
HAL Id: hal-00936778
https://hal.science/hal-00936778

Submitted on 27 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Invariance properties of the likelihood ratio for
covariance matrix estimation in some complex

elliptically contoured distributions
Olivier Besson, Yuri Abramovich

To cite this version:
Olivier Besson, Yuri Abramovich. Invariance properties of the likelihood ratio for covariance matrix
estimation in some complex elliptically contoured distributions. Journal of Multivariate Analysis,
2014, vol. 124, pp. 234-246. �10.1016/j.jmva.2013.10.024�. �hal-00936778�

https://hal.science/hal-00936778
https://hal.archives-ouvertes.fr


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 10737  

To link to this article: DOI: 10.1016/j.jmva.2013.10.024 

URL: http://dx.doi.org/10.1016/j.jmva.2013.10.024 

 

 

 

To cite this version: Besson, Olivier and Abramovich, Yuri Invariance 

properties of the likelihood ratio for covariance matrix estimation in some 

complex elliptically contoured distributions. (2014) Journal of 

Multivariate Analysis, vol. 124. pp. 234-246. ISSN 0047-259X 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.jmva.2013.10.024
mailto:staff-oatao@inp-toulouse.fr


Invariance properties of the likelihood ratio for covariance
matrix estimation in some complex elliptically
contoured distributions

Olivier Besson a,∗, Yuri I. Abramovich b

a University of Toulouse, ISAE, Department of Electronics, Optronics and Signal, 10 Avenue Edouard Belin, 31055 Toulouse, France
b W R Systems Ltd., 11351 Random Hills Road, Suite 400, Fairfax, VA 22030, USA

h i g h l i g h t s

• We consider a class of complex elliptically contoured matrix distributions (ECD).
• We investigate properties of the likelihood ratio (LR).
• We derive stochastic representations of the LR for covariance matrix estimation (CME).
• Its p.d.f. evaluated at the true CM R0 does not depend on the latter.
• This extends the expected likelihood approach for regularized CME.
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a b s t r a c t

The likelihood ratio (LR) for testing if the covariance matrix of the observation matrix X is
R has some invariance properties that can be exploited for covariance matrix estimation
purposes. More precisely, it was shown in Abramovich et al. (2004, 2007, 2007) that, in the
Gaussian case, LR(R0|X), whereR0 stands for the true covariancematrix of the observations
X , has a distribution which does not depend on R0 but only on known parameters. This
paved the way to the expected likelihood (EL) approach, which aims at assessing and
possibly enhancing the quality of any covariance matrix estimate (CME) by comparing its
LR to that of R0. Such invariance properties of LR(R0|X) were recently proven for a class
of elliptically contoured distributions (ECD) in Abramovich and Besson (2013) and Besson
and Abramovich (2013) where regularized CMEwere also presented. The aim of this paper
is to derive the distribution of LR(R0|X) for other classes of ECD not covered yet, so as to
make the EL approach feasible for a larger class of distributions.

1. Introduction and problem statement

The expected likelihood (EL) approach was introduced and developed in [3–5] as a statistical tool to assess the quality of

a covariance matrix estimate R̂ from observation of a M × T matrix variate X . The EL approach relies on some invariance
properties of the likelihood ratio (LR) for testing H0 : E{XXH} = R against the alternative E{XXH} 6= R. More precisely, the
LR is given by

LR(R|X) = p(X |R)
max

R
p(X |R) = p(X |R)

p(X |RML)
, (1)
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where p(X |R) stands for the probability density function (p.d.f.) of the observations (which are assumed to be zero-mean)
and RML denotes the maximum likelihood estimator (MLE) of R. As demonstrated in [3–5] for Gaussian distributed data, the
p.d.f of LR(R0|X), where R0 is the true covariance matrix of X , does not depend on R0 but is fully determined by M and T .
Moreover, the effective support of this p.d.f. lies on an interval whose values are much below 1 = LR(RML|X), see [3–5] for
illustrative examples. In other words, the LR evaluated at the true covariance matrix is much lower than the LR evaluated

at the MLE. This naturally raises the question of whether it would not make more sense that an estimate R(β̂) of R0, where
R(β) is either a parameterizedmodel for the covariancematrix or a regularized estimate (e.g., shrinkage of theMLE to some
target covariance matrix), results in a LR which is commensurate with that of R0. This is the gist of the EL approach which

estimates β by enforcing that LR(R(β̂)|X) takes values which are compatible with the support of the p.d.f. of LR(R0|X). To
be more specific, let us consider a classical regularized covariance matrix estimate (CME) based on shrinkage of the MLE to
a target matrix Rt , i.e.,

R(β) = (1 − β)RML + βRt .

The EL approach for selection of the shrinkage factor β could possibly take the following form [4,1]:

βEL = argmin
β

∣

∣LR1/T (R(β)|X)− med [ω(LR|M, T )]
∣

∣ ,

where ω(LR|M, T ) is the true p.d.f. of LR1/T (R0|X) and med [ω(LR|M, T )] stands for the median value. In other words,
the shrinkage factor is chosen such that the resulting LR of R(βEL) is comparable with that of R0. It is well known
that regularization is particularly effective in low sample support and the EL principle was shown in [4,1] to provide a
quite efficient mechanism to tune the regularization parameters. Various uses of the EL approach are possible and their
effectiveness has been illustrated in different applications. For instance, it has been used successfully to detect severely
erroneous MUSIC-based DOA estimates in low signal to noise ratio and it provided a mechanism to rectify the set of these
estimates to meet the expected likelihood ratio values [3,5]. Accordingly, the EL approach was proven to be instrumental in
designing efficient adaptive detectors in low sample support [4].

In [1,8] we extended the EL approach to a class of complex elliptically contoured distributions (ECD) (namely the
EMSM,T (0,R, φ) type of distributions, as referred to in this paper) and we provided regularization schemes for covariance
matrix estimation. Regularized covariance matrix estimation has been studied extensively in the literature, see e.g. [18,
12,19,20,27] for a few examples within the framework of elliptically contoured distributions. In the latter references, the
regularization parameters are selected with a view to minimize either the mean-square error or Stein loss. Our goal in
this paper is not to derive and compare new covariance estimation schemes, as in [1]. Rather we focus herein in deriving
invariance properties of the LR for other classes of complex elliptically contoured distributions, so as to extend the class of
distributions for which the EL approach of covariancematrix estimation is feasible. How the EL approach will be used in this
framework is beyond the scope of the present paper. The starting point of the present study is the following. While there
is a general agreement and usually no ambiguity for defining vector elliptically contoured distributions, when it comes to
extending ECD to matrix-variate, a certain number of options are possible [11]. Indeed, Fang and Zhang distinguish four
classes of matrix-variate ECD whose p.d.f. and stochastic representations are different. As we shall see shortly, considering
as in [1] the columns of X as independent and identically distributed (i.i.d.) elliptically distributed random vectors (r.v.)
results in X ∼ EMSM,T (0,R, φ) (obtained from a multivariate spherical distribution in the terminology of [11]). On the
other hand, the ECD considered, e.g., in [23,24] are obtained assuming that vec(X) ∈ C

MT×1 follows a vector ECD, which we
will denote as X ∼ EVSM,T (0,R, φ).

In this paper we shall examine the p.d.f. of the likelihood ratio for two classes of complex ECD not covered in [1], namely
X ∼ ESSM,T (0,R, φ) and X ∼ EVSM,T (0,R, φ). For the former, we will pay special attention to thematrix-variate Student
distribution. The latter category was considered in [23,24] where Richmond proved the quite remarkable result that Kelly’s
generalized likelihood ratio test (GLRT) for Gaussian distributed data [17] was also the GLRT for this class of ECD. A main
result of this paper includes stochastic representations of the likelihood ratio (and proof of invariance) in both the over-
sampled case (T ≥ M) and the under-sampled scenario where the number of available samples in less than the size of the
observation space (T ≤ M), in which case regularization is mandatory. Note that invariance properties of some likelihood
ratios for elliptically contoured distributions (mostly EVS) have been studied, e.g., in [16,15,10,7,6], but the likelihood ratios
are somewhat different from what we consider here and they serve different purposes.

2. A brief review of elliptically contoured distributions

In this section,weprovide a brief summary of ECDwith the only purpose of providing sufficient background for derivation
and analysis of the LR in the next sections.We refer the reader to [11,6] for details that are skipped here and for an exhaustive
analysis: our presentation here will follow the terminology of [11]. We also point to the recent paper [22] for an excellent
comprehensive overview and applications to array processing. A vector x ∈ C

M is said to be spherically distributed if its

characteristic function E{eiRe{tHx}} = φ(tHt): we will denote it as x ∼ SM(φ). Assuming that x has a density (which we
will do through this document) the latter only depends on xHx. A vector x ∈ C

M is said to follow an elliptically contoured
distribution if

E{eiRe{tHx}} = E{eiRe{tHm}}φ(tHRt). (2)



Such a vector admits the following stochastic representation:

x
d=m + RBu (3)

where
d= means ‘‘has the same distribution as’’. In (3), R =

√
Q is a non-negative real random variable, called modular

variate, and is independent of the complex random vector u which is uniformly distributed on the unit complex sphere in
CS

R denoted as u ∼ UR. B is aM × Rmatrix such that BBH = R. The latter is usually referred to as the scatter matrix: with
some abuse of language we will refer to it as the covariance matrix, keeping in mind that the true covariance matrix of x is
indeed M−1

E{R2}R under mild assumptions. In the sequel, we will consider the absolutely continuous case for which R is
non-singular and hence R = M . In such a case, the p.d.f. of x exists and can be written as

p(x|R) = |R|−1g
(

xHR−1x
)

(4)

where g : R
+ −→ R

+ is called the density generator and is related to the p.d.f. of Q [11,22]. We will denote x ∼
ECM(µ,R, g) or x ∼ ECM(µ,R, φ). Let us now consider the definitions of ECD for a matrix-variate X ∈ C

M×T : typically,
the columns of X correspond to the T observed snapshots from the output of an array with M elements. In order to define
ECD,we need as a pre-requisite to consider sphericalmatrix distributions.We simply give below their definitions alongwith
some properties and refer the reader to [11] for further details and proofs. A matrix Y ∈ C

M×T is said to be left-spherical,

which we denote as Y ∼ LSM,T (φ), if Y
d= ŴY for any Ŵ ∈ O(M) where O(M) =

{

Ŵ ∈ C
M×M such that ŴHŴ = IM

}

. We
have the following properties:

Y ∼ LSM,T (φ) ⇒ ψY (T ) = E{exp{iRe{THY }}} = φ(THT ) (5a)

Y ∼ LSM,T (φ) ⇒ Y
d=UA (5b)

Y ∼ LSM,T (φ) ⇒ p(Y ) = g(YHY ) (5c)

where, in the last line, we have assumed that the p.d.f. of Y exists. In the above equation, U ∼ UM,T is said to be uniformly
distributed, i.e., U is left-spherical and UHU = IT , and A is some random matrix independent of U . A matrix Y is said to

be spherical if both Y and YH are left-spherical: we denote Y ∼ SSM,T (φ). This amounts to saying that Y
d= ŴY� for any

Ŵ ∈ O(M) and � ∈ O(T ). We have the following properties:

Y ∼ SSM,T (φ) ⇒ ψY (T ) = φ(λ(THT )) (6a)

Y ∼ SSM,T (φ) ⇒ Y
d=U31/2VH (6b)

Y ∼ SSM,T (φ) ⇒ p(Y ) = g(λ(YHY )). (6c)

In the above λ(.) stands for the diagonal matrix of the (non-zero) eigenvalues of the matrix between parentheses, U , 3
and V are independent. The third class of matrix spherical distributions is the so-called multivariate spherical distributions.

Y =
[

y1 · · · yT
]

∼ MSM,T (φ) if Y
d=
[

Ŵ1y1 · · · ŴTyT
]

for every Ŵt ∈ O(M), t = 1, . . . , T . One has the following
properties:

Y ∼ MSM,T (φ) ⇒ ψY (T ) = φ(tH1 t1, . . . , t
H
T tT ) (7a)

Y ∼ MSM,T (φ) ⇒ Y
d=
[

R1u1 · · · RTuT

]

= U2diag(R1, . . . ,RT ) (7b)

Y ∼ MSM,T (φ) ⇒ p(Y ) = g(yH
1 y1, . . . , y

H
T yT ). (7c)

In (7), T =
[

t1 · · · tT
]

, ut are i.i.d. r.v. uniformly distributed on the complex unit sphere CS
M , i.e., ut ∼∼ UM , and

Rt ≥ 0 are i.i.d. and independent of U2.
Finally, one can define vector-spherical distributions: Y ∼ VSM,T (φ) if vec(Y ) ∼ SMT (φ)which yields

Y ∼ VSM,T (φ) ⇒ ψY (T ) = φ(Tr{THT }) (8a)

Y ∼ VSM,T (φ) ⇒ Y
d= RU3 (8b)

Y ∼ VSM,T (φ) ⇒ p(Y ) = g(Tr{THT }) (8c)

with vec(U3) ∼ UMT and with R ≥ 0 independent of U3.
Elliptically contoured distributions essentially follow from the transformation

X = M + BY (9)

where Y follows a spherical distribution and BBH = R. In the sequel, similarly to [11], we will use the following notation:
Y ∼ LSM,T (φ) ⇒ X ∼ ELSM,T (M,R, φ), Y ∼ SSM,T (φ) ⇒ X ∼ ESSM,T (M,R, φ), Y ∼ MSM,T (φ) ⇒ X ∼
EMSM,T (M,R, φ) and Y ∼ VSM,T (φ) ⇒ X ∼ EVSM,T (M,R, φ). We will use indifferently φ or g in the notation since we



assume that the p.d.f. exists. The stochastic representations of X follow immediately from those of Y and the corresponding
p.d.f can be written as

p(X |R, g) = |R|−Tg
(

(X − M)HR−1(X − M)
)

(ELS)

p(X |R, g) = |R|−Tg
(

λ((X − M)HR−1(X − M))
)

(ESS)

p(X |R, g) = |R|−Tg((y1 − m1)
HR−1(y1 − m1), . . . , (yT − mT )

HR−1(yT )− mT ) (EMS)

p(X |R, g) = |R|−Tg
(

Tr{(X − M)HR−1(X − M)}
)

. (EVS)

In [1] we considered in fact the EL approach for the EMS class of distributions. In the present paper, we extend this
approach to ESS distributions (of which the usual multivariate Student distribution p(X |R) ∝ |R|−T |IT + (X −M)HR−1(X −
M)|−(d+M) is a member) and to the EVS distributions which have been considered e.g., in [23,24].

3. Likelihood ratio for EVSM,T (0,R, g) distributions

In this section we assume that X follows a vector-spherical distribution with zero-mean, i.e., X ∼ EVSM,T (0,R, g)
and our goal is to estimate R using the expected likelihood approach. Towards this goal, the first step is to derive the
likelihood ratio L(R(β)|X) for any (possibly parameterized) covariance matrix, and to show that L(R0|X) does not depend
on R0. Similarly to [11,23,24] we will assume that g(.) is a continuous and non-increasing function, which guarantees that
tMTg(Mt) achieves a maximum at tmax.

3.1. The over-sampled case

Let us consider first that the number of measurements T exceeds the number of elements in the array M , i.e., T ≥ M .
Under such hypothesis, the maximum likelihood estimate (MLE) of R is given by [23,24]

RML = XXH

tmax

. (11)

It thus follows that the LR can be written as

LR(R(β)|X) = p(X |R(β))
p(X |RML)

=
|R(β)|−Tg

(

Tr{XHR−1(β)X}
)

|RML|−Tg
(

Tr{XHR
−1
MLX}

)

= |R−1(β)RML|T
g
(

Tr{XHR−1(β)X}
)

g (Tr{tmaxIM})
= C |R−1(β)XXH |Tg

(

Tr{XHR−1(β)X}
)

(12)

where C = t−MT
max /g(Mtmax) =

[

maxt t
MTg(Mt)

]−1
. Now using the stochastic representation in (8b), we have X

d= RR
−1/2

0 U3

and thus

LR(R0|X) = C |R−1
0 XXH |Tg

(

Tr{XHR
−1
0 X}

)

d= C |R2U3U
H
3 |Tg

(

Tr{R2U3U
H
3 }

)

= C |R2U3U
H
3 |Tg

(

R
2
)

, (13)

where we used the fact that Tr{UH
3 U3} = vec(U3)

Hvec(U3) = 1 since vec(U3) ∼ UMT . The latter property implies that

vec(U3)
d= ñ

∥

∥ñ
∥

∥

with ñ ∼ N (0, IMT ). (14)

Let N be theM × T matrix such that vec(N) = ñ: we thus have U3
d= N

Tr{NNH }1/2 and therefore

|U3U
H
3 | d= |NNH |

Tr{NNH}M . (15)

Now observe that the matrix W = NNH has a complex Wishart distribution with T degrees of freedom, i.e., W ∼
W(T , IM) [13,21]. This matrix can thus be decomposed as W = CHC where C is an M × M upper-triangular matrix. It
is well known [13,21] that all random variables Cij are independent. Moreover, |Cii|2 ∼ χ2

T−i+1 where χ2
n stands for the



complex central chi-square distribution with n degrees of freedom, whose p.d.f. is given by fχ2
n
(x) = Γ −1(n)xn−1 exp{−x}.

Additionally, one has Cij ∼ N (0, 1) for i 6= j. It then ensues that

|W |
Tr{W }M =

M
∏

m=1

|Cmm|2

[

M
∑

m=1

|Cmm|2 +
∑

i6=j

|Cij|2
]M

d=

M
∏

m=1

χ2
T−m+1

[

χ2
M(M−1)/2 +

M
∑

m=1

χ2
T−m+1

]M
. (16)

Finally, we obtain the following stochastic representation:

LR(R0|X) d= CR
2MTg

(

R
2
)

(

M
∏

m=1

χ2
T−m+1

)T

[

χ2
M(M−1)/2 +

M
∑

m=1

χ2
T−m+1

]MT
(17)

whose p.d.f. obviously does not depend on R0. However the p.d.f. of LR(R0|X) depends on g(.). For a given density generator,
the p.d.f. of LR(R0|X) can be easily simulated which provides a target value (for instance the median value of LR(R0|X) [1])
for the LR of any regularized covariance matrix estimate, and hence a way to select the regularization parameters.

3.2. The under-sampled case

Let us address now the case T ≤ M which requires a specific analysis since theMLE of R does not exist any longer. In fact,
with T < M training samples, information about the covariancematrix can be retrieved only in the T -dimensional subspace

spanned by the columns of the datamatrix X [2]. Let S = XXH be the sample covariancematrix and let S = ÛT 3̂T Û
H
T denote

its eigenvalue decomposition where ÛT is aM × T matrix of orthonormal eigenvectors i.e., ÛH
T ÛT = IT . Inference about any

covariance matrix R(β) is thus possible only in the range space of ÛT . Therefore, for any given R(β), we need to find the

rank-T Hermitian matrix DT , such that the construct RT = ÛTDT Û
H
T is ‘‘closest’’ to the model R(β). In [2] it was proven that

DT is given by

DT =
[

ÛH
T R−1(β)ÛT

]−1

(18)

and hence

RT = ÛT

[

ÛH
T R−1(β)ÛT

]−1

ÛH
T . (19)

RT , which is rank-deficient, can be considered as the singular covariance matrix of an EVS distribution.
At this stage, we need to consider EVS distributions with singular R and to define singular densities in a particular

subspace [23,9], in the same way that singular Gaussian distributions can be defined, see e.g., [26,25,14]. Let us thus
temporarily consider an EVSM,T (0,R, g) distribution with a rank-deficient R that can be decomposed as R = URDRU

H
R

where UR is anM × Rmatrix whose orthonormal columns form a basis for the range space of R, and DR is a positive definite

R × R Hermitian matrix. Then [11,22], we have X
d= RURD

1/2

R YR with vec(YR) ∼ URT . Although a density cannot be defined

on the set ofM × T matrices, one can define a density on the set ofM × T matrices X such that
(

U⊥
R

)H
X = 0 [23,9], where

U⊥
R is an orthonormal basis for the complement of UR, i.e.,

(

U⊥
R

)H
U⊥

R = IM−R and
(

U⊥
R

)H
UR = 0. Let U =

[

UR U⊥
R

]

and
let us make the change of variables

X̃ = UHX =
[

UH
R X

(

U⊥
R

)H
X

]

=
[

X̃R

0

]

(20)

where X̃R
d= RURD

1/2

R YR ∼ EVSR,T (0,DR, gR). The p.d.f. of X̃R exists and is given by

p(X̃R|UR,DR) = |DR|−TgR

(

Tr{X̃H
R D

−1
R X̃R}

)

= |DR|−TgR
(

Tr{XHURD
−1
R UH

R X}
)

= |DR|−TgR
(

Tr{XHR−X}
)

(21)



where R− is the pseudo-inverse of R and the notation gR(.) emphasizes that the density is well-defined as a function over

C
R [23]. Since the Jacobian from X to X̃ is 1, one can define a density on the set

{

X ∈ C
M×T/

(

U⊥
R

)H
X = 0

}

as [23]

p(X |UR,DR) = |DR|−TgR
(

Tr{XHURD
−1
R UH

R X}
)

. (22)

Now, back to our specific application with RT in (19) being an admissible singular covariance matrix, we get

p(X |R(β)) = |DT |−TgT

(

Tr{XH ÛTD
−1
T ÛH

T X}
)

= |ÛH
T R−1(β)ÛT |TgT

(

Tr{XH ÛT

[

ÛH
T R−1(β)ÛT

]

ÛH
T X}

)

. (23)

The MLE of DT is given by

DML
T = ÛH

T XXH ÛT

t̃max

= 3̂T

t̃max

(24)

where t̃max = argmaxt t
T2gT (tT ). It then follows that the LR has the following expression:

LRu(R(β)|X) = |ÛH
T R−1(β)ÛTD

ML
T |T

gT
(

Tr{XHR−1(β)X}
)

gT
(

Tr{t̃maxIT }
)

= C̃ |XHR−1(β)X |TgT
(

Tr{XHR−1(β)X}
)

(25)

with C̃ = t̃−T2

max /g(T t̃max) =
[

maxt t
T2gT (tT )

]−1

. Using the fact that X
d= RR

−1/2

0 U3, the under-sampled likelihood ratio,

evaluated at the true covariance matrix, can thus be written as

LRu(R0|X) = C̃ |XHR
−1
0 X |TgT

(

Tr{XHR
−1
0 X}

)

d= C̃ |R2UH
3 U3|TgT

(

Tr{R2UH
3 U3}

)

= C̃
|R2NHN |T

Tr{NHN}T2
gT

(

R
2
)

, (26)

whereN is anM×T matrix such that vec(N) ∼ N (0, IMT ). ConsequentlyW = NHN ∼ W(M, IT ) andW can be decomposed
as W = CHC where C is an T × T upper-triangular matrix. As before, all random variables Cij are independent and now

|Cii|2 ∼ χ2
M−i+1. Therefore, one has

|W |
Tr{W }T =

T
∏

t=1

|Ctt |2

[

T
∑

t=1

|Ctt |2 +
∑

i6=j

|Cij|2
]T

d=

T
∏

t=1

χ2
M−t+1

[

χ2
T (T−1)/2 +

T
∑

t=1

χ2
M−t+1

]T
. (27)

Finally, in the under-sampled case, one obtains

LRu(R0|X) d= C̃R
2T2gT

(

R
2
)

(

T
∏

t=1

χ2
M−t+1

)T

[

χ2
T (T−1)/2 +

T
∑

t=1

χ2
M−t+1

]T2
. (28)

Similarly to the over-sampled case, the p.d.f. of LRu(R0|X) is independent of R0 but depends on g(.). It is noteworthy by
comparing (17) and (28) that, when T = M , the over-sampled LR and the under-sampled LR coincide.

It is possible to gather (17) and (28) under the same umbrella, which yields a unified representation of LR(R0|X) as

LR(R0|X) d=
[

max
t

tPTg(tP)

]−1

R
2TPg

(

R
2
)

(

P
∏

p=1

χ2
Q−p+1

)T

[

χ2
P(P−1)/2 +

P
∑

p=1

χ2
Q−p+1

]PT
(29)



Fig. 1. Median value of LR1/T (R0|X) for a Student (EVS-type) distribution versus T .M = 16 and d = 1.

where P = min(M, T ) and Q = max(M, T ). As an illustration, Fig. 1 displays the median value of LR1/T (R0|X) for a Student

(EVS-type) distribution with d degrees of freedom, which corresponds to g(t) ∝
[

1 + d−1Tr{XHR
−1
0 X}

]−(MT+d)
. As can be

observed, this median value is well below one and hence only regularization of the MLE can drive the LR down to values
compatible with those of R0.

To summarize, the required-for-EL-implementation invariance properties of LR(R0|X) have been proven for EVS
distributions, and the stochastic representations derived above allow for easy simulation of the p.d.f. of LR(R0|X) for any
M , T and g(.). This makes the EL approach for regularized CME possible in the EVS class of distributions.

4. Likelihood ratio for ESSM,T (0,R, g) distributions

In this section, we briefly consider the LR for ESSM,T (0,R, g) distributions and we give an illustration on the matrix-
variate Student distribution. We begin with the over-sampled case T ≥ M . Let X ∼ ESSM,T (0,R, g) so that

p(X |R, g) = |R|−Tg
(

λ(XXHR−1)
)

where λ(XXHR−1) stands for the diagonal matrix of the (M non-zero) eigenvalues of XXHR−1. As shown in [11] the MLE of
R is given by

RML = XXH

α
(30)

where α = argmaxt t
MTg(tIM). The LR is thus given by

LR(R(β)|X) = p(X |R(β))
p(X |RML)

= |R−1(β)RML|T
g
(

λ(XXHR−1(β))
)

g
(

λ(XXHR
−1
ML )

)

= |α−1XXHR−1(β)|T
g
(

λ(XXHR−1(β))
)

g (λ(αIM))

= C |XXHR−1(β)|Tg
(

λ(XXHR−1(β))
)

(31)

with C = α−MT/g(αIM) =
[

maxt t
MTg(tIM)

]−1
. From the stochastic representation X

d=R
1/2

0 U31/2VH with U ∈ O(M),
V ∼ UT ,M , it ensues that



LR(R0|X) = C |R−1/2

0 XXHR
−1/2

0 |Tg
(

λ(R
−1/2

0 XXHR
−1/2

0 )

)

d= C |3|Tg(3) (32)

which is clearly independent of R0 but of course depends on g(.).
For illustration purposes, let us consider themore insightful and practically important case of thematrix-variate Student

distribution with d (≥T ) degrees of freedom, defined as

p(X |R) ∝ |R|−T |IT + XHR−1X |−(d+M)

∝ |R|−T |IM + XXHR−1|−(d+M).

It is well known that the MLE of R, under the assumption T ≥ M , is given by

RML = d + M − T

T
XXH . (33)

Therefore, the LR for any covariance matrix R(β) takes the form

LR(R(β)|X) = C |XXHR−1(β)|T |IM + XXHR−1(β)|−(d+M). (34)

The stochastic representation of X writes

X
d=R

1/2

0 N1

(

N2N
H
2

)−1/2
(35)

where N1 ∈ C
M×T ∼ N (0, IM , IT ) and N2 ∈ C

T×d ∼ N (0, IT , Id) are independent. Then, at the true covariance matrix, the
LR admits the representation

LR(R0|X) d= C |F |T |IM + F |−(d+M) (36)

where F = N1

(

N2N
H
2

)−1/2
NH

1 follows a F-distribution [13].
Let us now investigate the under-sampled scenario where T ≤ M . As a preliminary it is requested to consider ESS

distributions with a rank −R matrix R = URDRU
H
R . Making the same change of variables as in (20), one has X̃R ∼

ESSR,T (0,DR, gR), i.e.,

p(X̃R|UR,DR) = |DR|−TgR

(

λ(X̃RX̃
H
R D

−1
R )

)

= |DR|−TgR
(

λ(UH
R XXHURD

−1
R )

)

= |DR|−TgR
(

λ(XHR−X)
)

. (37)

Then one can define a density on the set
{

X ∈ C
M×T/

(

U⊥
R

)H
X = 0

}

as

p(X |UR,DR) = |DR|−TgR
(

λ(XHR−X)
)

. (38)

Therefore, when T ≤ M and RT in (19) being an admissible singular covariance matrix, we get

p(X |R(β)) = |DT |−TgT

(

λ(XH ÛTD
−1
T ÛH

T X)

)

= |ÛH
T R−1(β)ÛT |TgT

(

λ(XH ÛT

[

ÛH
T R−1(β)ÛT

]

ÛH
T X)

)

. (39)

The MLE of DT is now given by

DML
T = ÛH

T XXH ÛT

t̃max

= 3̂T

t̃max

(40)

where t̃max = argmaxt t
T2gT (tIT ). The under-sampled LR is thus given by

LRu(R(β)|X) = |ÛH
T R−1(β)ÛTD

ML
T |T

gT
(

λ(XHR−1(β)X)
)

gT
(

t̃maxIT
)

= C̃ |XHR−1(β)X |TgT
(

λ(XHR−1(β)X)
)

(41)

with C̃ = t̃−T2

max /g(T t̃max) =
[

maxt t
T2gT (tIT )

]−1

. The stochastic representation of X writes X
d=R

1/2

0 U31/2VH with

U ∼ UM,T , V ∈ O(T ), and hence

LRu(R0|X) = C̃ |XHR
−1
0 X |TgT

(

λ(XHR
−1
0 X)

)

d= C̃ |3|TgT (3). (42)



Fig. 2. Median value of LR1/T (R0|X) for a Student (ESS-type) distribution versus T .M = 16 and d = T .

For illustration purposes, let us study again the multivariate Student distribution. We first consider X
d=GS

−1/2

2 where

G ∼ N (0,R = URDRU
H
R ) and S2 ∼ W(d, IT ). The p.d.f. of X̃R = UH

R X is easily obtained as

p(X̃R|UR,DR) ∝ |DR|−T |IT + X̃H
R D

−1
R X̃R|−(d+R)

∝ |DR|−T |IT + XHURD
−1
R UH

R X |−(d+R) (43)

from which one can define the density

p(X |R) ∝ |DR|−T |IT + XHR−X |−(d+R)δ
(

(U⊥
R )

HX
)

. (44)

In the under-sampled case, the p.d.f. of the observations can thus be written as

p(X |R(β)) ∝ |DT |−T |IT + XH ÛTD
−1
T ÛH

T X |−(d+T )

∝ |DT |−T |IT + XH ÛT

[

ÛH
T R−1(β)ÛT

]

ÛH
T X |−(d+T )

∝ |ÛH
T R−1(β)ÛT |T |IT + XHR−1(β)X |−(d+T ). (45)

It ensues that the LR for R(β) is given by

LRu(R(β)|X) =
∣

∣

∣

∣

ÛH
T R−1(β)ÛT

d

T
3T

∣

∣

∣

∣

T |IT + XHR−1(β)X |−(d+T )

|IT + d−1T IT |−(d+T )

= C̃ |XHR−1(β)X |T |IT + XHR−1(β)X |−(d+T ) (46)

with C̃ = (d−1T )T
2
(1 + d−1T )(d+T )T . Finally, using X

d=R
1/2

0 N1S
−1/2

2 , the under-sampled LR evaluated at R0 is finally given
by

LRu(R0|X) d= C̃ |S−1
2 S1|T |IT + S

−1
2 S1|−(d+T ) (47)

with S1 ∼ W(M, IT ). In Fig. 2, we display the median value of LR1/T (R0|X) in the case of a multivariate Student (ESS-type)
distribution as a function of the number of snapshots. Again, it is observed that this median value is well below 1.

5. Conclusions

Invariance properties of the likelihood ratio for testing a covariancematrixwere extended to a class of complex elliptically
contoured distributions. The stochastic representations of LR(R0|X) derived herein allow for a straightforward evaluation
of its p.d.f. for a given set of values of M , T and g(.). This paves the way to application of the EL approach to regularized
covariance matrix where regularization parameters β can be chosen such that LR(R(β)|X) falls in the support of the p.d.f.
of LR(R0|X).
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