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ABSTRACT

The correlation criterion proposed in this article and called NC2O (Normalized Cross Complex
Orthogonality) ensures bi-orthogonality properties between rotor mode shapes calculated at dif-
ferent speeds of rotation. This criterion is proofed on an industrial laminated rotor composed
of disks and two fluid film bearings, whose stiffness and damping characteristics depend on the
speed of rotation. The industrial finite element model shows that the NC2O criterion provides
a more efficient mode pairing of rotor shapes than those obtained by using the classical cor-
relation criteria. Moreover this criterion maker easier the Campbell diagram plotting of strongly
φ̇-dependent structures.

1 INTRODUCTION

Predicting the lateral dynamics of industrial rotating machines is a common task for several
decades and a lot of reference books can be cited, see for example [1, 2, 3, 4]. In addition to
natural frequencies, the main objective of such predictions is stress field distributions, a decisive
step in the design process of both rotating machine or not. Thus estimating deformed shapes is
an efficient way that provides qualitatively stress field distributions. Therefore informations related
to deformed shapes, i.e. mode shapes, make sense especially in frequency domain responses.
However, when dealing with rotating machines, gyroscopic effect induces the well-known depen-
dence of natural frequencies and associated mode shapes with respect to the speed of rotation, a
dependence most of the times enhanced by bearing characteristics. It involves an often encoun-
tered problem in Campbell diagram plotting because, at each speed of rotation, the eigenvalue
problem solver classically provides natural frequencies sorted in ascending order whereas mode
shapes can switch their orders. Consequently being able to know which mode shape is associated
with the kth natural frequency at a speed of rotation does not ensure that this shape corresponds
to the kth natural frequency at another speed. Thereby this complexity of gyroscopic systems
emanates from veering or crossing phenomena which make difficult the tracking of rotor shapes
versus the speed of rotation and thus determining which mode shape is excited.

The so-called mode pairing may overcome the latter problem by correlating two sets of mode
shapes. In this way, several correlation criteria have been developed for the last thirty years. They
consist in filled matrices with terms between zero and one, the latter indicates a perfect correla-
tion while zero stands for a poor one. The most popular is certainly the MAC (Modal Assurance
Criterion), introduced in [5], which was tried and tested in model updating to correlate numerical
and experimental mode shapes [6, 7, 8, 9]. Other criteria using stiffness or mass matrices have
been later established to estimate besides orthogonality between compared mode shapes such
as the NCO (Normalized Cross Orthogonality) [10, 11]. In [12], an automatic mode pairing strategy
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is suggested by using a criterion based on combination of the MAC and modal strain energies. The
IERI criterion used in [13] estimates rather correlation between mode shape difference. Unlike the
MAC, those are well adapted to correlate real mode shapes because they ensure collinearity and
overall orthogonality with respect to structural matrices, as introduced by modal theory. Further-
more orthogonality guarantee is a powerful concept which implies so small correlation terms even
if mode shapes seem to be close. These terms, reaching zero, greatly facilitate the pairing of
shapes whose corresponding terms are usually close to unity. Nevertheless some authors still
prefer the MAC when dealing with pairing of real shapes of parametric systems subjected to veer-
ing or crossing phenomena such as in [14] regarding mode shapes of a constrained eigenvalue
problem of a cracked plate. In the same manner, although authors of [15] had noticed that off-
diagonal terms of the MAC were of order of 0.4, they did not decide to benefit from orthogonality
properties of eigenvectors of the prestressed truss they studied. Contrary to [16], in which criteria
are established to distinguish veerings from crossings, the present paper rather intend to provide
an efficient criterion for pairing complex mode shapes and tracking any shape needed, especially
for finite element model of complex damped gyroscopic structures without analytical solutions.

This paper presents a new correlation criterion called NC2O (Normalized Cross Complex Orthogo-
nality) which ensures orthogonality properties between rotor mode shapes calculated at different
speeds of rotation φ̇. Indeed the quadratic and non symmetric natures of the related eigenvalue
problem involve complex eigenvectors which do not satisfy the same properties profited by the
previous criteria. Therefore applying them to rotor mode shapes does not take advantage of
orthogonality properties in the mode pairing process. Motion equations of damped gyroscopic
structures are presented as well as associated quadratic eigenvalue problem. After reminding the
bi-orthogonality properties of complex mode shapes, the NC2O criterion is developed. Finally, it is
proofed on a finite element model of an industrial laminated rotor composed of disks and two fluid
film bearings whose stiffness and damping are clearly φ̇-dependent. This can show that NC2O

provides a more efficient mode pairing of rotor shapes than those obtained by using classical
correlation criteria, especially for Campbell diagram plotting of strongly φ̇-dependent structures.

2 BACKGROUND EQUATIONS

The steady-state dynamic behavior of a discretized damped gyroscopic structure is governed
by the set of nδ equations:

Mδ̈ (t) +C (φ̇) δ̇ (t) +K (φ̇) δ (t) =F (t) , (1)

with δ (t) the generalized displacements vector while ˙( ) stands for derivative with respect to time
t. The mass matrix is denoted by M whereas K, C matrices represent stiffness, viscous damp-
ing as well as gyroscopic effect respectively, both of them including φ̇-dependent fluid film bearing
characteristics. F (t) is the external force vector.

2.1 Complex eigenelements of rotors
The first step of a dynamic analysis consists in solving the homogeneous Eq. (1) at a given speed
φ̇ such as:

Mδ̈ (t) +C (φ̇) δ̇ (t) +K (φ̇) δ (t) = 0. (2)

Introducing the general solution δ (t) = Ψke
λkt in Eq. (2) involves the following eigenvalue prob-

lem: [λ2

kM + λkC (φ̇) +K (φ̇)]Ψk = 0, (3)

whose quadratic nature involves k = 1, . . . , nδ couples of complex conjugate eigenvalues and
right eigenvectors denoted by λk and Ψk respectively. In addition, by adding a trivial identity of
order nδ , [17, 18]:

Mδ̇ (t) −Mδ̇ (t) = 0, (4)
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the quadratic problem can be written in a more convenient 2nδ order linear form, i.e. by intro-
ducing a state space representation of Eq. (2) described with the state vector y (t) including
displacements and speeds [19, 20]:

Aẏ (t) −By (t) = 0 with y (t) = (δ̇ (t) , δ (t))t , (5)

with ( )t the transpose operator and the augmented matrices A, B defined by:

A = [ 0 M

M C (φ̇) ] , (6a) B = [ M 0

0 −K (φ̇) ] . (6b)

Considering the general solution y (t) = rΥke
λkt of Eq. (5) and the unsymmetric nature of

matrices A, B, the state space problem admits a generalized eigenproblem (7a) and an associa-
ted dual one (7b) with the same eigenvalues:

BrΥ = ΛArΥ, (7a) BtlΥ = ΛAtlΥ, (7b)

where rΥ, lΥ denotes the right and left eigenvector matrices of the state space system respec-
tively, whose kth columns hold:

rΥk = (λkΨk, Ψk)t , (8a) lΥk = (λkΘk, Θk)t , (8b)

with Θk the kth left eigenvector of Eq. (2) and Λ contains the nδ couples of complex conjugate
eigenvalues {λk, λ

∗

k
} as a function of the natural frequency ωk and modal damping factor ξk

deduced by:

ωk =
1

2
j (λ∗k − λk) , (9a) ξ2k =

1

2
(1 + λ∗k

λk

) , (9b)

with j2 = −1 and ( )∗ the complex conjugate operator.

Thus natural frequencies enable to plot the Campbell diagram and determine critical speeds.

2.2 Dual-orthogonality properties

Let {λk,
rΥk}, {λq ,

lΥq} be distinct right and left eigenelements of Eq. (7). Premultiplying Eqs.

(7a) and (7b) by lΥt
q and rΥt

k
respectively leads to:

l
Υ

t
qB

r
Υk = λk

l
Υ

t
qA

r
Υk, (10a) r

Υ
t
kB

tl
Υq = λq

r
Υ

t
kA

tl
Υq. (10b)

The transposition of Eq. (10b) gives:

lΥt
qB

rΥk = λq
lΥt

qA
rΥk. (11)

Subtracting Eq. (10a) and (11) yields the equality:

(λq − λk) lΥt
qA

rΥk = 0 ⇔
lΥt

qA
rΥk = 0 ∀q ≠ k, (12)

since λk ≠ λq . Introducing Eq. (12) in (10a) gives the second relation. Thus bi-orthogonality
properties of left and right eigenvectors with respect to augmented matrices, [21, 22], satisfy:

lΥt
qA

rΥk = αqkδqk, (13a) lΥt
qB

rΥk = βqkδqk, (13b)

with αqk, βqk ∈ ❈ and δqk the Kronecker symbol.
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Figure 1: Branched finite element model of the industrial rotor.

Finally, right and left eigenvectors {Ψk, Θk} and bi-orthogonality properties defined in Eqs. (13)
permit uncoupling and solving Eq. (1) while reducing CPU-time.

3 A NEW CRITERION FOR ROTOR MODE SHAPE TRACKING

Equation (2) is solved for each φ̇i, i = 1 . . . n
φ̇

and provides the sets of the first m sorted nat-

ural frequencies ωi in ascending order, and associated right Ψi and left Θi mode shapes; the
upperscript stands for the ith speed. Note that Campbell diagram has to illustrate the evolution
of the natural frequency ωΨk

related to its own mode shapes Ψk and not the ascending sorted

ωk. Then defining a criterion, that identifies which shape Ψi
k

is related to ωi
q , is required since the

inequality q ≠ k frequently holds true if crossings occur, i.e. when Ψi
k

associated with ωi
k

does not

correspond to Ψi+1
k

related to ωi+1
k

.
Equation (13b) can be expressed as follows:

(λqΘq , Θq)t [ M 0

0 −K (φ̇) ]( λkΨk

Ψk
) = δqkβqk, (14)

and expanded such as:
Θt

q [λqλkM −K (φ̇)]Ψk = δqkβqk. (15)

Thus developing an efficient correlation indicator, which takes advantage of bi-orthogonality prop-
erties of Eq. (15), is feasible and could have the following expression:

NC
2

Ok,q = δqk

∣βqk ∣2
∣βqq ∣ ⋅ ∣βkk ∣ = {

0 if k ≠ q

1 if k = q
, (16)

with ∣ ∣ the modulus operator. We suggested to call this criterion NC2O (Normalized Cross Complex
Orthogonality) as an extension of NCO applied to damped gyroscopic structures. Thus in a com-
plex mode pairing strategy related to Campbell diagram, we consider two sets of eigenelements
at both φ̇i and φ̇i+1 such as NC2O takes the form:

NC
2

O
i,i+1

k,q
=

∣L i+1
q W

i,i+1

k,q
Ri

k
∣2

∣L i+1
q W

i+1,i+1
q,q Ri+1

q ∣ ⋅ ∣L i
k
W

i,i

k,k
Ri

k
∣ , (17)

where row and column indexes k, q are related to shapes, at φ̇i, φ̇i+1, and assuming the following
correspondences:

L ≡ Θt, (18a) R ≡ Ψ. (18b)
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Figure 2: Campbell diagram without mode pairing. Natural frequencies are plotted in Hz.
Circles (◯) and dashed line (−−) indicate critical speeds and 1 × excitation respectively.

The weighting matrix W
i,+1

k,q
is defined by:

W
i,i+1

k,q
= λi

kλ
i+1
q M −K (φ̇i) , (19)

Remark: NC2O can be applied to damped gyroscopic structures reduced in the modal basis of the
undamped and non-rotating associated structure [3]. So modal matrices and associated eigenele-
ments have to be used in Eq. (17).

4 INDUSTRIAL APPLICATION

4.1 Finite element model
The industrial application consists in a induction rotor made of prestressed laminated stack with
tie rods as presented in [23, 24]. Total mass and length are 1 026 kg and 2.6 m. By coupling
Timoshenko theory [25] and Euler angles ψ, θ, φ, i.e. precession, nutation and intrinsic rotation
roughly around z⃗, x⃗ and y⃗ respectively, the rotor is discretized in Ne = 239 two node elements
(nδ = 956 dof), all of them containing eight dof stored in eδ such as:

eδ = (we, ue, ψe, θe,we+1, ue+1, ψe+1, θe+1)t , (20)

with u, w lateral dof along x⃗, z⃗ respectively while ψ, θ stand for associated rotations around z⃗ and
x⃗. It is assumed that the rotor is supported by two identical fluid film bearings located at nodes
#6 and #178, Fig. 1. Bearing characteristics are given by Figs. 8(a) and 8(b) for the [0,3.5 ⋅ 104]
rpm speed range. Thus both steel disks mounted on shaft-ends as well as bearing stiffnesses
and dampings should induce a strongly gyroscopic/φ̇-dependent dynamic behavior of the rotor.
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Figure 3: Campbell diagram using the NC2O mode pairing for different φ̇-steps: 5 ⋅ 101 (−),
2 ⋅ 103 (∗) and 5 ⋅ 103 rpm (◻).

4.2 Campbell diagram calculation
Natural frequencies and complex mode shapes are obtained by solving Eqs. (7), at each constant
speed φ̇i. For the sake of matrix reduction, the pseudo-modal method is preferred [3] by projecting
Eq. (2) in non-rotating modal basis containing m = 12 mode shapes. Besides reducing CPU-time,
that enables also modal damping factors introduction, e.g. 1%. Moreover the variability of bearing
characteristics involves the calculation of a new modal basis Φ (φ̇i) at each φ̇i, by solving the
eigenvalue problem:

K (φ̇i)Φ (φ̇i) = Λ0MΦ (φ̇i) , (21)

with Λ0 containing undamped eigenvalues, at rest.

By setting the step of speed of rotation at 50 rpm, a first Campbell diagram is illustrated by Fig. 2
as the evolution of the first m natural frequencies ω sorted in ascending order, i.e without using
any mode pairing process. On the other hand, Fig. 3 presents the Campbell diagram which bene-
fits from mode pairing process, especially the one using the NC2O criterion. It should be noted that
complex shapes are arbitrarily indexed, at the upper bound φ̇n

φ̇
, by associating them with indexes

of corresponding sorted natural frequencies in ascending order. Actually, the Campbell diagram
shows several crossing and veering phenomena and it may be stated that each natural frequency
crosses one of the other one the in considered speed range, Fig. 4. Indeed one veering occur-
rence clearly appears between complex shapes Ψ5 and Ψ8 around 7.5 ⋅ 103 rpm. Furthermore it
may be counted no less than 56 crossing occurrences between all the first m natural frequencies
which brings out the strongly φ̇-dependent behavior of the supported rotor.
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Figure 4: Enlarging of Campbell diagram emphasizing crossing phenomena between:
Ψ1,2,5 and Ψ7, (a) Ψ11 and Ψ12 (b) .

5 OVERCOMING VEERING/CROSSING PHENOMENA

To proof the NC2O criterion, Fig. 3 presents star and square symbols which correspond to Camp-

bell diagrams obtained with speed of rotation steps of 2 ⋅ 103 rpm and 5 ⋅ 103 rpm respectively.

Although latter steps are larger than the initial one (continuous lines), all Campbell diagrams co-

incide together whatever step lengths and crossings or veerings , e.g. it could be cited the 9th

or 10th complex shapes for which 13 or 16 crossing occurrences appear respectively. Thereof

that underlines the efficiency of NC2O criterion in mode paring process, which provides Campbell

diagrams allowing any mode shape tracking. In addition, Fig. 5 presents the following quantities:

NC
2

O� =

m

∑
k,q=1
q≠k

NC
2

O
i,i+1

k,q

m (m − 1)
, (22a) MAC� =

m

∑
k,q=1
q≠k

MAC
i,i+1

k,q

m (m − 1)
. (22b)

NCOK� =

m

∑
k,q=1
q≠k

NCO
i,i+1
Kk,q

m (m − 1)
, (23a) NCOM� =

m

∑
k,q=1
q≠k

NCO
i,i+1
Mk,q

m (m − 1)
. (23b)

as averages of off-diagonal terms of well-known correlation criteria listed in Table 1. Figure 5
underlines the difference of order of magnitude between off-diagonal terms of the NC2O and the
other criteria evaluated at speeds φ̇i, φ̇i+1, i = 1, . . . , n

φ̇
− 1 regarding the Campbell diagram

shown in Fig. 3. The MAC off-diagonal terms are of order of 10−1 while those related the NCO

calculated either with the mass or stiffness matrices are rather of order of 10−2. Nevertheless
there is a significant difference by comparison with those provides by NC2O which are mainly of
order of 10−6 and reach 10−8.

As a result, small terms greatly facilitate the pairing process, and also argues for using a corre-
lation criterion based on bi-orthogonality properties. As previously mentioned, several crossing
occurrences appear between the first m natural frequencies ωΨ in the speed range. It can be
stated that ωΨ9

and ωΨ10
cross 13 and 16 times other natural frequencies respectively. Figure

6 presents a zoom in of Fig. 3 between φ̇i = 9 ⋅ 103 rpm and φ̇i+1 = 1.2 ⋅ 104 rpm while Figs.
7(a) to 7(d) represent the NC2O, MAC, NCOK and NCOM correlation matrices respectively. Even if
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correlation criteria.

correlation criteria were calculated between speeds far from the one at which the veering occurs,
the MAC suggest one more time a virtual correlation between the shapes subjected to veering and
associated to ωΨ5

and ωΨ8
, i.e. the 7th and 10th mode shapes Ψi

7
, Ψi

10
calculated at φ̇i and the

10th and 5th shapes Ψi+1
10

, Ψi+1
5

calculated at φ̇i+1.

Indeed non-correspondence terms of the MAC are higher than 10−1 (0.7) whereas both NCOK and
NCOM provide terms of order of 0.5. In addition to the fact that NC2O is not disturbed by high
value terms, and although being evaluated between speeds spaced out over 3 ⋅103 rpm, Fig. 7(a)
gives well correspondences between complex shapes of the φ̇-interval bounds, and is then in
good agreement with Fig. 6. Finally the NC2O criterion presents a typically binary behavior due
to Kronecker symbol of Eq. (16), i.e. two sets of non-coincident eigenelements involves terms
almost null. Furthermore it has been stated that crossing phenomena are clearly observed and
distinguished by the NC2O, the latter being set without any disturbed terms values as doubloons
or artefacts significantly higher than zero as it appears in the MAC, Fig. 7(b). Consequently, NC2O

does not present any drawbacks of the other criteria and comprise an efficient criterion either to
pair complex shape bases or track any complex shape, especially in Campbell diagram cases.

Table 1: Correspondences between correlation criteria

Criterion NC2O
i,i+1

k,q
MAC

i,i+1

k,q
NCO

i,i+1
Kk,q

NCO
i,i+1
Mk,q

L
i+1
q Θ

t
q

i+1
Ψ
∗t
q

i+1
Ψ
∗t
q

i+1
Ψ
∗t
q

i+1

W
i,i+1

k,q
λi

kλi+1
q M −K (φ̇i) I K (φ̇i) M

R
i
k Ψ

i
k Ψ

i
k Ψ

i
k Ψ

i
k
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Figure 7: Criteria calculated between 9 ⋅ 103 and 1.2 ⋅ 104 rpm.

6 CONCLUSION

The correlation criterion proposed is based on the bi-orthogonality properties of right and left
eigenvectors of damped gyroscopic structures. The NC2O criterion greatly facilitates the rotor
mode shapes pairing even if veering or crossing phenomena occur. Thus Campbell diagrams can
be plotted by illustrating the evolution of each natural frequency associated with its own complex
mode shape in the speed of rotation range. Finally the industrial application, whose bearings’
characteristics strongly depend on the speed of rotation, proofed the efficiency of the NC2O in the
mode pairing process.
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A-Bearing Characteristics
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(a) Stiffness (109
×N ⋅m−2).
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Figure 8: Hydrodynamic bearings characteristics.
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