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Abstract

We show that there are Σ0

3
-complete languages of infinite words ac-

cepted by non-deterministic Petri nets with Büchi acceptance condi-
tion, or equivalently by Büchi blind counter automata. This shows that
ω-languages accepted by non-deterministic Petri nets are topologically
more complex than those accepted by deterministic Petri nets.
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1 Introduction

The languages of infinite words, also called ω-languages, accepted by finite
automata were first studied by Büchi to prove the decidability of the monadic
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second order theory of one successor over the integers. Since then regular ω-
languages have been much studied and used for specification and verification
of non-terminating systems, see [21, 20, 15] for many results and references.
The acceptance of infinite words by other finite machines, like pushdown
automata, counter automata, Petri nets, Turing machines, . . . , with various
acceptance conditions, has also been considered, see [20, 5, 2, 9].

Since the set Σ
ω of infinite words over a finite alphabet Σ is naturally

equipped with the Cantor topology, a way to study the complexity of lan-
guages of infinite words accepted by finite machines is to study their topo-
logical complexity and firstly to locate them with regard to the Borel and
the projective hierarchies [21, 19, 5, 13, 20, 18, 17].

Every ω-language accepted by a deterministic Büchi automaton is a
Π0

2-set. On the other hand it follows from Mac Naughton’s Theorem that
an ω-language accepted by a non-deterministic Büchi (or Muller) automa-
ton is also accepted by a deterministic Muller automaton, and thus is a
boolean combination of ω-languages accepted by deterministic Büchi au-
tomata. Therefore every ω-language accepted by a non-deterministic Büchi
(or Muller) automaton is a ∆0

3-set. In a similar way, every ω-language
accepted by a deterministic Muller Turing machine, and thus also by any
Muller deterministic finite machine is a ∆0

3-set, [5, 20].
We consider here acceptance of infinite words by Petri nets or equiva-

lently by (partially) blind counter automata. Petri nets are used for the
description of distributed systems [6, 16, 11], and they may be defined as
partially blind multicounter automata, as explained in [22, 5, 10]. In or-
der to get a partially blind multicounter automaton which accepts the same
language as a given Petri net, one can distinguish between the places of a
Petri net by dividing them into the bounded ones (the number of tokens in
such a place at any time is uniformly bounded) and the unbounded ones.
Then each unbounded place may be seen as a partially blind counter, and
the tokens in the bounded places determine the state of the partially blind
multicounter automaton. The transitions of the Petri net may then be seen
as the finite control of the partially blind multicounter automaton and the
labels of these transitions are then the input symbols.

The infinite behavior of Petri nets was first studied by Valk [22] and by
Carstensen in the case of deterministic Petri nets [1].

On one side the topological complexity of ω-languages of deterministic
Petri nets is completely determined. They are ∆0

3-sets and their Wadge
hierarchy, which is a great refinement of the Borel hierarchy, defined via
reductions by continuous functions, has been determined in [7, 3, 4]; its
length is the ordinal ωω2

.
On the other side, nothing was known about the topological complexity

of ω-languages of non-deterministic Petri nets. We show that there exist Σ0
3-

complete, hence non ∆0
3, ω-languages accepted by one-blind-counter Büchi

automata. Notice that it was proved in [8] that ω-languages accepted by
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(non-blind) one-counter Büchi automata have the same topological complex-
ity as ω-languages of Turing machines, but the non-blindness of the counter
was essential in the proof since the ability to use the zero-test of the counter
was important.

This provides the first result on the topological complexity of ω-languages
of non-deterministic Petri nets and shows that there exist some ω-languages
accepted by non-deterministic Petri nets, and even by one-blind-counter
Büchi automata, which are topologically more complex than those accepted
by deterministic Petri nets.

2 Basic notions

We assume the reader to be familiar with the theory of formal (ω)-languages,
see [21, 20].

When Σ is a countable alphabet, a non-empty finite word over Σ is any
sequence x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer
≥ 1. Σ⋆ is the set of finite words (including the empty word ε) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence
a1 . . . an . . ., where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word
over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and
σ[n] = σ(1)σ(2) . . . σ(n).

The concatenation product of two finite words u and v is denoted u · v
and sometimes just uv. This product is extended to the product of a finite
word u and an ω-word v: the infinite word u · v is then the ω-word such
that: (u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.

The set of ω-words over the alphabet Σ is denoted by Σ
ω. An ω-language

over an alphabet Σ is a subset of Σω.

A blind multicounter automaton is a finite automaton equipped with a finite
number (k) of blind (sometimes called partially blind, as in [10]) counters.
The content of any such counter is a non-negative integer. A counter is
said to be blind when the multicounter automaton cannot test whether the
content of the counter is zero. This means that if a transition of the machine
is enabled when the content of a counter is zero then the same transition is
also enabled when the content of the same counter is a non-zero integer.

We now give the definition of a Büchi 1-blind-counter automaton. Notice
that we consider here only real time automata, i.e., without ε-transitions.

Definition 2.1 A (real time) Büchi 1-blind-counter automaton is a 5-tuple
A = (Q,Σ,∆, q0, F ), where Q is a finite set of states, Σ is a finite input
alphabet, q0 ∈ Q is the initial state, the transition relation ∆ is a subset of
Q× Σ× {0, 1} ×Q× {0, 1,−1}, and F ⊆ Q is the set of accepting states.
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If the automaton A is in state q, and c ∈ N is the content of the counter
C, then the configuration (or global state) of A is the pair (q, c).

Given any a ∈ Σ, any q, q′ ∈ Q, and any c ∈ N, if both ∆(q, a, i, q′, j),
and (c ≥ 1 ⇒ i = 1) and (c = 0 ⇒ (i = 0 and j ∈ {0, 1})) holds, then we
write: a : (q, c) 7→A (q′, c+ j).

Moreover the counter of A is blind, i.e., if ∆(q, a, i, q′, j) holds, and i = 0
then ∆(q, a, i′, q′, j) holds also for i′ = 1.

Let x = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations
ρ = (qi, ci)i≥1 is called a run of A on x if and only if

• (q1, c1) = (q0, 0), and

• ai : (qi, ci) 7→A (qi+1, ci+1) (for all 1 ≤ i).

We denote In(ρ) the set of all the states visited infinitely often during
the run ρ. The automaton A accepts x if there is an infinite run ρ of A on
x such that In(ρ) ∩ F 6= ∅.

The ω-language accepted by A is the set L(A) of ω-words accepted by A.

We assume the reader to be familiar with basic notions of topology which
may be found in [14, 13, 12, 20, 15]. If X is a countable alphabet containing
at least two letters, then the setXω of infinite words over X may be equipped
with the product topology of the discrete topology on X. This topology is
induced by a natural metric which is called the prefix metric and defined as
follows. For u, v ∈ Xω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is
the first integer n such that the (n + 1)st letter of u is different from the
(n+ 1)st letter of v.

If X is finite then Xω is a Cantor space and if X is countably infinite
then Xω is homeomorphic to the Baire space ωω. The open sets of Xω are
the sets in the form W ·Xω, where W ⊆ X⋆.

The classes Σ0
n and Π0

n of the Borel Hierarchy on the topological space
Xω are defined as follows: Σ0

1 is the class of open sets of Xω, Π0
1 is the

class of closed sets (i.e. complements of open ones) of Xω. And for any
integer n ≥ 1: Σ0

n+1 is the class of countable unions of Π0
n-subsets of Xω,

and Π0
n+1 is the class of countable intersections of Σ0

n-subsets of Xω. The
Borel Hierarchy is also defined for transfinite levels, but we shall not need
them in the present study.

Recall now the notion of completeness with regard to reduction by con-
tinuous functions. For an integer n ≥ 1, a set F ⊆ Xω is said to be a
Σ0

n (respectively, Π0
n)-hard set iff for any set E ⊆ Y ω (with Y a countable

alphabet): E ∈ Σ0
n (respectively, E ∈ Π0

n) implies that there exists a con-
tinuous function f : Y ω → Xω such that E = f−1(F ). If the set F is Σ0

n

(respectively, Π0
n)-hard and belongs to the class Σ0

n (respectively, Π0
n) then

it is said to be Σ0
n (respectively, Π0

n)-complete.
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3 Topological complexity of Petri nets ω-languages

We now state and prove our main result.

Theorem 3.1 There exists a Σ0
3-complete ω-language accepted by a Büchi

one-blind-counter automaton.

The rest of this section is devoted to showing this result. First, we de-
scribe the construction of an automaton A recognising a Σ0

3-hard language.
Then, in Lemma 3.2, we show that the language recognised by A belongs to
Σ0

3.
Let us recall an example of a Π0

3-complete subset C3 of the Baire space
given in [12, page 180].

C3 = {x ∈ ωω | lim
n

x(n) = ∞}

It follows that the set

D3 = {x ∈ ωω | lim inf x(n) < ∞}

is Σ0
3-complete.

Notice that we have

D3 = {x ∈ ωω | ∃N ∃∞i (x(i) ≤ N)} = {x ∈ ωω | ∃N ∀p ∃i > p (x(i) ≤ N)}

We now define the following coding of infinite sequences of integers by infinite
words over the alphabet Σ = {a, b}. For x = (mi)i≥0 ∈ ωω we set ni = mi+1
for each i ≥ 0, and

Φ(x) = an0 · bn0 · an1 · bn1 · · · ani · bni · · ·

It is clear that this defines a continuous injective mapping Φ : ωω → {a, b}ω.
We are going to show that there exists a one-blind-counter automaton A,
reading ω-words over Σ, such that L(A)∩Φ(ωω) = Φ(D3), what is equivalent
to

∀x ∈ ωω x ∈ D3 ⇐⇒ Φ(x) ∈ L(A) (1)

It implies that L(A) is Σ0
3-hard, since D3 is Σ0

3-complete.
We start with a formal definition of A as depicted on Figure 1: the

initial state is denoted I and the unique accepting state is denoted F . An

edge of the form q
a:j
−→ q′ denotes the pair of transitions (q, a, 0, q′, j) and

(q, a, 1, q′, j).
For the sake of readability we use ε-transitions in A. They can be elim-

inated in the standard way as there is no loop with only ε-transitions and
the ε-transitions do not modify the counter.

5



Istart Ia

Ib

Wa

Wb G

Ma

F

Mb

a : +1
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b : +1
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b : 0

b : 0

ε : 0

a : −1

a : −1

ε : 0

b : +1

b : +1

ε : 0

a : 0

Figure 1: The automaton A

The automaton is designed in such a way to remember the last letter
read: in the states Ia, Wa, Ma, and F it is a and in the states Ib, Wb, G,
and Mb it is b.

Let Z be the set of words w ∈ Σ
ω that contain infinitely many letters

a and b and start from a. Clearly L(A) ⊆ Z. Observe that if w ∈ Z is an
infinite word then it can be uniquely decomposed as w = an0bk0an1bk1 . . .

with ni, ki > 0. A subword anibki of w in the above decomposition is called
a block of w.

Any accepting run of A on a word w can be divided into three stages:

1. in the states I, Ia, and Ib automaton A reads first N letters of w and
increments the counter,

2. in the states Wa and Wb automaton A reads the rest of the current
block,

3. infinitely often automaton is in G at the beginning of some block anbk

and decides either to read it without changing the counter (states
Wa,Wb) or to:

• decrease the counter on an in the state Ma,

• visit once the accepting state F ,

• increase the counter on bk in Mb.

Note that A can read a block anbk using Ma, F , and Mb only if the counter
value at the beginning of this block is at least n.

By the definition of the automaton the language recognised by A is the
set of all words of the form w = an0bk0an1bk1 . . . with ni, ki > 0 such that
for some N ∈ N and a set I ⊆ N we have:

• I is infinite,
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• the block anibki for i = min(I) starts after the N ’th letter of w,

• for every i ∈ I we have

ni ≤ N +
∑

j<i∧j∈I

kj − nj. (2)

Now we want to prove (1). Let x = (mi)i≥0 be an element of the Baire
space. Observe that w = Φ(x) has the form am0+1bm0+1am1+1bm1+1 . . ..
Therefore, in the above conditions kj = nj and (2) takes the form

ni ≤ N with ni = mi + 1.

Now, to prove (1) it is enough to observe that the following conditions
are equivalent

• A accepts Φ(x)

• there exists N such that there are infinitely many i with mi ≤ N

• x ∈ D3.

Lemma 3.2 The language L(A) is a Σ0
3 set.

Proof. First note that the set Z defined above is aΠ0
2 set, so we can restrict

our attention only to words in Z.
Let ρ be a run of A on a given infinite word w = an0bk0an1bk1 . . . with

ni, ki > 0. We say that ρ uses a block anibki in w if A decreases its counter
on ani in the state Ma and then increases it on bki in the state Mb. We say
that a block anibki is positive if ki ≥ ni.

Now, fix a number N (the guessed initial value of the counter). We
describe how to inductively construct a run ρ(N) of A on w. The run starts
by increasing the counter N times and waiting until the end of the current
block. Then, when reaching the first letter of some block anbk with counter
value c in the state G, the following cases are possible:

• the block anbk is not positive then ρ(N) does not use it (moves to
Wa),

• the block is positive but n > c then ρ(N) does not use it (moves to
Wa),

• the block is positive and n ≤ c then ρ(N) uses it (moves to Ma).

The following fact describes the crucial property of the run ρ(N).

Fact 3.3 If ρ is an accepting run of A on w that starts with N increments
then ρ(N) is also accepting.
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Proof. Observe that if ρ is accepting then it uses infinitely many positive
blocks — otherwise only finitely many non-positive ones can be used.

Now, inductively show that ρ(N) has value of the counter at least equal
to the value of ρ. In particular, whenever ρ uses some positive block then
ρ(N) also uses it. Therefore, ρ(N) uses infinitely many blocks and accepts.
�

Observe that given a number N the condition “ρ(N) uses the i’th block
anibki” is an open property depending only on the initial segment of w until
the end of the block anibki . Consider the following formula:

ϕ := ∃N∀i∃j≥i ρ(N) uses the j’th block anjbkj .

This formula is a Σ0
3 formula. We claim that ϕ defines the language

L(A). Clearly, if a word w satisfies ϕ then, for the appropriate value of
N , the run ρ(N) is accepting. For the other direction, assume that ρ is an
accepting run of A on w. By Fact 3.3 we know that there is N such that
ρ(N) is accepting. Therefore, ϕ is satisfied on w. �

4 Concluding remarks

We have proved that there are some Σ0
3-complete languages of infinite words

accepted by blind-counter Büchi automata. This provides the first results
on the topological complexity of ω-languages of non-deterministic Petri nets
and shows that ω-languages accepted by non-deterministic Petri nets are
topologically more complex than those accepted by deterministic Petri nets.
A natural question is now to completely determine the Borel and Wadge
hierarchies of ω-languages of non-deterministic Petri nets. The first question
would be: “are there nonΣ0

3-sets accepted by non-deterministic Petri nets?”.
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