C

∗
33 C

∗
13

16

5
√
π

(1 + e)αpg0

√
T∗ +

512

315π

(
1 + e

2

)2

αpg0 −
4

5
(1 + e)αpg0R̂∗

p,33

+
128

35π

(
1 + e

2

)2

αpg0 −
16

35

(
1 + e

2

)2

αpg0

Nonlinear transition theory −
12
√
π

(1 − e2)αpg0T∗3/2
A1

4
√
π

(1 + e)((1 + e)B1

− 2B2)αpg0T∗3/2

−
12

5
√
π

(1 + e)(3 − e)αpg0

√
T∗R̂∗

p,13

−
8

5
(1 + e)αpg0R̂∗

p,13 −
12

5
√
π

(1+e)(3−e)αpg0

√
T∗R̂∗

p,33 −
2

5
(1 + e)(3 − e)αpg0T∗

16

5
√
π

(1 + e)αpg0

√
T∗A2 −

4

5
(1 + e)αpg0R̂∗

p,33

−
16

35

(
1 + e

2

)2

αpg0

TABLE 1. Comparison of collisional terms between the different theories.
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FIGURE 1. Particle agitation as a function of (a) the particle volume fraction for St = 10 or
(b) the Stokes number for αp = 5×10−4. e = 1: —–, nonlinear transition theory; · · · · ··, linear
transition theory (Tsao & Koch 1995); − ·−·, quenched-state theory; dashed arrow: transition
obtained from direct-simulation Monte Carlo method (Tsao & Koch 1995).

Boelle et al. (1995) and Sangani et al. (1996) collisional terms contained additional

terms of O(T∗), O(R̂∗
p,ij) and O(

√
T∗) (see table 1). These terms come from the

first-order Taylor development in δUp of (3.6) (while Tsao & Koch 1995 assume
δUp = 0).

3.4. Linear transition theory of Tsao & Koch (1995)

As the quenched-state theory assumes only shear-induced collisions (G = 0) and the
dilute ignited-state theory assumes only variance-driven collisions (δUp = 0), Tsao &
Koch (1995) proposed simply adding the collisional terms of the two theories to take
into account both the contributions of shear-induced and variance-driven collisions,
leading to linear transition. Resulting collisional terms are given in table 1.

4. Comparison to simulation results

To compare the prediction of theories with numerical simulations, the input of g0

is needed. Following Tsao & Koch (1995), Sangani et al. (1996) and Abbas et al.

(2009) the value proposed by Carnahan & Starling (1969) (g0 = (1 − αp/2)/ (1 − αp)
3)

is used.

4.1. Transition in dilute flows

Using numerical simulations (the direct-simulation Monte Carlo method and periodic
Lagrangian simulations of hard spheres), Tsao & Koch (1995) have shown that
multiple steady states can exist for low concentrations. As shown on figure 1(a) where
St = 10, when αp is below a critical value αp,c, quenched or ignited states can exist
depending on the initial conditions. Numerical simulations predict αp,c ≃ 1.2 × 10−3.
The dilute transitional theory of Tsao & Koch (1995) is able to capture the existence
of multiple steady states, but overestimates the critical particle volume fraction, leading
to αp,c ≃ 2.6 × 10−3.

An hysteresis is observed when increasing the Stokes number at a fixed
concentration and particle elasticity. As shown on figure 1(b) where αp = 5 × 10−4,
if the system is in the quenched state and one increases St gradually, then the system
jumps to the ignited state for St = Stc2 ≃ 13. If St is decreased gradually for a system

in the ignited state, the system jumps down to the quenched state for St = Stc1 =
√

24.
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FIGURE 2. Particle agitation T/ (γ a)2 as a function of the solids volume fraction for different
Stokes numbers. △, ∗, � and ©: numerical simulations for St = 10, 5, 3.5 and 1 respectively.
—–, Nonlinear theory; · · · · ··, dense linear transition theory; – – –, dense ignited-state theory
(in each case from top to bottom, St = 10, 5, 3.5 and 1); − ·−·, dense quenched-state theory
(top, St = 3.5 and bottom, 1).

Therefore, one may have either the ignited or quenched state for Stc1 < St < Stc2

depending on the previous history of the shear rate experienced by the suspension. As
shown on figure 1(b), the dilute transitional theory of Tsao & Koch (1995) is able
to capture this hysteresis effect but overestimates Stc2 by 30%, predicting a value for
Stc2 ≃ 17.

4.2. Transition in dense flows

4.2.1. Particle agitation
Abbas et al. (2009) performed periodic Lagrangian numerical simulations for

1 6 St 6 10 and a volume fraction between 5 % and 30 %. Particles were perfectly
elastic (e = 1) and no hydrodynamic interactions were taken into account. Results
are shown on figure 2. When T∗ > 10, the level of particle agitation obtained by
the simulations and predicted by the dense ignited-state theory match very well
(corresponding to numerical simulations for St = 5 and 10). The quenched-state
theory underestimates the particle agitation. On the contrary, when T∗ < 10−2 the
level of particle agitation is predicted well by the dense quenched-state theory,
and the dense ignited-state theory drastically underestimates it (corresponding to
numerical simulations for St = 1 and 3.5 with αp = 5 %). When 10−2 < T∗ < 10 a
transition between the dense quenched-state theory and the dense ignited-state theory
occurs.

4.2.2. Anisotropy coefficients
Predictions given by the different theories of the anisotropy coefficients a33 =

R̂p,33/T and a13 = R̂p,13/T are plotted as functions of T∗ on figures 3 (e = 0.8, St = 5),
4 (e = 1, St = 3.5) and 5 (e = 1, St = 1) and compared with Lagrangian simulation
results.

While the dense inelastic ignited-state theory gives satisfactory results for the
particle agitation when St = 5, the anisotropy coefficients can be overestimated (or
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St = 5 and e = 0.8. ©, Lagrangian simulations (Boelle et al. 1995), —–, nonlinear transition
theory; · · · · ··, dense inelastic linear transition theory; – – –, dense inelastic ignited-state
theory.
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FIGURE 4. Anisotropy coefficients a33 and a13 as a function of the solids volume fraction, for
St = 3.5 and e = 1: ©, Lagrangian simulations (Abbas et al. 2009); —–, nonlinear transition
theory; · · · · ·, dense linear transition theory; – – –, dense ignited-state theory; − ·−·, dense
quenched-state theory.

underestimated) by up to a factor two (or one half). For St = 1 and 3.5 a clear
transition between the dense quenched theory and dense ignited theory is observed
when varying the particle volume fraction. When αp 6 5 % the dense quenched-state
theory gives satisfactory results and when αp > 30% the dense ignited theory gives
satisfactory results. However none of the theories is able to predict values of
anisotropy coefficients during the transition.

5. Transitional theories

While the linear transition theory of Tsao & Koch (1995) gives satisfactory results
in dilute flows, a single theory enabling prediction of the quenched state, the ignited
state and the transition in dense flow is required. The two following sections will
present two theories devoted to fulfilling this objective.
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FIGURE 5. Anisotropy coefficients a33 and a13 as a function of the solids volume fraction, for
St = 1 and e = 1: ©, Lagrangian simulations (Abbas et al. 2009); —–, nonlinear transition
theory; · · · · ··, dense linear transition theory; – – –, dense ignited-state theory; − ·−·, dense
quenched-state theory.

5.1. Dense inelastic linear transition theory

A natural idea is to extend the linear transition theory of Tsao & Koch (1995) to
dense flow by simply adding the collisional terms of the dense inelastic quenched-state
theory and the dense inelastic ignited theory. Resulting collisional terms are given in
table 1.

In dilute flows, predictions of this theory are the same as the original linear
transition theory of Tsao & Koch (1995). In dense flows, the dense linear transition
theory matches very well the particle agitation predicted by numerical simulations
for all particle volume fractions and all Stokes numbers (figure 2), in particular,
when 10−2 < T∗ < 10 (corresponding to the transition), in which neither the dense
quenched-state theory nor the dense ignited theory give satisfactory results. However
the prediction of anisotropy coefficients is not satisfactory. For St = 5, anisotropy
coefficients are only slightly improved (figure 3). For St = 1, while a satisfactory
transition is obtained for a13, there is a strong disagreement for a33 (figure 5).

5.2. Exact contribution of the shear and the agitation to collisions

5.2.1. Collisional term calculation
In the quenched-state theories, variance-driven collisions are neglected whereas

shear-induced collisions are neglected in the dilute ignited-state theory. The dense state
theory slightly takes into account shear-induced collisions using a first-order Taylor
development in δUp. However, in the case of simple shear flow, the exact contribution
of the shear and the agitation to collisions can be calculated if the velocity distribution
function is Maxwellian. Therefore, a new closure of collisional terms is proposed in
order to improve the predictions of the transition between the quenched and ignited
states.

Following the ignited-state theories, the velocity distribution function is assumed to
be a deviated Maxwellian:

fp = f0 + 1f , (5.1)

with f0 the Maxwellian (3.14) and 1f = fp − f0 with fp given by the Grad (1949)
development (3.13). Hence the collisional terms (3.6) can be decomposed into



two parts:

C(Ψ ) = C0(Ψ ) + 1C(Ψ ); (5.2)

C0(Ψ ) is obtained using fp = f0 in (3.6) and 1C(Ψ ) using fp = 1f . In the ignited-state
theories, 1C(Ψ ) corresponds to the contribution of collisional terms proportional

to R̂p,ij.
Putting fp = f0 in (3.6) and using the variables change (Ca,Cb) → (G,Q =

(Ca + Cb)/2) leads for C0(Ψ ) to:

C0(Ψ ) =
g0d2

pn2
p

(2πT)3

∫ ∫ ∫

G·k>δUp·k

δΨa exp

(
−
G2

4T

)

× exp

(
−
Q2

T

)
((G − δUp) · k) dG dQ dk. (5.3)

The integration over Q, Gθ and Gφ can be performed, leading to:

C0(Ψ ) =
g0d2

pn2
p

2
√
πT

∫ ∫

Gk>δUp·k

δΨa exp

(
−
G2

k

4T

)
(Gk − δUp · k) dGk dk. (5.4)

where (Gk, Gθ , Gφ) are the projection of G in a spherical coordinate system in which
Gk = G · k. Choosing 1C(Ψ ) identically to corresponding terms in the dense ignited
theory, the resulting expressions for Cij are calculated and given in table 1. For
instance, Cii is given by:

C
∗
ii = −

12
√
π

(1 − e2)αpg0T∗3/2
A1 +

16

5
√
π

(1 + e)αpg0

√
T∗A2

−
8

5
(1 + e)αpg0R̂∗

p,13, (5.5)

where A1 and A2 are monotonic functions of T∗ defined by:

A1(T
∗) =

1

2π

∫

k

f3,0

(
kxkz√

T∗

)
dk and A2(T

∗) = −
15

4π

√
T∗
∫

k

f2,0

(
kxkz√

T∗

)
(kxkz) dk, (5.6)

where fn,p(u) =
∫ +∞

u
(x − u)n xpe−x2

dx have analytical expressions. When T∗ ≫ 1, A1

and A2 tend to 1, leading to (5.5) having the value given by the dense ignited-state
theory. On the contrary, when T∗ ≪ 1, A1 and A2 are equivalent to:

A1∼0

1

T∗3/2

8

105
√
π

and A2∼0

1

T∗1/2

4

7
√
π

.

Putting (5.7) into (5.5) leads to the value given by the dense inelastic quenched-state
theory, (3.11). Hence, (5.5) is consistent with both the quenched- and ignited-state
theory results. The transition between the two theories is a function of T∗, for T∗ ≪ 1
and T∗ ≫ 1 respectively. The comparison with the variations of C

∗
ii and C

∗
33 as a

function of T∗ given by this theory and by the dense inelastic linear transition theory
is shown on figure 6 for e = 1 and αp = 0.15. Whereas the trend for C

∗
ii is similar

in both theories, a wide discrepancy is found for C
∗
33. When e = 1, considering only

the isotropic part of the collisional term, the dense ignited theory predicts a constant

value for C
∗
33, whereas the new theory predicts that C

∗
33 = O(

√
T∗) when T∗ ≫ 1. An
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FIGURE 6. (a) C
∗
ii and (b) C

∗
33 as functions of T∗ for e = 1 and αp = 0.15: —–, nonlinear

transition theory; · · · · · · ··, dense linear transition theory; – – –, dense ignited-state theory;

− ·−·, dense quenched-state theory. Terms proportional to R̂p,ij are not taken into account in
these plots.

analytical expression for C
∗
13 can be obtained and shows that this term is identical to

the one obtained in the dense ignited theory.
This resulting theory is named the nonlinear transition theory.

5.2.2. Comparison to numerical simulations

Values of A1, A2, B1 and B2 (see table 1 and the appendix) are first numerically
calculated with MATLAB and tabulated as functions of T∗. Then the numerical
resolution of (3.8) is performed.

As shown on figure 1, the nonlinear transition theory is able to predict the multiple
steady states observed in dilute flows and the corresponding hysteresis effects. The
critical particle volume fraction predicted for St = 10 is αp,c ≃ 1.9 × 10−3, leading to
a better agreement with numerical simulations than the linear transition theory of Tsao
& Koch (1995). For αp = 5 × 10−4 the predicted critical Stokes number is Stc ≃ 15.6
which is slightly better than the value given by the linear transition theory of Tsao &
Koch (1995).

In dense flows, the nonlinear transition theory matches very well the particle
agitation predicted by numerical simulations for all particle volume fractions and
all Stokes numbers (figure 2). Moreover the prediction of the anisotropy coefficient is
very satisfactory. For St = 5 results are improved (figure 3). For St = 1, the theory
leads to a perfect agreement with numerical simulations for a13 and the prediction of
a33 is greatly improved.

6. Conclusion

The proposed kinetic theory approach for inertial particles suspended in a viscous
sheared flow allows both shear-induced and agitation-induced inter-particle collisions
to be accounted for in the kinetic stress collisional terms. The theory predictions are
in very good agreement with Lagrangian simulation results from St = 1 to 10 and
αp = 5 % to 30 % for both the particle agitation and the anisotropy coefficients. These
results show that assuming a deviated Maxwellian for the velocity distribution function
leads to accurate results if both shear-induced and agitation-induced collisions are
precisely taken into account.



Appendix. Functions for the nonlinear transition theory

B1 and B2 are functions of T∗ defined by:

B1(T
∗) =

3

2π

∫

k

f3,0

(
kx kz√

T∗

)
k2

z dk and B2(T
∗) =

3

2π

∫

k

f2,1

(
kxkz√

T∗

)
k2

z dk (A 1)

where fn,p(u) =
∫ +∞

u
(x − u)n xpe−x2

dx can be expressed with known functions (erf, exp,
etc.). Values of A1, A2, B1 and B2 are calculated numerically with Matlab and tabulated
as functions of T∗. B1 and B2 are defined so as to go to 1 when T∗ goes to infinity.
When T∗ tends to zero, they become equivalent to:

B1 ∼0

1

T∗3/2

32

315
√
π

and B2 ∼0

4

5
√
πT∗

(A 2)
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