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This work aims at evaluating the capacity and limitations of conventional Reynolds­
averaged Navier-Stokes (RANS) techniques to numerically simulate supercavity 
flows. The configuration is that of a two-dimensional (2D) symmetrical supercavitating 
wedge investigated experimentally by Michel (1974). Mesh effect is studied in detail 
under noncavitating conditions. The computational grid is refined in the region where 
cavitation develops in order to accurately track the supercavity. The effect of tunnel 
height is also analyzed, and the height finally chosen was large enough to simulate an 
infinite flow-field. The cavitating flow is treated as a homogeneous mixture of variable 
·density. To account for vaP.orization and condensation, an additional continuity equa­
tion for the vapor (or the liquid) is solved with an appropriate source term expressing 
mass transfer between the two phases. The effect of nuclei concentration on the 
vaporization rate and then on the development of the supercavity is investigated. 
Results obtained using two different RANS codes are compared. They are also com­
pared with experimental data and with inviscid solutions including a nonlinear bound­
ary element method. They concern in particular cavity length and shape, pressure 
distribution, and drag coefficient. Under unsteady conditions, a special attention is 
paid to the characteristic growth time of the supercavity following a sudden pressure 
drop, from noncavitating conditions. 

Keywords: cavitation; hydrodynamics (general) 

1. Introduction water entries (Shi & Kume 2004) or on surface-piercing propel­
lers (Kinnas 2001). 

SUPERCAVITATION is a common feature of high-speed hydrody­
namics. When a submerged body moves at high speed (from 
typically several tens of rn/s up to the speed of sound in water 
and even beyond), a cavitation bubble is formed from its nose. 
The term supercavitation refers to the case when the whole body 
is enveloped by the bubble, which then closes inside the liquid, 
far enough from any wall. A positive outcome of supercavitation 
is the drastic reduction of skin friction and drag compared with 
the fully wetted case (Kirschner et al. 2001, Savchenko 2001). A 
supercavity can be generated either by spontaneous vaporization 
of the liquid or by supplying gas and then creating a ventilated 
cavity whose behavior is similar to that of a natural cavity, 
although some differences exist because of the noncondensable 
nature of the injected gas. Supercavitation is also observed during 

In the past, various techniques have been developed to model 
supercavitating flows as analytic methods based on the hodograph 
technique (Birkhoff & Zarantonello 1957), linearized theories
(Tulin 1964), analytic methods based on the slender body approx­
imation, and the Logvinovich independence principle of cavity 
expansion (Serebryakov 2002). The boundary element method 
has been also widely used for the numerical computation of 
supercavity flows (Pellone & Rowe 1981). In all cases, the
modeling of the closure region of the cavity is a major problem 
because of local unsteadiness, turbulence, and entrainment 
mechanisms, and various cavity closure models were developed 
to overcome these difficulties (see e.g., Franc & Michel 2004).

CFD tools are currently widely used to predict the development 
of cavitation in liquid flows. The most critical problem for the 
simulation of cavitating flows, unlike that for single-phase flows, 
is probably the choice of the cavitation model together with the 
turbulence model. 
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A commonly used approach for modeling turbulent cavitating 
flows is based on the Reynolds-averaged Navier-Stokes (RANS) 
equations. For RANS techniques, each variable is divided into a 
mean and a fluctuating component, and the RANS equations are 
closed using a turbulence model to account for Reynolds stresses. 
Two-equation models are often used, as the k-s model. As such 
turbulence models were originally developed for single-phase 
flows, they are generally not fully satisfactory for cavitating flows 
where large density variations are encountered between the liquid 
and its vapor. A typical limitation of classic single-phase turbu­
lence models when applied to cavitating flows is their relative 
failure to correctly predict unsteady cavitation as cloud shedding. 
To allow the development of unsteadiness within cavitating 
flows, which are often inhibited by classic turbulence models, 
empirical corrections have been developed, as an artificial reduc­
tion of the eddy viscosity in two-phase regions (see e.g., Coutier­
Delgosha et al. 2005, Dular et al. 2005). 

RANS simulations of cavitating flows are most generally based 
on the homogeneous two-phase flow approach. The liquid/vapor 
mixture is considered a pseudo fluid of variable density, whose 
value strongly depends on the void fraction. To account for phase 
change, a cavitation model has to be implemented. Different 
variants have been proposed. 

A first class of models specifies a constitutive law for this 
pseudo fluid. As an example, the barotropic model assumes a 
simple relationship between pressure and density with a more or 
less sudden drop of density from liquid to vapor when the pressure 
crosses the vapor pressure (Pouffary et al. 2003, Rapposelli & 
d'Agostino 2003). The pioneering approach developed by Kubota 
et al. (1992) assumes that the liquid contains cavitation nuclei 
that grow in low-pressure regions. Their radius and then the void 
fraction are computed by solving a modified Rayleigh-Plesset 
equation for the bubble cluster including interactions between 
bubbles. The density of the liquid/vapor mixture can then be com­
puted, and the system of partial differential equations for the 
pseudo fluid can be solved. 

Another class of models solves an additional continuity equa­
tion for the vapor phase with a source term modeling vaporization 
and condensation through the interface. Several equations have 
been proposed in the literature to compute the vaporization rate 
(Merkle et al. 1998, Kunz et al. 1999, Lindau et al. 2002, Singhal 
et al. 2002, Vortmann et al. 2003, Yuan & Schnerr 2003). Some 
of them have been compared by Senocak and Shyy (2002) and 
Frikha et al. (2008). It generally turns out that most models give
comparable overall results even though a few differences are 
observed, particularly at cavity closure. Several cavitation models 
assume that the liquid carries microbubbles. The vaporization rate 

is then deduced from the bubble number density and their grow­
ing rate generally inferred from a simplified version of Rayleigh 
equation. This is the approach selected in the present work. 

Let us also mention techniques that are not based on the mixture 
model assumption but assume that liquid and vapor are separated 
by a sharp interface without any possibility of interpenetration. In 
these techniques (see in particular Dieval 1999, Dieval et al.
2000), only the liquid flow is computed by solving the Navier­
Stokes equations, whereas the interface (on which the pressure is 
set to the vapor pressure) is reconstructed and propagated at each 
time step using the standard volume of fluid (VOF) technique. 

More recently, large eddy simulation (LES) techniques or de­
tached eddy simulation (DES) techniques have been developed 
and compared with RANS simulations. LES and DES techniques 
are known to require considerably larger computational times but 
resolve turbulence vortex shedding of separated flows better than 
do RANS techniques (Spalart 2009, Breuer et al. 2003). LES
was applied to the computation of cavitating flows in particular 
by Persson et al. (2006), Wang and Ostoja-Starzewski (2007), and
Huuva (2008). These three-dimensional simulations led to much
more realistic predictions of the unsteady behavior of partial 
cavities, especially concerning the three-dimensional and un­
steady features of cavitating vortex shedding in the closure region 
of the cavity, which is definitely the most critical region. 

RANS techniques are commonly used to simulate various cavi­
tating configurations as partial cavitation on hydrofoils (Saito 
et al. 2003, Wu et al. 2003) or cavitating flows in hydraulic
machinery (e.g., Coutier-Delgosha et al. 2005). In such configura­
tions where cavitation is generally not very much developed, the 
cavitating areas have a maximum void fraction usually smaller 
than unity, and the cavity is actually a mixture of liquid and 
vapor. The situation is quite different in the case of supercavita­
tion, where a well-defined interface separates the liquid flow from 
the full vapor cavity along most of the supercavity, except in its 
closure region. A key issue is then to know whether conventional 
RANS techniques are appropriate or not to the simulation of 
supercavitation. This is the main goal of the present work. 

In the present work, the performances of two RANS techniques 
with respect to the simulation of supercavity flows are evaluated. 
One is the commercial code Fluent (version 6.0.12) and the other 
is the code Cavka developed at the University of Mtinchen by 
G.H. Schnerr (Schnerr & Sauer 2001, Yuan & Schnerr 2003).
Both are based on a homogeneous approach with a k-w turbulence 
model of Wilcox (Sauer & Schnerr 2000) and use similar cavita­
tion models assuming a vaporization rate proportional to the 
square root of the difference between the vapor pressure and 
the local pressure. The test case is that of a supercavity flow in 

Nomenclature 
c = Chord of the foil (m) 

CD = Drag force coefficient 

C Dp = Pressure drag force coefficient 

Cp = Pressure coefficient 

H = Tunnel height (m) 

lc = Cavity length (m) 

Mv = Vapor mass (mg) 

N = Nuclei concentration 

per unit volume (nuclei/m3) 

p = Static pressure (Pa) 

Pv = Vapor pressure (Pa) 

Pref = Downstream pressure (Pa) 

V 00 = Upstream velocity (m/s) 

V = Velocity vector (m/s) 

R = Bubble radius (m) 

a = Wedge angle (deg) 

a 1 = Liquid volume fraction 

a2 = Vapor volume fraction 

k = Specific turbulent kinetic 

energy (m2/s2) 

f.l, = Mixture molecular viscosity [kg/(m · s)] 

Jl-J = Liquid molecular viscosity [kg/(m · s)] 

f.l,2 = Vapor molecular viscosity [kg/(m · s)] 

w = Specific turbulent energy dissipation 

rate [m2/s3] 

p = Mixture density (kg/m3) 

P1 = Liquid density (kg/m3) 

P2 = Vapor density (kg/m3) 

u = Cavitation number 
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the wake of a two-dimensional (2D) wedge as investigated exper­
imentally by Michel (1974). In the steady case, both RANS tech­
niques are compared with experimental data, a boundary element 
method, and an analytic computation. The unsteady response of 
the flow to a sudden drop in pressure from noncavitating condi­
tions to a largely developed supercavity is also investigated using 
both codes. 

2. Numerical study 

The numerical model follows the homogeneous two-phase 
flow approach and resolves cavitation by applying a bubble 
growth model. To model turbulence the effective dynamic vis­
cosity fLeff = fL + fLt is used instead of the classic molecular
viscosity fL· The turbulent viscosity fLt is computed using the 
Wilcox model (Wilcox 1998). 

2.1. Governing equations 

The continuity equations for each phase of the cavitating flow 
are: 

(1) 

where t stands for time, V for the velocity, p for the density, a for 
the volume fraction, and f for the mass exchange rate per unit 
volume at the interface. Subscript i = 1 indicates the liquid phase
and i = 2 the vapor phase.

The two-phase mixture is considered as a homogeneous pseudo 
fluid with the assumption of no slip between the phases; that is, 
VI = V2 = V. The pseudo density p and the pseudo dynamic 
viscosity 1-1 are defined as:

P = a1PI + azpz

fL = aifLI + azfLz 

(2) 

(3) 

Pi and fLi are, respectively, the density and the dynamic viscosity
of each i phase and are supposed to be constant.

Introducing the particle derivative D/Dt = o/ot + V.grad and
assuming the equality of the mass rates per unit volume ( f  = f 2 = 
-f1) exchanged between the liquid and the vapor phases, a sim­
ple combination of the two continuity equations (1) provides the 
continuity equation for the mixture: 

Dp 
+ p div(V) = 0 

Dt 
with the compatibility condition: 

a I+ az = 1 

(4) 

(5) 

Schnerr and Sauer (2001) notice that the nonconservative form 
of the continuity equation (4) limits the numerical difficulties 
because of the strong variation of density between liquid and 
vapor. In addition, this form presents the advantage that the vol­
ume fluxes are continuous at the cell interfaces. 

By extracting div(V) from equation (4) and using equations (2) 
and (5), the two equations (1) can be rewritten in the form of 
transport equations for the two volume fractions a I and a2: 

o(ai) 
+ div(ai V) = 

_!.:_
= 

pz Dai 
at PI P Dt

(6) 

o(az) 
+ div(azV) = +!.:_

= 
� Daz 

ot p2 p Dt 
(7) 

Introducing the static pressure p and neglecting gravity, the 
momentum equation for the mixture writes: 

o(pV) [ ( 2 ) =] = 
--at+ Div pV Q9 V + p + 3 fL div(V) G = Div (2f1 D)

(8) 

where Q9 designates the tensorial pr�duct of two vectors, Div 

i;; the vectorial divergence operator, G is the metric tensor, and
D is the rate of strain tensor. 

The system of equations to be solved consists of the compati­
bility relation (5), the two transport equations for each phase (6) 
and (7) [or one of these and the continuity equation for the 
mixture (4)], and the vectorial momentum equation (8). The un­
known variables are a1o az, f, p, and V. In order to close the 
system of equations, an additional equation is needed. It is 
obtained using an appropriate cavitation model. 

2.2. Cavitation model 

The vaporization or condensation process is modeled here by 
seeding the flow field with microbubbles and computing their 
evolution on the basis of the Rayleigh-Plesset equation (Franc & 
Michel 2004) as proposed originally by Kubota et al. (1992) and 
generalized by Singhal et al. (2002). Assuming that all spherical 
bubbles have the same radius R and then the same volume i} =
4/3 TIR3, denoting by N the vapor nuclei concentration per unit
volume of pure liquid (so a2 = i}N a I) and using the compatibility 
condition (5), the two volume fractions a I and a2 and their parti­
cle derivatives can be expressed as: { az = 1 -a I = � (a)

1 + i}N 
Da2 Da1 NS 
Dt 

=
- Dt 

= 

(1 +i}N)2

where !J = 4TIR2R.

(9) 
(b) 

Notice that, for a fixed value of N, when a I = 0 (pure vapor), i} 
becomes infinite, and when a I= 1 (pure liquid), i} becomes zero. 
In order to model both the bubble growth and collapse processes, 
the Rayleigh equation is used. Assuming that the bubble pressure 
is equal to the equilibrium vapor pressure Pv• the interface veloc­
ity is directly related to the pressure difference p - Pv by: 

2[Pv- P[ ----
3 PI 

(10) 

s designates the sign of (pv -p), so that the bubble grows when
p < Pv and collapses when p > Pv• the growth rate being zero if
p = Pv· The growth rate given by equation (10) is actually the 
asymptotic growth rate deduced from Rayleigh equation when 
assuming the interface acceleration R is negligible. 

As a matter of fact, the present cavitation model disregards 
the dynamic term of the Rayleigh equation. This is the case for 
most cavitation models that generally evaluate the mass transfer 
between the two phases by the sum of a vaporization and a con­
densation rate. Both are computed usually from the local void 
fraction and the local pressure difference relatively to the vapor 
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pressure (Frikha et al. 2008) and therefore do not include any 
dynamic term contrary to the original model of Kubota et al. 
(1992), which is keeping the acceleration of the bubble interface 
in its formulation. It is presently difficult to assess the impact of 
neglecting the dynamic term on the simulation results and particu­
larly on the overall dynamics of the supercavity. 

Equations (9) and (10) provide the additional relation that 
closes the governing equations system: 

f 
= 

P!P2 N47rR
2

E 
P (1+ifN)

2 3 PI 
(11) 

The use of these relations requires the knowledge of the nuclei 
concentration N, which is not easily measured. Brian9on-Marjollet 
et al. (1990), using a cavitation susceptibility meter, measured 
about 107 nuclei/m3 in a conventional cavitation tunnel seeded 
with nuclei. Most computations presented in this paper have been 
conducted with a nuclei concentration of 108 nuclei/m3. We could 
observe that a too small nuclei density (typically of the order of 
105 nuclei/m3) may lead to unrealistic results, whereas an asymp­
totic behavior is reached for high enough values of the nuclei 
concentration as shown in section 4.2. 

2.3. Numerical scheme 

The governing equations are integrated on an individual control 
volume to obtain the discretized equations in both space and time. 
The numerical formulation uses a cell-centered finite volume 
method for variables V, p, k, w, and a1 or a2.

Assuming that the solution is known at timet, an iterative proce­
dure is carried out to obtain the converged solution at time t + D.t. If
the calculation has just begun, the solution is updated based on the 
initialized solution. The governing equations are solved sequen­
tially, that is, segregated from one another. Each discrete equation 
is linearized implicitly in space, using a second-order upwind 
scheme. Concerning the discretization in time, a Euler implicit 
formulation is used for the continuity, momentum, and turbulence 
equations. Second-order numerical schemes are used. 

The two codes Fluent and Cavka mainly differ by the manner 
of solving one of the two transport equation (6) or (7). In the case 
of Fluent, equation (7) relative to the void fraction is selected and 
implicitly discretized in time. In the case of Cavka, equation (6) 
relative to the liquid phase is selected and explicitly discretized in 
time. The mode of resolution between time t and t + D.t is detailed 
below for both approaches. At the current time t + D.t, the current 
iteration is denoted by i + 1, all variables being known at the 
previous iteration i. 

2.4. Solution procedure of Fluent 

At the current iteration i + 1, the calculation stages are outlined as: 

1. The momentum equation (8) is first solved using the i iteration 
values for pressure and face mass fluxes to update the velocity 
field. 

2. Because this velocity field may not satisfy the continuity
equation locally, a Poisson-type equation for pressure is
derived from the continuity equation (4) and the linearized
momentum equations. This pressure correction equation is
then solved to obtain the necessary corrections for pressure, 

such that continuity is satisfied (SIMPLE algorithm, Ferziger 
& Peric 1996).

3. Then, the turbulence equations for k and w are solved using 
current values of the velocity and pressure updated in stages 1 
and 2. 

4. The transport equation (7) for the vapor volume fraction a2 is 
solved using the current values of pressure and velocity. Equa­
tion (7) is implicitly discretized with time and the source term 
r I p2 [given by equation (11)] is calculated using the previous i 
iteration values of a1 and a2.

These stages are continued until the convergence criteria are met.

2.5. Solution procedure of Cavka 

First, the transportation of the liquid volume fraction a1 is 
computed explicitly by using equation (6) in which, the velocity
V at any point and the source term -f/p1 [given by equation (11)]
are provided by the previous time step t. The new volume frac­
tions are thus obtained, as well as the new mixture density p. 
Then, the momentum equation (8) is implicitly discretized with 
subiterations and coupled with the continuity equation (4) via the 
SIMPLE algorithm, similar to that of Fluent. 

In order to capture the interface accurately, the high-level in­
terpolation method CICSAM (Compressive Interface Capturing 
Scheme for Arbitrary Meshes; Ubbink 1997) is used for equation 
(6). After integration on a given cell, this equation gives the void 
fraction at the center of the cell and at the current time step as a 
function of the values of the void fraction on the faces and 
the volumetric fluxes through the faces at the previous time step. 
The required values of the void fraction on faces are estimated by 
the CICSAM scheme in the framework of the standard upwind/ 
donor/acceptor approach. The technique makes use of the Nor­
malized Variable Diagram (NVD) (Leonard 1991). The CICSAM 
scheme combines the Convection Roundedness Criteria (CBC) 
(Ubbink & Issa 1999) with the Ultimate Quickest (UQ) differen­
cing scheme (Leonard 1991), which both depend on the Courant 
number. The normalized face value is computed by combining 
the values obtained with these two schemes through a weighting 
factor that depends on the interface orientation and the fluxing 
direction (Greaves 2004, Waclawczyk & Koronowicz 2008). The
CICSAM scheme is known to prevent artificial smearing of 
the interface resulting from numerical diffusion (Waclawczyk & 
Koronowicz 2005). The method is explained in detail in Sansone 
(2007) and was used successfully by the author to model cavita­
tion in Darrieus turbines. 

3. Test case

Computations are carried out on a supercavitating wedge in a 
cavitation tunnel limited by an upper and a lower wall. The no­
slip condition is applied on the wedge, whereas a slip condition is 
applied on the tunnel walls. The overall configuration is two­
dimensional and symmetrical with respect to axis Ox (Fig. 1). 

The wedge has a chord length c = 60.5 mm and a vertex angle 
a = 16 deg. For most computations, the tunnel height has been 
chosen equal to H = 940 mm, that is, approximately 15.5 chord 
lengths. As shown below, this relatively large height ensures that 
the influence of the tunnel walls is negligible and that the flow 
field can be considered almost infinite. 
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The velocity inlet condition (V 00) is applied 3 chord lengths 
upstream of the leading edge, whereas the pressure outlet condi­
tion CPref) is applied 9 chord lengths downstream of the wedge 
base, so that the whole computational domain has a length equal 
to 13 chord lengths. 

The upstream velocity is assumed to be uniform and equal to 
V 00 = 10 m/s. The liquid is water at room temperature with density 
p1 = 998 kg/m3, whereas the density of vapor is p2 = 0.017 kg/m3.
The density ratio is then about 1/60,000. The molecular vis­
cosities of liquid and vapor, although negligible with respect to 
turbulent viscosity, are, respectively, fLI = 1.010-3 kg/m- s and
fL2 = 8.810-3 kg/m-s. Reynolds number based on chord length is
about 6 x 105. 

The cavitation number is defined as usually by: 

(12) 

Vapor pressure is Pv = 2329 Pa, whereas the reference pressure 
Pref is chosen as the downstream pressure. Pressure coefficient 
and drag coefficient are defined by: 

(13) 

(14) 

where F x is the component along the horizontal axis Ox of the
fluid force on the wedge per unit span length. 

At inlet, the parameters of the k-w turbulence model are 2% for
the turbulence level and about the wedge base thickness for the 
characteristic length scale. Wall laws are used for turbulent 
boundary layer conditions on the wedge. 

3.1. Influence of the mesh 

Before conducting a comparative analysis of both simulations 
for cavity flows, a preliminary investigation is carried out to ex­
amine the influence of the mesh. This investigation is conducted 
for fully wetted flow, under steady conditions, using Fluent. 

The mesh is structured and satisfies the following conditions. 
On the upper and lower sides of the wedge, the ratio between cell 
thicknesses at leading edge and trailing edge is taken as dLEfdTE = 
0.1. This value corresponds approximately to the ratio of the 
boundary layer thicknesses at leading edge and trailing edge for 
the corresponding Reynolds number. The turbulent boundary 

The length dB of the first cell behind the obstacle satisfies 
dBidTE = 1.5. Furthermore, since the ratio H/c is relatively large, 
the flow can be considered almost uniform on the tunnel walls 
and the thickness D of the first cell along the walls can be large. 
In practice, we choose DldTE :::::: 400. In both directions, the ratio 
between the size of two adjacent cells never exceeds 1.2. 

Six different meshes have been used to investigate the influ­
ence of the computational mesh. The number of cells is, respec­
tively, 3,184, 7,280, 15,904, 18,120, 51,840, and 76,176 and 
corresponds to the six following values of dTE: 1.1, 0.68, 0.40, 
0.32, 0.20, and 0.10 mm. Figure 2 shows a typical computational 
mesh of 18,120 cells obtained for dTE = 0.32 mm. Let us observe 
that the mesh is refined in the wake of the wedge where the 
supercavity is expected. 

Figure 3a shows that there is almost no influence of the mesh 
on the pressure distribution on the wedge. The difference never 
exceeds 1%. As for the drag coefficient, Fig. 3b shows that, for 
dTE :S 0.32 mm; that is, for a number of cells greater than 
18,120, the drag coefficient is stable within less than 1%. As a 
conclusion of this preliminary investigation, the mesh with 
18,120 cells is chosen for all flow simulations presented below. 
Let us observe that, for this mesh, the classic nondimensional 
thickness y + of the first cell lies between 10 and 100 so that the
use of the universal logarithmic wall law is justified. By using this 
mesh, the time steps, ensuring the calculation convergence, are, 
respectively, b.t = 10-5 s for Cavka and b.t = 10-4 s for Fluent.

layer thickness at trailing edge is about 1.6 mm. Fig. 2 Computational mesh, drE = 0.32 mm, 18,120 cells, H = 940 mm 
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Fig. 3 Mesh effect, steady subcavitating flow, Fluent code, H = 940 mm 

This sensitivity analysis with respect to the mesh has been 
extended to a cavitating case corresponding to a = 0.2 and 
N = 108 nuclei/m3• The mesh with 18,120 cells (see Fig. 2) has
been refined by dividing their size by a ratio of 2 in both direc­
tions. This leads to a new mesh with 72,480 cells that is fine in 
the region where the cavity is expected. Table 1 shows the influ­
ence of the mesh refinement on cavity length, total mass of vapor, 
and drag coefficient. The relative difference on the mass of vapor 
is 0.5%, whereas it is about 1% on cavity length and drag. No 
noticeable difference was observed either on the void fraction 
distribution or on the pressure distribution on the foil. Therefore, 
it can be considered that the mesh with 18,120 cells is fully 
satisfactory for the cavitating case as well. 

3.2. Influence of the time step 

The sensitivity to the time step has been investigated using 
Fluent in the case corresponding to a cavitation number of 0.2 
and a nuclei density of 108 nuclei/m3. The results are presented in
Table 2. Three values of the time step have been investigated:
10-2, 10-3, and 10-4 s. The cavity closes exactly at the same point
of the mesh for all three cases so that no difference is observed on 
the cavity length. The total mass of vapor in the computational 
domain decreases slightly when the time step decreases, but 
becomes stabilized within less than 0.1% between the two smaller 
time steps. A similar conclusion is obtained concerning the drag 
coefficient with an even smaller relative difference of 0.01% be­
tween 10-3 and 10-4 s. This result is not so surprising since the 
unsteady computation converges toward an almost steady solution 
that is then independent of time step. The smaller time step has 
been chosen for all the results presented below. 

As a matter of fact, it was observed that both simulations, 
although fully unsteady, converge toward an almost steady solu­
tion. In particular, they do not account for the entrainment of 
vapor by the liquid flow and the subsequent more or less chaotic 
shedding of vapor structures that, however, remains confined to 
the rear part of the cavity and then does not affect significantly 
the overall cavity shape (Michel 1974). Similar observations were 
made in the case of self-oscillating cavities that develop at the 
leading edge of a hydrofoil or in a venturi. Within the framework 

Table 1 Influence of mesh refinement on cavity length, total mass 

of vapor, and drag coefficient (u = 0.2, N = 108 nuclei!m3) 

Number of cells 

1 8 , 1 20 

72,480 

/Jc 

3 . 1 626 

3 . 1 22 1  

M v  (mg) 

1 2. 1 3  

1 2. 1 9  
0.08456 

0.08354 

Table 2 Influence of the time step on cavity length, total mass of 

vapor, and drag coefficient (u = 0.2, N = 108 nucleilm3) 

Time step lc/c Mv (mg) Co 
w-z s 3 . 1 626 1 2.60 0.08452 

w-3 s 3 . 1 626 1 2. 14  0.08455 

w-4 s 3 . 1 626 1 2. 1 3  0.08456 

of a two-dimensional approach, it has been shown that the un­
steady behavior of partial cavities strongly depends on the turbu­
lence model. Coutier-Delgosha et al. (2003) have shown that a 
standard k-E RNG model fails at predicting the shedding of cavi­
tation clouds and observed that an artificial reduction of turbulent 
viscosity in the two-phase regions was necessary to improve the 
simulation. They also showed that the standard k-w model (with­
out compressibility effects) leads to a poor description of the 
shedding, whereas the inclusion of compressibility in the turbu­
lence modeling leads to a much more realistic behavior. In the 
present case of supercavitation, it is conjectured that the unsteady 
behavior of the cavity strongly depends as well on the turbulence 
model and that the standard k-w model used here has a stabilizing
effect on the closure region. 

Furthermore, some additional aspects of the cavity unsteady 
behavior could be reproduced only with a three-dimensional 
model. This is the case for instance of side-jets that develop, 
together with the traditional counter-current reentrant jet, when 
the closure line of a partial cavity is not purely two-dimensional 
even though the general configuration is two-dimensional. As an 
example, side jets and subsequent secondary three-dimensional 
(3D) sheddings observed on swept hydrofoils by Foeth (2008) 
and Foeth and Terwisga (2006a, 2006b) were correctly simulated 
by Huuva (2008) using an implicit 3D LES technique. It is clear 
that the present 2D modeling is unable to simulate the details of 
the 3D small-scale vapor structures that are formed in the closure 
region of the supercavity. 

3.3. Effect of confinement 

Since our objective is to simulate an infinite flow field as much 
as possible, the influence of the tunnel height H is investigated, 
both under fully wetted conditions and supercavitating conditions. 

Figure 4 illustrates, for fully wetted conditions, the effect of 
tunnel height on pressure distribution and drag coefficient for 
six different values of H in the range 121 to 1210 mm. Results 
in Fig. 4 have been obtained using Fluent. From both graphs, it is 
clear that there is no significant influence of the tunnel height H 
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Fig. 5 Tunnel height effect, steady cavitating flow, integral method 

above 726 mm. The maximum difference on the pressure coeffi­
cient never exceeds 0.1% for H > 726 mm.

In the supercavitating case, a blockage effect is expected 
for relatively little values of the ratio H/c. As a consequence, 
the cavity length becomes infinite for a critical nonzero value 
of the cavitation number. To evaluate this effect, a steady poten­
tial flow computation has been developed using an integral 
method (Pellone et aL 2000). The blockage effect is clearly 
visible on the computational results presented in Fig. 5a. The 
blockage cavitation number depends on the ratio H/c. A linear­
ized theory (Cohen et al. 1957) gives the following estimate for 
the blockage cavitation number in the case of a wedge of vertex 
angle a (radians): 

(15) 

The values given by equation (15) are in good agreement with 
results in Fig. 5a and also with experimental results (Michel 
1974). As an example, for H = 121 mm, the value given by 
equation (15) is 0.5, whereas the numerical prediction of the 
blockage cavitation number is 0.52. In addition, Fig. 5a shows 
that there is a negligible influence of the channel height H on 
curves lc( a) for H 2: 940 mm. 

Figure 5b illustrates the influence of the confinement by the 
tunnel walls on cavity shape. For H = 121 mm, the cavity appears 
significantly flattened by the relatively close walls, whereas this 
flattening effect is negligible for H 2: 940 mm. 

As a conclusion, it can be considered that the effect of the 
tunnel walls are negligible for H ::::_: 940 mm. To get results as 
close as possible to the infinite case, the height of the channel has 
been chosen equal to 940 mm for all following computations. 

3.4. Determination of the supercavity boundary 

For RANS computations, the cavity interface is determined 
from the distribution of void fraction within the flow field. To 
decide the boundary between liquid and vapor, a threshold has to 
be chosen for the void fraction. In most cases, the void fraction 
presents a strong gradient near the cavity interface as shown in 
Fig. 6. As a consequence, the determination of the cavity bound­
ary is almost insensitive to the chosen threshold as shown in
Fig. 7. For all the results presented in section 4, the threshold is 
chosen equal to 0.5%. 

As for the determination of cavity length, several criteria can 
be used. Figure 8 shows that, in the neighborhood of cavity 
closure, the drop in void fraction corresponds fairly well to the 
minimum velocity and to the maximum pressure so that all three 
criteria can be considered to give almost the same estimate of 
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Fig. 6 Void fraction profile, Fluent code, N = 108 nuclei/m3, cr = 0.15 
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Fig. 7 Influence of the void fraction threshold on cavity shape, Fluent 
code, N = 108 nuclei/m3, cr = 0.15 
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cavity length. For all the results presented in section 4, the cavity 
closure point is chosen as the first point along the axis of symme­
try where the void fraction comes to zero. 

Let us observe that, for short cavities (see for instance 
Fig. 17a), the cavity may present a concave shape around closure. 
If so, the cavity length measured along the axis of symmetry may 
slightly underestimate the maximum cavity length that takes 
place off-axis. The difference is generally small and in any case, 
the concave shape disappears for long cavities as shown on 
Fig. 17. 

4. Cavitating results

4.1. Cavity length 

Before comparing the cavity lengths obtained by the two 
RANS codes, it is shown that the cavity length determined by 
the boundary element method is actually an appropriate reference 
for discussion. Figure 9 presents a comparison between the curves 
lc(a) given by the experiments of Michel (1974), the integral 
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method and an analytic technique. Several analytic techniques 
have been developed (Tulin 1964) for the computation of super­
cavity flows. These more or less complicated techniques allow 
the computation of 2D or axisymmetric, steady or unsteady, 
supercavity flows. One of the models proposed by Tulin is suit­
able for a steady supercavitating flow behind a 2D symmetrical 
cavitator. Because the model is linearized, the base of the obstacle 
must be small with respect to its chord, which is the case here. For 
a wedge of vertex angle a (radians), the cavity length is given by: 

'IT a 
a 2+a 

(16) 

Both computational techniques ignore viscous effects that are 
known to be of minor importance for supercavity flows. It 
appears that both techniques give very comparable lc(a) curves, 
which in addition are very close to the experimental curve. The 
integral method can however be considered more accurate than 
the analytic linearized technique because it is nonlinear. It is 
chosen below for further discussion of RANS results. 

RANS computations with Cavka and Fluent have been con­
ducted by decreasing step by step the cavitation number or the 
downstream pressure Pref· For each a value, the flow is initialized
using the converged previous result obtained at the a value just 
above. The unsteady computation is started and continued until 
steady conditions are reached. For the first value of the cavitation 
number (a= 0.375 for Fluent and a= 0.425 for Cavka), the flow 
field is initialized using the result of a fully wetted, symmetrical, 
and steady flow computation. The procedure is illustrated in Fig. 10 
where the total mass of vapor within the whole flow field is plotted 
as a function of time. The successive steps corresponding to de­
creasing values of the cavitation number are clearly visible. It is also 
observed that, at the end of each step, the mass of vapor becomes 
stable and steady conditions are then achieved. 

Figure 11 presents a comparison of the evolution of cavity 
length with cavitation number for both RANS computations. The 
result of the integral method is also shown for reference. For 
computations using Fluent and Cavka, the nuclei density was set 
to N = 108 nuclei/m3. The curves lc(a) are very comparable
between Fluent and Cavka, although a small difference is ob­
served that varies between half a chord length for short cavities 
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Fig. 10 Vapor mass into the cavity, Fluent code, N = 108 nuclei/m3 
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0.5 

(a > 0.2) up to about 1 chord length for longer cavities (a < 
0.2). As shown on Fig. 17 a, the difference for short cavities is 
partly the result of the concave shape of the cavity at closure that 
is more pronounced for Fluent compared with Cavka. Both RANS 
computations agree fairly well with the integral method. The 
larger differences are observed for short cavities and are again 
partly the result of the cavity shape at closure. RANS computa­
tions tend to produce a reentrant flow that is responsible for the 
concave shape of the cavity, whereas this effect is not predicted 
by the boundary element method. 

4.2. Effect of nuclei density 

As shown by equation (11), the vaporization rate depends on 
the concentration of nuclei that are supposed to be conveyed by 
the flow. It can be expected that the production of vapor will 
decrease with decreasing nuclei density. It appears then important 
to investigate the effect of nuclei density on the development of 
cavitation. 

Five computations have been conducted with five different 
values of the nuclei density: 3.105, 106, 107, 5 x 107, and 108 
nuclei/m3, all other conditions being unchanged. The evolution of 
the vapor volume fraction along the horizontal axis of symmetry 
Ox is plotted in Fig. 12a for a= 0.15 and the various values of 
nuclei density considered here. For all cases, a sharp drop in void 
fraction is observed at cavity closure. On the whole, the void 
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fraction inside the cavity slightly decreases with decreasing nuclei 
density, but remains fairly high, typically between 0.8 and 1. An 
increase in nuclei concentration induces an expansion of the 
supercavity. 
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This effect is shown in Fig. 12b that represents the variation of 
cavity length with nuclei density. For the smaller value of the 
cavitation number (a = 0.15), it appears that the cavity length is 
sensitive to the number of nuclei for small nuclei densities, 
whereas a saturation effect is observed beyond a critical nuclei 
density which lies around 108 nuclei/m3• This saturation effect is
also visible for larger values of the cavitation number. However, 
for a = 0.30 and a = 0.35; that is, for the two shortest cavities, the 
asymptotic behavior is already reached for the smallest value of 
the nuclei density considered here. It is then of practical interest 
for numerical simulations to consider a sufficiently high value of 
the nuclei density to limit the influence of this parameter on the 
results. Figure 12b shows that the critical nuclei density increases 
with cavity length. 

Figure 12c presents the effect of the nuclei density on the drag 
coefficient. A similar asymptotic behavior to that observed on 
cavity length is here observed on the drag coefficient. It corrobo­
rates the saturation effect obtained for large enough nuclei densi­
ties. Thus, the nuclei density has been chosen equal to 108 nuclei/
m3 for all the results presented in this section. 

4.3. Drag coefficient 

Drag coefficient is given in Fig. 13 as a function of the cavita­
tion number. For RANS computations, the pressure drag CDp and
the total drag CD (including the friction drag) have been plotted.
As expected, the friction drag is relatively small compared with 
the pressure drag. Both RANS computations appear to be in good 
agreement. 

As for the integral method, it gives an evaluation of the pres­
sure drag since the fluid is assumed inviscid. The pressure drag 
given by RANS computations appears to be slightly greater than 
that given by the integral method. The difference is mainly the 
result of the cavity pressure on the obstacle base, which is some­
what smaller than the vapor pressure as confirmed by the Figs. 13 
and 14. From an experimental viewpoint, the pressure within a 
supercavity is almost uniform (except near closure) and equal to 
the vapor pressure (increased of the partial pressure of noncon­
densable gas, if any), and this is true also in the vicinity of the 
wedge base. The difference between the base pressure and the 
vapor pressure obtained here numerically is actually an artifact 
of the present computations. 
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0.20 +--------1 ·· · ·t:s. · · · Cr:p CA VKA l<f nuclei!rrl 

0.15 +··-··-·····················-··-·-····! 

· · · • · · · Cr:p FUJENT Hf nuclei!rrl 
Cr:p Integral rrethod 

N nuclei/ m3 0·10 
O,o7 -t-.-.--.--.-+-.--.--.--.-+-.-.-.-.-+-.-.-.--.---1 
3,000E+05 2,523E+07 5,015E+07 7,508E+07 l,OOOE+08 

c Drag coefficient 0.1 
Fig. 12 Nuclei concentration effect, Fluent code 
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Fig. 13 Drag coefficients: pressure drag and total drag 
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In Fig. 15 the black line represents the locus of the points 
where the pressure equals the vapor pressure (here, Cp = �a = 

-0.15). Inside the pressure is smaller than the vapor pressure and 
larger outside. The saturation effect with nuclei density already 
observed on the cavity length and the drag coefficient is also 
visible on the pressure at the wedge base in Fig. 14 where the 
computational results corresponding to various nuclei densities 
have been plotted. 

To further analyze the difference, the pressure drag given by 
RANS computations has been recalculated by integrating the 
pressure forces all along the obstacle and assuming that the pres­
sure on the wedge base is exactly equal to the vapor pressure 
instead of the computed value. Figure 16 shows a clear improve­
ment of the agreement between RANS computations and the 
integral method. 

4.4. Cavity pressure 

Figure 17 presents the pressure distribution along the axis of 
symmetry for different values of the cavitation number, together 

Fig. 16 Pressure drag with p = pv on the wedge back side 

with the computed shapes of the supercavity. The cavity pressure 
is almost constant and equal to the vapor pressure, as expected. 

However, a detailed inspection of the evolution of the pressure 
inside the cavity shows that the pressure just downstream of the 
obstacle is generally slightly below the vapor pressure. This ob­
servation, which was already noted in Figs. 13 and 14 and which 
is the reason for the small difference between pressure drag coef­
ficients given by RANS methods and the integral method, is quite 
understandable in the framework of the present bubbly flow 
model. 

According to equation (10), pressure needs to be smaller than 
the vapor pressure for the bubbles to grow. As shown in Fig. 15, 
this occurs just downstream of the obstacle and in the vicinity of 
the cavity interface. Figure 15 shows that streamlines are crossing 
the domain where p < Pv so that the liquid vaporizes when
moving through the interface and feeds the cavity with vapor. In 
the region where p > Pv and in particular in the closure region
where an overpressure is observed, bubbles are collapsing and 
vapor turns back to liquid. 

4.5. Unsteady behavior 

The unsteady response of the flow to a sudden drop in pressure 
has been studied using both RANS codes. The starting point is the 
fully wetted flow, and the cavitation number is supposed to be 
instantaneously decreased to the value a = 0.2 and then kept 
constant until steady conditions are reached. The time evolution 
of the total amount of vapor in the flow is plotted in Fig. 18. 
Notice that on this graph the scales in time are different for both 
curves Fluent and Cavka. 

The asymptotic value for a large enough time is comparable 
for both approaches, but the characteristic rise time is different. 
It is much longer for Fluent than for Cavka. This shows that 
the vaporization rate is probably much smaller in the case of 
Fluent. 

As a matter of fact, a vapor mass factor is introduced in Fluent. 
This factor is a purely numerical parameter that is introduced to 
avoid divergence of the computation. It is a multiplicative factor 
in the bubble growth rate equation (10). Its value, which should 
be unity according to the physics of the phenomenon, must gener­
ally be chosen much smaller, typically of the order of 0.001 or 
even smaller to allow convergence. As a consequence, the explo-
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sive growth of cavitation bubbles is damped and the production 
rate of vapor is underestimated. On the contrary, the numerical 
scheme used by CA VKA is different and does not require the use 
of such a damping coefficient. The introduction of this damping 
coefficient has no consequence on the steady solution but is of the 
greatest importance for unsteady simulations. 

On the basis of the Logvinovich approach (Pellone et al. 2004), 
it can be inferred that the characteristic response time to a sudden 
pressure decrease is of the order of the ratio of the cavity length to 
the flow velocity IJV 00• It is the time necessary for the cavity to 
grow up to its steady length lc. In the present case, the cavity 
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Fig. 18 Evolution of the vapor mass into the cavity, cr = 0.2 

length is lc = 0.22 m and the flow velocity V = 10 m/s so that the 
characteristic time should be of the order of 0.022 s. The rise time
given by Cavka appears to be about 6 times larger (corresponding 
to 0.13 s), whereas that given by Fluent is at least 800 times larger 
(corresponding to 170 s). 

5. Conclusion

The capacity of conventional RANS techniques to simulate 
supercavitating flows has been investigated. Two codes have been 
evaluated, the commercial code Fluent (version 6.0.12) and the
code Cavka developed at the Technical University of Mtinchen. 
Both codes use the same k-w turbulence model and a similar
cavitation model based on the asymptotic growth rate of a cavita­
tion bubble. They are applied to the steady and unsteady super­
cavitating flow around a two-dimensional wedge for which some 
experimental results are available. 

In a preliminary investigation, the influence of mesh refine­
ment has been evaluated under fully wetted conditions. For a 
number of cells greater than 18,120, almost no influence of the 
mesh has been observed on the pressure distribution and on the 
drag. For further simulations of supercavity flows, both RANS 
codes have been run using the same mesh of 18,120 cells. The 
mesh was refined in the wake of the obstacle to track the super­
cavity more accurately. 

A systematic analysis of the influence of the tunnel height has 
also been conducted under fully wetted and supercavitating con­
ditions to limit the influence of the tunnel walls and simulate as 
much as possible an infinite flow field. A tunnel height of more 
than 15 chord lengths has finally been chosen for the simulations. 

Since the vaporization rate is a function of the nuclei density, 
the effect of this parameter was investigated. A saturation effect 
was observed beyond a critical value of the nuclei density of the 
order of 108 nuclei/m3, so that it appears preferable to use a high
enough value of the nuclei density to reduce the sensitivity of the 
simulations to this parameter, which is often badly controlled 
experimentally. 

The asymptotic cavity length lc, obtained after a long-term 
computation and that is then representative of the steady case, 
was plotted versus the cavitation number a. A difference between 
half a chord length to a maximum of 1 chord length was observed 
between both simulations, whereas the maximum computed cav­
ity length was about 7 chord lengths. The curves lc(a) for Fluent
and Cavka are in satisfactory agreement with the computational 
results given by a linearized analytic technique (Tulin 1964) and
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by a nonlinear boundary element method (Pellone et al. 2000) and 
also with experimental results (Michel 1974). For short cavities, 
the difference was partly attributed to differences in the shape of 
the cavity at closure and more especially in its concavity, which 
results from a reentrant flow. 

The total drag given by both RANS simulations agrees within 
less than 10%. The computed pressure drag is a bit larger than 
that given by the integral method. The difference is the result of 
the cavity pressure along the base of the obstacle, which is some­
what smaller than the vapor pressure. This is due to the cavitation 
model, which requires the pressure in the most upstream part of 
the cavity to be smaller than the vapor pressure so that the nuclei 
can grow and actually give birth to a cavity. On the whole, the 
pressure all along the cavity is, however, almost constant and 
close to the vapor pressure as expected. 

Although steady results are comparable for both codes, the char­
acteristic growth time of the cavity resulting from a sudden drop in 
pressure from fully wetted conditions is different. The growth time 
of the supercavity given by Cavka is of the order of lJV 00• This is in 
agreement with the independence principle of cavity expansion 
derived by Logvinovich in the framework of the slender body ap­
proximation. Conversely, the response time of the flow to the same 
disturbance given by Fluent is several hundreds of times greater. 
The difference was mainly attributed to the vapor mass factor that 
appears in Fluent. This is a multiplicative factor that artificially 
reduces by several orders of magnitude the vaporization rate to 
prevent divergence of the computation. The result is that the well­
known explosive nature of cavitation is strongly damped and that 
the growth time of the supercavity is very significantly underesti­
mated. As a conclusion, conventional RANS simulations give satis­
factory results for steady supercavity flows. However, a special care 
has to be taken for the prediction of unsteady supercavitation so that 
the strong dynamics of cavitation is correctly modeled. 

In addition, it was observed that both simulations led to an 
almost steady solution that does not account for the shedding of 
vapor structures at cavity closure usually observed experimen­
tally. Turbulence modeling and 3D effects could explain this 
deficiency. It would be interesting to know whether the introduc­
tion of compressibility in the turbulence model would allow a 
better capture of the unsteady behavior of the supercavity at 
closure, as it was proved for partial cavities. It would also be 
interesting to evaluate the capabilities of advanced three-dimen­
sional simulation techniques to predict the detailed structure of 
the shedding of small-scale vapor structures in the closure region 
of the supercavity. 
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