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Approximation of IMSE-optimal designs
via quadrature rules and spectral decomposition∗

Bertrand Gauthier†‡ Luc Pronzato§‡

January 27, 2014

Abstract

We address the problem of computing IMSE (Integrated Mean Square Error) optimal designs
for random fields interpolation with known mean and covariance. We assume that the MSE is
integrated through a discrete measure and restrict the design space to the support of the measure
considered. For such quadrature designs, the computational cost of IMSE evaluations can be
significantly reduced by considering a spectral approximation with truncation. We illustrate
how IMSE-optimal quadrature designs can be obtained at a reasonable computational cost with
a simulated-annealing based optimization strategy.

Keywords: random field models, optimal design of experiments, IMSE, quadrature approximation,
simulated annealing, spectral approximation.

1 Introduction

This work addresses the problem of designing IMSE (Integrated Mean-Squared Error) optimal
experiments in the context of Gaussian random field models with fixed mean and covariance, see,
e.g., Sacks et al. (1989), Rasmussen and Williams (2006).

The determination of IMSE-optimal designs for kernel-based models is known as a numerically
expensive problem, see, e.g., Fang et al. (2010, Chapter 2) or Santner et al. (2003, Chapter 6).
Indeed, the evaluation of the IMSE criterion, in its standard form (see equation (2.3)), is compu-
tationally demanding and, moreover, the search for IMSE-optimal designs is often complicated by
the presence of local minima.

Here, we assume that the IMSE is computed for a discrete measure (in particular, it may
correspond to a quadrature approximation) and restrict the optimization to quadrature designs, i.e.,
to designs composed of quadrature points (see Definition 3.1). The IMSE score of such quadrature
designs can then be approximated by spectral truncation. In general, keeping a small number of
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‡Laboratoire I3S - UMR 7271 Université de Nice-Sophia Antipolis/CNRS.
∗This work was partly supported by the ANR project 2011-IS01-001-01 DESIRE (DESIgns for spatial Random

fiElds), joint with the Satistics Department of the JKU Universität, Linz, Austria. It is based on results that have
been presented at the 7th Int. Workshop on Simulation, Rimini, Italy, 21-25 May 2013, see http://amsacta.unibo.
it/3677/1/Quaderni_2013_3_Matteucci_Seventh.pdf

1

ha
l-0

09
36

68
1,

 v
er

si
on

 1
 - 

27
 J

an
 2

01
4

http://hal.archives-ouvertes.fr/hal-00936681
http://hal.archives-ouvertes.fr


eigenpairs is enough to obtain an accurate approximation of the IMSE while significantly reducing
the computational cost of the criterion evaluation. The present work aims at describing a general
design optimization strategy based on these considerations.

2 General framework and notations

2.1 Random fields and related Hilbert structures

Let X be a general set. We consider a real random field (Zx)x∈X indexed by X ; in what follows
Z will refer to the random field (Zx)x∈X . We assume that Z is centered, second-order, and defined
on a probability space (Ω,F ,P). For the sake of simplicity, we also assume that Z is Gaussian.
We denote by L2 (Ω,P) the Hilbert space of second-order real random variables (r.v.) on (Ω,F ,P),
where we identify random variables that are equal P-almost surely. The inner product between two
r.v. U and V of L2 (Ω,P) is denoted by E (UV ).

Let K : X ×X → R be the covariance kernel of Z, i.e., for all x and y ∈X ,

E (ZxZy) = K(x, y) .

We denote by H the Gaussian Hilbert space associated with Z, i.e., the closed linear subspace of
L2 (Ω,P) spanned by the r.v. Zx, x ∈X , endowed with the Hilbert structure induced by L2 (Ω,P).
We assume that H is separable. Notice that we do not suppose that Z is stationary.

2.2 Conditioning

Let HC be a closed linear subspace of H; we denote by PHC
the orthogonal projection of H onto

HC . For x ∈X , the r.v. PHC
[Zx] is the conditional mean of Zx relatively to HC . If HC is spanned

by the r.v. ζj , j ∈ J , with J a general index set, the notation PHC
[Zx] = E (Zx|ζj , j ∈ J) is often

used. We shall pay particular attention to subspaces of the evaluation-type, i.e.

Hev = span {Zx1 , . . . , Zxn} , (2.1)

for some n ∈ N∗ (the set of positive integers) and x1, . . . , xn ∈ X . Such a set {x1, . . . , xn} of
locations where the values of the random field Z are observed forms a n-point design.

2.3 The IMSE criterion

Suppose that X is a measurable space and consider a σ-finite measure µ on X . We denote by
L2 (X , µ) the Hilbert space of square integrable real-valued functions on X with respect to µ. We
assume that the sample paths of (Zx)x∈X are in L2 (X , µ) with P-probability 1. More precisely
(see Gauthier and Pronzato (2013)), we assume that the following trace class condition is satisfied:

τ =

∫
X
K(x, x) dµ(x) < +∞. (2.2)

Then, for a given subspace HC of H, the IMSE criterion (or µ-IMSE to explicitly refer to the
measure µ) is the positive real

IMSE(HC) = E
[∫

X
(Zx − PHC

[Zx])2 dµ(x)

]
=

∫
X

E
[
(Zx − PHC

[Zx])2
]
dµ(x) =

∫
X
K(x, x)− E

[
(PHC

[Zx])2
]
dµ(x).
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From equation (2.2), we have

IMSE(HC) = τ − CI(HC), with CI(HC) =

∫
X

E
[
(PHC

[Zx])2
]
dµ(x).

Note that minimizing the IMSE amounts to maximizing CI(HC) since τ does not depend on HC .
For a fixed n ∈ N∗, a n-point IMSE-optimal design is a set {x1, . . . , xn} ∈ X n that minimizes the
IMSE criterion on X n.

2.4 Integral form of the IMSE

Consider a n-point design {x1, . . . , xn} ∈X n and its associated subspace Hev defined by equation
(2.1). Denote by z the (column) random vector z = (Zx1 , . . . , Zxn)T and let K be the covariance
matrix of z. We assume that Z and {x1, . . . , xn} are such that K is invertible. The expression of
the IMSE criterion associated with {x1, . . . , xn} is then given by IMSE(Hev) = τ −CI(Hev), where

CI(Hev) =

∫
X

kT (x)K−1k(x) dµ(x), (2.3)

with, for x ∈ X , k(x) = (Kx1(x), . . . ,Kxn(x))T . Here, for t ∈ X , Kt stands for the function
x 7→ K(t, x), x ∈X .

3 Discrete measures and quadrature designs

3.1 IMSE for quadrature designs

We now consider the situation where the measure µ is discrete, µ =
∑Nq

j=1 ωjδsj with ωj > 0,
sj ∈X , Nq ∈ N∗ and δs the Dirac measure centered at s, so that

∫
X
f(s) dµ(s) =

Nq∑
j=1

ωjf(sj), (3.1)

for all µ-integrable real-valued function f on X . The point sj for j ∈ {1, . . . , Nq} will be called the j-
th quadrature point and we shall respectively refer to the sets {sj |1 6 j 6 Nq} and {ωj |1 6 j 6 Nq}
as the sets of quadrature points and quadrature weights. Notice that this framework corresponds
to the typical situation where a quadrature rule is used to compute the integrated MSE in equation
(2.3).

Definition 3.1. We call quadrature-design a design which is only composed of quadrature points.
For n ∈ N∗ (with n 6 Nq), the index set of a n-point quadrature design {si1 , · · · , sin} is the subset
D = {i1, · · · , in} of {1, · · · , Nq}.

We introduce the two Nq × Nq matrices W = diag
(
ω1, . . . , ωNq

)
and Q, with Q having i, j

term Qi,j = K(si, sj), 1 6 i, j 6 Nq. Thus, W is the matrix of quadrature weights and Q is the
covariance matrix of quadrature points. We assume that Q is nonsingular.

Let n ∈ N∗, with n 6 Nq (in practice, n << Nq) and let D = {i1, . . . , in} ⊂ {1, . . . , Nq} be
the index set of a n-point quadrature design (see Definition 3.1). We denote by K = QD,D the
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covariance matrix for the design {si1 , . . . , sin}. Similarly, we denote by Q · ,D (respectively QD, · )
the Nq × n (resp. n×Nq) matrix formed by columns (resp. rows) i1, . . . , in of Q.

Using equations (2.3) and (3.1), we obtain

CI(Hev) = trace
(
WQ · ,DK−1QD, ·

)
(3.2)

= trace
(
Q · ,DK−1QD, · W

)
= trace

(
W

1
2 Q · ,DK−1QD, · W

1
2
)
,

and IMSE(Hev) = τ − CI(Hev), with τ = trace(QW).

Remark 3.1. According to equation (3.2), we only need to compute the diagonal terms of the matrix
WQ · ,DK−1QD, · . In order to save computational time, we can consider the Cholesky decomposition
K = CTC and compute MI = W

1
2 Q · ,DC−1. We then have CI(Hev) = sum

(
MI ∗MI

)
, where ∗

denotes the term-by-term product of two matrices of same size and sum(A) stands for the sum of
all terms of A. Note that if the IMSE needs to be evaluated for a large number of different designs,
it is computationally advantageous to compute the product matrix S = W

1
2 Q once for all and then

use S · ,D instead of W
1
2 Q · ,D, thereby avoiding repeated matrix multiplications. �

3.2 Spectral approximation of the IMSE for quadrature designs

We consider the spectral decomposition of the matrix QW in the Hilbert space RNq endowed with
the inner product ( · | · )W, with, for x and y ∈ RNq ,

(x|y)W = (x|y)W = xTWy.

Denote by λ1 > λ2 > · · · > λNq > 0 the eigenvalues of the matrix QW and by v1, . . . ,vNq their
associated eigenvectors, i.e. QW = PΛP−1 with

Λ = diag
(
λ1, . . . , λNq

)
and P =

(
v1

∣∣ · · · ∣∣vNq

)
.

Then,
{
v1, . . . ,vNq

}
forms an orthonormal basis of RNq endowed with the inner product ( · | · )W,

so that
PTWP = IdNq , (3.3)

with IdNq the Nq-dimensional identity matrix (see Remark 3.3 for more details). We then define
the matrix

X = PΛ.

Proposition 3.1. Consider a n-point quadrature design with index set D = {i1, . . . , in} and asso-
ciated covariance matrix K = QD,D. Then, we have

CI(Hev) = trace
(
(XD, · )TK−1XD, ·

)
, (3.4)

where XD, · denotes the matrix formed by the n rows of X having indices in D.

Proof. From equation (3.2) and the spectral decomposition QW = PΛP−1, we have

CI(Hev) = trace
(
Q · ,DK−1(PΛP−1)D, ·

)
= trace

(
Q · ,DK−1XD, · P−1

)
= trace

(
P−1Q · ,DK−1XD, ·

)
= trace

(
(P−1Q) · ,DK−1XD, ·

)
.
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Then, combining the decomposition of QW and expression (3.3), we obtain

P−1Q = P−1QWW−1 = ΛP−1W−1 = ΛPT = XT .

Since (XT ) · ,D = (XD, · )T , this completes the proof.

Following Gauthier and Pronzato (2013), we now introduce a spectral truncation of expresion
(3.4). For a positive integer Ntrc 6 Nq (the truncation level), we define INtrc = {1, . . . , Ntrc} and
denote by XD,Itrc the n×Ntrc matrix with entries Xj,k, where j ∈ D and k ∈ Itrc. We then define
the spectral-truncated IMSE criterion by

IMSEtrc(Hev) = τtrc − CItrc(Hev), (3.5)

with τtrc =
∑Ntrc

k=1 λk and CItrc(Hev) = trace
(
(XD,Itrc)

TK−1XD,Itrc

)
.

Remark 3.2. As noticed in Remark 3.1 for the usual expression of the IMSE criterion, one may
save computational time when computing the term CItrc(Hev) of expression (3.5) by considering
the Cholesky decomposition K = CTC. We then compute the matrix MT = (XD,Itrc)

TC−1 and
obtain CItrc(Hev) = sum

(
MT ∗MT

)
, hence avoiding the computation of non-diagonal terms of the

matrix (XD,Itrc)
TK−1XD,Itrc . �

Notice that we have chosen to use τtrc in expression (3.5) since we interpret the truncated-IMSE
criterion as the value of the IMSE criterion when only the Ntrc largest eigenvalues of QW are taken
into account. We might consider τ −CItrc(Hev) as well since τ and τtrc do not depend on the design
considered. We recall that the following chain of inequalities holds:

CItrc(Hev) 6 CI(Hev) 6 CItrc(Hev) +
∑

k 6∈INtrc

λk,

so that the term
∑

k 6∈INtrc
λk gives an upper bound on the error induced by truncation. The spectral

ratio

Rtrc =
τtrc
τ

=

∑Ntrc
k=1 λk∑Nq

k=1 λk
(3.6)

can be used as an indicator of the accuracy of the approximation by truncation.
The interest of the truncated criterion lies in the fact that one can often choose Ntrc << Nq while

keeping a very good accuracy, see for instance the examples in Section 5. In addition, the numerical
experiments performed in (Gauthier and Pronzato, 2013) seem to indicate that retaining a small
number of eigenpairs is often sufficient to obtain IMSE-optimal quadrature designs when optimizing
the truncated criterion. Once the spectral decomposition of QW is completed, the computation of
IMSEtrc is then significantly faster than the one of the usual form of the IMSE criterion. This is
of particular interest for the determination of IMSE-optimal designs since many evaluations of the
IMSE are usually required.

Remark 3.3. The matrix QW defines a symmetric and positive operator on RNq endowed with
( · | · )W, since (QWx|y)W = (x|QWy)W = xTWQWy for all x and y ∈ RNq . For numeri-
cal reasons, it is preferable to compute the spectral decomposition of W

1
2 QW

1
2 for the classical

Euclidean structure of RNq rather than the decomposition of QW for ( · | · )W. Notice that if v
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is an eigenvector of the matrix QW associated with the eigenvalue λ, i.e., QWv = λv, then
W

1
2 QW

1
2 W

1
2 v = λW

1
2 v. Therefore, the two matrices W

1
2 QW

1
2 and QW have the same eigen-

values and, if ṽ an eigenvector of W
1
2 QW

1
2 (orthonormal for the Euclidean structure of RNq) for

the eigenvalue λ, then v = W− 1
2 ṽ is an (orthonormal) eigenvector of RNq endowed with ( · | · )W

for the same λ. �

4 Grid-restricted IMSE optimization

In view of the above and in order to determine IMSE-optimal designs (or at least good approxima-
tions of them), we propose to use optimization routines that

- restrict the optimization to quadrature designs (the design optimization then corresponds to
a combinatorial optimization problem),

- use the truncated criterion instead of the usual form of the IMSE criterion.

Note that the restriction to quadrature designs is not penalizing when the quadrature grid used to
compute the IMSE is dense enough. In addition, numerical experimentations on a series of exam-
ples indicate that n-point quadrature designs are generally quasi-optimal (and sometimes optimal)
among all n-point designs on X .

In the numerical experiments of Section 5, we consider a stochastic global optimization strategy
based on the Enhanced Stochastic Evolutionary (ESE) algorithm proposed by Jin et al. (2005). The
ESE algorithm is adapted from the SE (Stochastic Evolutionary) algorithm originally developed by
Saab and Rao (1991), see also Fang et al. (2010, Chapter 4) for additional considerations and a
general description. Both algorithms are variants of the well-known Simulated Annealing (SA)
algorithm described by Kirkpatrick et al. (1983). For comparison purposes, we shall also consider a
local descent optimization method.

Design Perturbations. We consider designs perturbations that change a given quadrature design
in another quadrature design. At each step of the algorithm, we shall consider Npert such distinct
perturbations of the current design and apply the acceptance/rejection rule to the best of the Npert

candidate designs (in terms of the cost function considered).
Obviously, various perturbation strategies can be used and it is impossible to give an overall

description of all possible choices for this particular task. However, we think that a reasonable
strategy should respect the following conditions:

- the construction of a perturbed design must be computationally fast (since a large number of
perturbed designs will be generated during the optimization process);

- perturbations have to meet the expectations of the so-called improving process, i.e., they
should enable convergence to local optima;

- perturbations should also meet the expectations of the exploration process, i.e., they should
allow the algorithm to explore the whole search space {sj |1 6 j 6 Nq}n.

In the present work, we have chosen for simplicity to consider perturbation strategies that only
modify one point of the current design at a time. Perturbations are then applied successively to the
first design point, then the second, etc.

6
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Assume that the index set of the current quadrature design isD = {i1, . . . , in} and that we choose
to perturb the design point with index ik, that is, the point sik ∈X , with k ∈ {1, . . . , n}. In order
to construct Npert perturbed designs, we simply propose Npert mutually different substitutes for sik ,
taken among quadrature points. To account for the improving and exploration processes, we fix two
positive integers Nprox and Nrand (the perturbation parameters) such that Nprox + Nrand = Npert

(with “prox” standing for proximity and “rand” for random). Then,

(i) we select Nprox quadrature points in the “neighborhood” of sik , with indices Iprox such that
Iprox ⊂ {1, . . . , Nq}\D;

(ii) we randomly pick Nrand quadrature points, with indices in {1, . . . , Nq}\(D ∪ Iprox), with
respect to a given probability.

The choice of the method used to complete (i) and (ii) is rather crucial and should be done in
accordance with the specifications of the problem considered.

Concerning (i) (selection of Nprox neighbors), first notice that the notion of “neighborhood”
obviously requires the definition of a metric on the input space X . In our numerical experiments
(Section 5) we use the Euclidian norm on X = [0, 1]d. We also consider two different rules for the
selection of neighbors: either we pick the Nprox points nearest to sik (we refer to this case as the
proximity rule), or we randomly (uniform distribution) pick Nprox points among the 2Nprox nearest
neighbors of sik (what we call the random proximity rule).

Concerning (ii), in the experiments carried out in Section 5, we propose to use probability
weights proportional to (QW)ik, · in order to compute the Nrand substitutes to sik . This choice
appears as a trade-off between a well-spread distribution centered at sik (since we consider stationary
kernels with relatively large correlation lengths, this allows a good exploration) and the impact of
quadrature weights (since points with high weights may have more influence on the IMSE).

The information required to generate perturbed designs can be stored within two matrices Mprox

and Mrand, defined as follows:

- the i, j entry of Mprox is the index of the i-th nearest quadrature point to sj ;

- Mrand is a Nq×Nq stochastic matrix whose j-th row consists of the weights used to randomly
perturbed the j-th grid point.

Remark 4.1. Since perturbed designs differ from the current design by one point only, particular
updating formulae could be used to compute the IMSE (or IMSEtrc) score of the perturbed designs,
see for instance Davis and Hager (2005). One might also parallelize the computations of the IMSE
scores of all Npert perturbed designs. However, we have not considered the implementation of these
ideas in the current version of our optimization algorithm. �

Acceptance and stopping rules. In both the ESE and local descent algorithms, at each pertur-
bation step the acceptance rule is applied to the best of the Npert perturbed designs. In a simulated
annealing algorithm like ESE, a perturbation is always accepted if it yields an improvement and
is accepted with some probability otherwise. For the local descent method, a perturbed design is
accepted only if the criterion value is improved. The stopping rule for the ESE algorithm is simply
given by a bound on the total number of iterations. For local descent, the stopping rule is based on
the number of successive design-perturbation steps without improvement.
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5 Numerical experiments

All computations have been performed with the free software R, see (R Core Team, 2013), sometimes
combined with calls to C/C++ in order to save computational time, on a 2012 MacBook Air endowed
with 1.8 GHz Intel Core i5 processor with 4 Go RAM. The computational times indicated correspond
to the total time elapsed before the computer returns the response and are provided by the R function
system.time. The R implementation of the design criteria considered and of the algorithms of
Section 4 is available at http://www.i3s.unice.fr/~bgauthie/.

5.1 A two-dimensional example

5.1.1 Problem description

In this first numerical example, X is the unit square [0, 1]2. We consider the integration measure
µ having the density (with respect to the Lebesgue measure on X )

f(x) = (1− r)
3
2

[
1 + cos

(
4πmin(

r

0.5
, 1)
)]

+ 0.2,

with r = ‖x − c‖, c = (1/2, 1/2) and where ‖ · ‖ is the Euclidean norm. We shall use quadrature
rules based on Nq points sk ∈X , k ∈ {1, . . . , Nq}, with weights ωk given by

ωk =
1

Nq
f(sk) , (5.1)

see equation (3.1). Figure 1-Left presents a plot (up to a multiplicative constant) of the function
x 7→ f(x), x ∈ [0, 1]2. For x = (x1, x2) and y = (y1, y2) ∈ R2 we consider the covariance kernel
K(x, y) = Kθ1(x1, y1)Kθ2(x2, y2), with θ1 > 0, θ2 > 0 and, for i ∈ {1, 2},

Kθi(xi, yi) =

(
1 +

√
3

θi
|xi − yi|

)
exp

(
−
√

3

θi
|xi − yi|

)
(5.2)

(Matérn 3/2 kernel). In what follows, we set θ1 = θ2 = 0.12.

5.1.2 Square grid

In this section we consider a rectangular quadrature rule for approximating the integrated MSE
and use a ng × ng square grid on [0, 1]2, with ng = 37. The Nq = n2g quadrature points sk,
1 6 k 6 n2g = 1369, are given by s(j−1)ng+i = (ci, cj) with cj = j/ng + 1/(2ng), with 1 6 i, j 6 ng
(midpoint rectangular quadrature rule).

The computation of the covariance matrix Q (taking its symmetry into account) takes 15.177 s
when using two nested for loops in R. If we only use one for loop and construct the matrix column
by column, 9.365 s are required. Finally, if we compute the covariance kernel and the two nested
loop in C/C++, the computational time is reduced to 0.111 s. In all cases, the computational time
grows as N2

q .
Using the eigen routine of R, the eigen-decomposition of the matrix W

1
2 QW

1
2 (see Remark 3.3)

takes 7.209 s and the computational time grows as N3
q . Figure 1-Right shows the eigenvalues λk

(with τ =
∑Nq

k=1 λk ' 0.7455805) obtained for this quadrature.
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Figure 1: Left: weights ωk for Nq = 1369 quadrature points sk on the regular square grid Gsq 37×37
in X = [0, 1]2. Right: eigenvalues λk for 1 6 k 6 Nq for the grid Gsq 37×37.

Ntrc = 120 Ntrc = 257 Ntrc = 1 000 Ntrc = 1 369

Spectral ratio Rtrc 0.9602847 0.9900167 0.9999658 1
Time (n = 17) 0.0271 s 0.0330 s 0.0963 s 0.1246 s

Time (n = 33) 0.0535 s 0.0702 s 0.2340 s 0.3069 s

Time (n = 43) 0.0715 s 0.1023 s 0.3490 s 0.4514 s

Table 1: Average time (50 repetitions), in seconds, for the 100 evaluation of the IMSEtrc criterion for
random quadrature designs, with various design sizes n and various truncation levels Ntrc (square-
grid Gsq 37×37). — Note that IMSEtrc=IMSE when Ntrc = Nq = 1 369.

Table 1 gives an overview of the computational time required for the evaluation of the IMSEtrc
criterion (taking the time-saving considerations of Remark 3.2 into account). One may notice
that the truncated criterion with Ntrc = 257 yields a significant reduction of computational time
compared to the case Ntrc = Nq while the spectral ratio Rtrc is above 99%, indicating a good
accuracy for the approximation of the IMSE.

We then use the ESE algorithm (with the proximity rule) to compute 33-point quadrature
designs that minimize the IMSE. We set Nprox = Nrand = 8 (so that Npert = 16), the length `in of
the inner loop of the ESE algorithm (see Jin et al. (2005)) is set to `in = 33×6 and the length `out of
the outer loop to `out = 120. An optimization run then require Neval = 1+Npert`in`out cost-function
evaluations (with this parameters setting, Neval = 380 161). Random initial designs are used (with
respect to probabilities given by quadrature weights). Table 2 indicates the computational time
required by one optimization depending on the criterion considered.

The same 33-point optimal design D∗(Gsq 37×37) is obtained with Ntrc = 120, Ntrc = 257 and
Ntrc = 1 369 on the grid Gsq 37×37; it is presented in Figure 2, its IMSE score is approximately
0.2350413.
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Criterion Ntrc = 120 Ntrc = 257 Ntrc = 1 369

Time (optimization) 199 s 269 s 1 195 s

Table 2: Time, in seconds, for one minimization of the IMSEtrc (two different truncation levels)
and IMSE criteria using the ESE algorithm with Nprox = Nrand = 8, `in = 33 × 6 and `out = 120
(n = 33, square-grid Gsq 37×37).

0.0000

0.0005

0.0010

0.0015

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Grid points
Design points

Figure 2: 33-point IMSEtrc-optimal quadrature design D∗(Gsq 37×37) (with Ntrc = 257) for the
Matérn 3/2 kernel (θ1 = θ2 = 0.12), and distribution (contour plot) of the weights ωk of the
quadrature points sk, 1 6 k 6 Nq (square-grid Gsq 37×37).

5.1.3 Low discrepancy nested grids

We now use a quasi-Monte Carlo method (see, e.g., Niederreiter (1992)) in order to compute the
integrated MSE. We also illustrate the behavior of the optimal quadrature designs as the quadrature
size Nq increases.

We generate four nested (Halton) uniform low-discrepancy sequences with respectivelyN1 = 300,
N2 = 800, N3 = 1 500 and N4 = 2 500 points in [0, 1]2 (using the R function runif.halton). We
hence obtain four nested sets of quadrature points, GN1 ⊂ GN2 ⊂ GN3 ⊂ GN4 , the associated weights
being given by equation (5.1). These quadratures provide a relatively low accuracy regarding the
number of points that are used; however, they have the important advantage of being extremely
easy to implement, whatever the density of the integration measure µ considered.

Table 3 summarizes the results obtained. The integer N∗trc(0.99) corresponds to the minimum
value of Ntrc such that Rtrc > 0.99; the table indicates that it quickly stabilizes as Nq increases.
Therefore, when we optimize the truncated IMSE criterion given by expression (3.5), the use of
fine grids (large Nq) only impacts the initial eigen-decomposition step. The quadrature designs
D∗(GNi) are those obtained with the ESE algorithm (same parameter settings as in Section 5.1.2)
for the minimization of the IMSEtrc criterion truncated at N∗trc(0.99) (below we call them “optimal”
although this can be slightly abusive). The optimal designs D∗(GN1) to D∗(GN4) are presented in
Figure 3.
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GN1 GN2 GN3 GN4 Gsq 74×74
Nq 300 800 1 500 2 500 5 476

N∗trc(0.99) 176 239 258 265

τ 0.735299 0.7473631 0.7437508 0.7447645 0.7453939

IMSE[D∗(GN1)] 0.2245987 0.2428404 0.2434066 0.2459614 0.247831

IMSE[D∗(GN2)] 0.2338697 0.2377162 0.2382043 0.239534

IMSE[D∗(GN3)] 0.2344847 0.2365742 0.2377174

IMSE[D∗(GN4)] 0.2348011 0.2354285

IMSE[D∗(Gsq 37×37)] 0.235556

Table 3: Summary of the results obtained using low-discrepancy grids (dimension 2) and com-
parison, for the quadrature Gsq 74×74, of the IMSE scores of the designs D∗(Gsq 37×37) and
D∗(GN2), . . . , D∗(GN4).

Finally (rightmost column of Table 3), we consider a regular square grid Gsq 74×74 of 74 ×
74 = 5 476 points and compute the IMSE score, for this grid, of the designs D∗(Gsq 37×37) and
D∗(GN1), . . . , D∗(GN4). Notice that these designs are not quadrature designs for Gsq 74×74, so that
the IMSE scores are computed with the integral form (2.3) of the IMSE. We note that D∗(GN4)
performs better than D∗(Gsq 37×37) when the IMSE is evaluated with a quadrature based on the
regular grid Gsq 74×74.

Remark 5.1. In the framework of nested grids GN1 ⊂ GN2 · · · . . ., a quadrature design for GNk

is also a quadrature design for GNk+1
. This suggests the following strategy for the construction of

IMSE-optimal quadrature designs: first, optimize the IMSE for the grid GN1 and obtain a design
D∗(GN1); next, use D∗(GN1) as initial design for the optimization of the IMSE on the grid GN2 ,
etc. �

5.2 An example in dimension 5

Consider the 5-dimensional Matèrn covariance kernel on [0, 1]5, K(x, y) =
∏5
i=1Kθi(xi, yi), where

x = (x1, . . . , x5) and y = (y1, . . . , y5) are in [0, 1]5 and where the kernels Kθi( · , · ) are given by
expression (5.2). We set θ = (θ1, θ2, θ3, θ4, θ5) = (0.22, 0.52, 0.52, 0.52, 0.22). The measure µ has
density fµ(x) = fτ (x1)fτ (x2) with respect to the Lebesgue measure on [0, 1]5, where fτ stands for
the density of a truncated normal distribution on [0, 1] with mean 0.5 and standard deviation 0.15.
The measure µ is therefore the tensor product of two truncated normal distributions (for the first
two variables) and three uniform distributions on [0, 1].

We approximate µ using a quadrature based on a µ-distributed low-discrepancy sequence with
Nq points. Since the quadrature points sk are distributed according µ, the quadrature weights are
simply given by ωk = 1/Nq, 1 6 k 6 Nq. We next consider the IMSEtrc criterion with the minimal
truncation level N∗trc(0.9) such that Rtrc > 0.9. Table 4 shows the evolution of N∗trc(0.9) with the
quadrature size (nested low-discrepancy grids). As in Section 5.1.3, we notice a quick stabilization
of N∗trc(0.9) when Nq increases.

We now focus on the construction of a 42-point IMSEtrc-optimal quadrature design for the
low-discrepancy grid with 4000 points. We use Ntrc = 233.
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Figure 3: 33-point IMSE-optimal quadrature designs for the Matérn 3/2 kernel (θ1 = θ2 = 0.12) for
a nested sequence of quasi-Monte Carlo quadratures.

Nq 1 000 1 750 2 500 3 250 4 000

N∗trc(0.9) 186 211 226 231 233

Table 4: Truncation level N∗trc(0.9) (i.e., minimal value for Ntrc such that Rtrc > 0.9) for a sequence
of nested low-discrepancy grids with Nq points (dimension 5).

12

ha
l-0

09
36

68
1,

 v
er

si
on

 1
 - 

27
 J

an
 2

01
4



To compare the performances of the ESE and local descent algorithms, using the proximity and
random proximity rules (we thus compare four different optimization strategies), we run various opti-
mizations initialized at random low-discrepancy quadrature designs (their respective indices consist
of 42 consecutive integers in {1, . . . , Nq}). We also investigate the influence of the perturbation
parameters Nrand and Nprox.

The length of the ESE inner loop is set to `in = 42× 5 and that of the outer loop to `out = 120.
With this values, an optimization run takes approximately 20 minutes when Nrand = Nprox = 30.
The duration of a run of the local descent does not exceed a few minutes (the descent is stopped
after n consecutive unsuccessful perturbation steps for the proximity rule, and 2n such unsuccessful
steps for the random proximity rule).

Figure 4 summarizes the results obtained after optimization using the strategies described above.
Min, max and mean values of the IMSE scores are indicated. The right part concerns the 10 initial
designs we have considered (they are used to initialize both the local descent and ESE algorithms).
The performances of the local descent for various values of Nprox and for the proximity (bottom)
and random proximity (top) rules are indicated in the central part of the graph. The left part of
Figure 4 (lowest IMSE values) corresponds to the ESE algorithm with again the proximity (bottom)
and random proximity (top) rules, for two different values of Nprox = Nrand.

0.416 0.42 0.424 0.428

0.416 0.42 0.424 0.428

0.471 0.475 0.479

Initial designs
(42-pt random low-discrepancy designs)

IMSE score for the 4000-point grid

Random proximity rule

Proximity rule

ESE Local descent

min. mean max.

Nprox = Nrand = 21

Nprox = Nrand = 30

Nprox = Nrand = 21

Nprox = Nrand = 30

Nprox = 70
Nprox = 60
Nprox = 51
Nprox = 42
Nprox = 34
Nprox = 26
Nprox = 18
Nprox = 10

Figure 4: Graphical representation of the IMSE scores (min, max and mean values) on the 4 000-
point grid for 10 initial quadrature designs and after optimization using ESE or local descent with
various values of the perturbation parameters Nprox and Nrand.

We notice that the best scores are always obtained with the ESE algorithm. The results for
the local descent method indicate that, for the problem considered, the random proximity rule is
superior to the proximity rule for small Nprox (in connection with the dimension of X , here 5).
For the values of Nprox = Nrand considered (Nprox = Nrand = 21 and Nprox = Nrand = 30), the
performance of the ESE algorithm does not seem to be very sensitive to the choice between the
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proximity and random proximity rules. Notice that the choice of Npert = Nprox +Nrand must take
the regularity of the grid and the space dimension d into account. For low-discrepancy grids, values
about 2d+2d seem reasonable. Indeed, the computational cost of the optimization grows with Npert

and larger values do not necessarily improve performance.
The best quadrature design has been obtained with the ESE algorithm using the proximity rule

and Nprox = Nrand = 21. A pairs plot of this design and of the 4 000-point grid considered is
given in Figure 5. We can clearly distinguish the influences of the integration measure µ and of the
covariance parameters θ.
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Figure 5: Pairs plot of the 4 000-point grid and of the best 42-point quadrature design obtained for
a Matèrn 3/2 covariance kernel with parameters θ = (0.22, 0.52, 0.52, 0.52, 0.22).

6 Concluding remarks

In the context of optimal linear prediction of second order random fields with known mean and
covariance, we have shown that when the IMSE is approximated via a quadrature rule, IMSE-
optimal quadrature designs can be determined at reasonable computational cost. Indeed, a single
eigen-decomposition, followed by a suitable spectral truncation, yields a significant reduction of the
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amount of calculations required by the optimization of the IMSE criterion over quadrature points.
There are no particular restrictions on the kernel K( · , · ) and the measure µ used to define

the IMSE. The approach is thus quite general. From the numerical point of view, it can be used
whenever the spectral decomposition of the matrix QW can be computed, see Remark 3.3. Since this
decomposition is computed only once for a given design problem, fine quadrature grids with many
points can be considered. Once the decomposition is performed, each truncated IMSE evaluation is
computationally cheap and a global optimization (e.g., based on simulated-annealing) is affordable.
When used in combination with low-discrepancy grids, the approach offers an easy to implement
and relatively efficient way to approximate IMSE optimal designs on general input spaces, possibly
with high dimension and complex shape. Since K( · , · ) does not need to be stationary, the method
can be used for the sequential construction of IMSE-optimal quadrature designs. In particular, for
one-point-at-a-time constructions, the truncated IMSE criterion can be easily evaluated at each
quadrature point.

The current version of the method applies to zero-mean processes (or, equivalently, to processes
with known mean), and the inclusion of an unknown parametric trend is under investigation. The
objective is to obtain a spectral representation that gives a tight approximation through spectral
truncation while authorizing computational cost reduction.

Since the optimization is restricted to quadrature designs, the choice of a suitable quadrature
may be critical. A quantification of the errors induced by the use of a quadrature approximation and
the restriction to quadrature designs would be of interest, including for instance the determination
of conditions ensuring that among all n-point IMSE optimal designs one design is supported on
quadrature points.
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