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ABSTRACT: Architectured membranes can be developed in order tomimic living tissues. The main point is
to generate anisotropic membranes that can endure large deformations. In this way, crenellated membranes are
elaborated with a filled silicone rubber. The aim of this workis to develop a constitutive equation which de-
scribes the mechanical behavior of such architectured materials. Membranes with different crenel orientations
are elaborated and tested.
The architectured membranes endure the same phenomena as the bulk silicone, they are made with, i.e. prin-
cipally the Mullins effect for this filled silicone. This phenomenon must be taken account in the modeling. An
equivalent constitutive equation is built for the architectured membrane by taking into account the mechani-
cal behavior of the silicone and the geometrical parametersof the crenelated membrane. First, a constitutive
equation is chosen to describe the core of the membrane. Second, this equation is adapted to the behavior
of the crenels and third a coupling term describing the interactions between the crenels and the membrane is
developed. Finally, the model is validated on experimentaldata.

1 INTRODUCTION

Architectured materials take a place more and more
important in many applications due to their specific
properties including mechanical properties (Bouaziz
et al., 2008). It exists several types of architectured
materials, for instance some materials are architec-
tured due to their microstructure (grain size, polymer
chain design, state of crystallization), for metals this
strategy operates at scales between 1nm and 10µm.
In other way architectured materials are also com-
posed of the association of several materials (hybrid
material) and of geometrical arrangements. This ar-
chitectured materials allow to build multifonctionnary
material (Brechet and Embury, 2013; Ashby, 2013;
Bouaziz, 2013). For instance they can be used in many
medical applications by means of their ability to ex-
hibit anisotropic behavior. Natural material and par-
ticularly soft tissues are architectured materials (Dun-
lop and Fratzl, 2013).
It is proposed in this paper to study an architectured
membrane of filled silicone. Meunier (2011) devel-
oped a model and experimental data of an architec-
tured membrane, nevertheless the study is limited to
an unfilled silicone rubber Meunieret al. (2009), this
rubber is perfectly hyperelastic but suffers from bad
fracture properties which makes it difficult to use in
real applications.

In this paper it is chosen to use a filled silicone rubber.
Due to the fillers this material presents good fracture
properties nevertheless it presents too non linear phe-
nomena.
The Mullins effect is the prevailing phenomenon into
the used material Machadoet al. (2012a), thus the
other non linear phenomena as the hysteresis or the
relaxation are neglected. A model has already been
developed to describe the behavior of this filled rub-
ber silicone for membrane Rebouahet al. (2013).
The aim of this paper is to study the behavior and to
build an equivalent model for a filled silicone archi-
tectured membrane. The architectured membrane is
composed of a flat membrane and crenels on the upper
and lower surfaces of this membrane. As described by
Meunier (2011) the orientation of the crenels permits
to control the anisotropy.
The paper is constructed as follows. In Section 2, the
experimental set up is described and the experimental
results are presented. In Section 3, a theorical study
presents the constitutive equation developed to ana-
lyze the behavior of the architectured membrane and
a comparison with the experimental results is done.
Finally, in Section 4 some conclusions are presented.



Figure 1: Geometry of the architectured membrane

2 EXPERIMENTAL STUDY

Circular crenelated membranes of filled silicone were
molded. For each plate, the only parameter that
changes is the relative orientationα of the crenels on
the upper and lower faces. Five architectured mem-
branes withα=0◦,45◦,90◦,135◦ and180◦ are manu-
factured and tensile rectangular specimens of L=60
mm long, l=21 mm width and e=1 mm thick for the
core of the membrane were cut from the circular plate
samples along the direction of tractionα

2
. An illustra-

tion is presented in Fig1.
For each architectured membrane rectangular sample,
a cyclic tensile test was processed. The samples are
loading up to three different but fixed stretches of
λ = 1.5, thenλ = 2. after unloading, thenλ = 2.5
after unloading and finally a reloading toλ = 2.5.
The measurements are made by means of a 100N sen-
sor which is synchronized to a three-dimensional im-
age correlation (3D-DIC) system to evaluate the strain
fields at any point of the surfaces. The specimens
present a periodic structure, but boundary conditions
can influence the behavior. Thus, a Representative El-
ementary Volume (REV) is defined in the middle of
the sample. Due to the crenels orientations, the sec-
tion of the specimens is varying with the angle, thus it
is proposed to analyze the results using the tensionT

T =
F

w
(1)

whereF represents the force andw the actual width
of the sample.
All experimental data are presented in Fig.2. The
Fig.2(a) represents the evolution of the transverse
elongation during the tensile test. The continuum line
represents the theorical transverse elongation for a
tensile test and the dashes line represents the trans-
verse elongation obtained for different orientations
α. For orientations ofα = 0◦,45◦,90◦ the transversal
elongation is close to the isotropic material (λ2 =

1√
λ1

where λ2 is the transversal elongation andλ1 the

maximal principal elongation), but forα= 135◦,180◦

the transversal elongation does not match to the the-
ory of uniaxial tensile test for isotropic material. The
Fig.2(b) illustrates the evolution of the tension in
function of the tensile elongation. It is observed that
the orientation between the crenelsα, influence the
behavior of the material. The lower orientation re-
quires the higher tension to deform the architectured
membrane, at the opposite the higher value ofα in-
duce a lower tension. Ifα is superior to135◦ the ten-
sion necessary to deform the material decreases very
slowly. This results are similar to Meunier (2011) and
proves the existence of an induced anisotropy by the
architectured membrane.

3 EQUIVALENT MODEL CONSTITUTIVE
EQUATIONS

RTV3428 is a filled silicone rubber which presents
several non linear effects like hysteresis, relaxation
(Machadoet al., 2010; Reyet al., 2013) and in-
duced anisotropy (Machadoet al., 2012b). As illus-
trated by Reyet al. (2013) the Mullins effect is the
prevailing non linear phenomenon so this study fo-
cuses on the introduction of this phenomenon into the
constitutive equation of the architectured membrane.
The other phenomena are not taken into account in
a first approach. Rubber like materials are described
by means of an hyperelastic strain energy function
that can evolve according to the Mullins effect. It
is proposed to decompose the strain energy function
W as the sum of the strain energies of the core of
the membraneW(core-membrane) and of each crenel
W(crenel-1),W(crenel-2), a last term taking into ac-
count the coupling between the two directions in the
membraneW(coupling) is added.

W = W(core-membrane) +W(crenel-1)

+W(crenel-2) +W(coupling) (2)
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Figure 2: Evolution of the transverse elongation (a) and tension (b) of the architectured membrane forα = 0
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3.1 Core of the membrane

The model proposed by Rebouahet al. (2013) which
take into account the induced anisotropy by a stress
softening is used, it is written as :

W(core-membrane) =Wcc(I1, I2)+
42
∑

i=1

ω(i)
F

(i)
W

(i)
cf (I

(i)
4 ).

(3)

The Mooney (1940) strain energy function is chosen
for Wcc whereI1, I2 are the first and second strain
invariants of the right Cauchy-Green strain tensorC
andω(i) represents the weight of each direction,F (i)

is the Mullins effect evolution function andW (i)
cf is the

strain energy of each direction. A different form from
Rebouahet al. (2013) is used

W
(i)
cf =

K

2
I
(i)
4 (ln I

(i)
4 − 1) (4)

WhereK is a material parameter. The evolution func-
tion which depends on the first and fourth invariants
with only one material parameterη is considered :

F
(i) = 1−η

√

I1max − I1

I1max − 3

(

I
(i)
4max − I

(i)
4

I
(i)
4max − 1

)(

I
(i)
4max

I4max

)4

(5)

3.2 The crenels

The crenels are processed with the same material as
the core of the membrane, so the mechanical char-
acteristics are the same. During the deformation, it
can be considered that crenels are only submitted to
tension-compression, it is estimated that there is no
flexion in the crenels and that they can rotate, so they
are modeled as bars. To determine the stress of each

crenel, it is proposed to re-writte the Eq.(3) in term
of unidirectional components to represent the uniax-
ial tension endured by the crenels. That means that the
second term of the anisotropic part of the strain den-
sity energy (Eq.(3)) should be replace by a function
of the elongation in the direction (E(i)) of the crenel,
that implies that the behavior of each crenel can be
modeled only by means of the fourth invariant corre-
sponding to its directionI(i)4c = tr(C.(E(i) ⊗ E(i)), i.e:

W(crenel-i) = W(I4
(i)
c ) (6)
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Figure 3: Representation of a eighth the 42 directions of Bazant
and Oh (1986) of reimplacement of the 42 directions by only
one.

Let us defineBc
(i) as the left Cauchy-Green deforma-

tion tensor for each crenel. Since the crenel is only in
tension-compression,Bc

(i) is defined in the basis of
each crenelR(i) (E(i),y(i),z(i)) wherey(i)andz(i) are
vectors which permit to obtain an orthogonal basis.

B(i)
c =







λ2
E(i)

0 0

0 1
λE(i)

0

0 0 1
λE(i)






(7)

WhereλĒ(i)
is the elongation of the crenel and depend

of the fourth invariantI(i)4c = λ2
E(i).. In the same way

the first (I(i)1c ), second (I(i)2c ) and fourth (I(i)4c ) invariant



are defined in the basis of each crenelR(i)

By means of the Bazant theory it is known that the
description of the behavior in only 1 direction modi-
fies too the weightω(i)

c which has to be recalculated
By considering, the projection of the 42 directions, it
is possible to replace these directions by only one di-
rection affected with a new weight̃ω = 0.21.
The evolution function was described as the product
of three terms (cf Eq.(5)). The third term is useless
with only one direction. According to the definition of
the fourth invariant, the first and the second term are
dependent sinceI4c exists only for one direction. It is
chosen to express the evolution function only with the
fourth invariant, the evolution function is adapted as:

F
(i)
c = 1− ηχ

(

I
(i)
4cmax − I

(i)
4c

I
(i)
4cmax − 1

)2

(8)

Where χ represents the intensity of the evolution
function for one direction instead of 42. The inten-
sityχ of the crenels evolution function must be of 0.5
to limit the rupture of slope.
Finally, the strain energy density of the crenel is di-
rectly expressed as:

W(creneli) = Wcc(I
(i)
4c ) + ω̃F (i)

c W
(i)
cfc(I

(i)
4c ) (9)

Nevertheless the comportment described previously is
in fact for a membrane behavior, not for crenels, so
due to the geometry of the architectured membrane
a new quantity is introduced to evaluate the propor-
tion of crenels on the upper and lower faces of the flat
membraneβ. According to the structure of the archi-
tectured membrane (Fig.1) we deduceβ = 1

3

3.3 Strain energy of coupling

It is proposed to develop a term to take into ac-
count the coupling effects between the crenels and the
core of the membrane. The strain energy of the cou-
pling term takes into account the shear induced by the
crenels on the external faces of the core of the mem-
brane, i.e. along the two directions̄E1 andĒ2. Differ-
ent coupling terms were proposed in literature. Reese
et al. (2001) developed a strain energy coupling be-
tween orthotropic directions composed by the product
of terms isotropic and anisotropic or just anisotropic
to control easily the influence of each term. Natali
et al. (2009) developed a term of coupling for liv-
ing tissues by using the eighth and ninth invariant.
Göktepeet al. (2010) and Nerurkaret al. (2011) de-
fine also a constitutive equations by using the eight
invariant to model living tissue as heart or annulus fi-
brosus of the intervertebral disc. It is proposed here
to developed a coupling term by using the eight and
ninth invariant too

W(coupling) = W(I8, I9) (10)

WhereI8 allows to take into account the shear depen-
dent ofα andI9 to norm the strain energy density, by
adaptation of Spencer (1971):

I8 =
1

2

(

C : E(1)
⊗ E(2) + C : E(2)

⊗ E(1)) (11)

I9 = E(1).E(2) (12)

The strain energy density proposed is:

W(coupling) =

∫

C8(α) ln(1 + I8 − I9)dI8 (13)

WhereC8(α) represents a parameter dependent on the
orientationα between the crenels. According to the
theory of the hyperelasticity the stress term of cou-
pling is easily deduced. A quadratic function is used
to describe the evolution of the coupling term with the
angle

C8(α) = aα2 (14)

3.4 Comparisons with experimental data

The total strain energy were implemented in a Finite
Element code, the simulation results of cyclic tensile
tests were compared to the experimental data as il-
lustrated in Fig.4. A good match with the experimen-
tal results for each orientation of the crenels is ob-
served. For each mechanical parameters of the filled
silicone the following values were used (C1 = 0.065,
C2 = 0.045, η = 9, K = 0.41), this values are fitted
only on a membrane of filled silicone. The only pa-
rameter fitted with the equivalent model is the param-
etera for the quadratic function that describe the evo-
lution of the coupling term (a = 0.0446).

4 CONCLUSIONS

Crenellated membrane of filled silicone were molded
for different orientations of crenels. According to the
literature, and previous work, an existing model to de-
scribe Mullins effect anisotropy is used. This model
has been adapted to the crenel and a coupling term
has been developed. Thus, every parts of the crenel-
lated membrane can be evaluated. Several experimen-
tal tests were realized to validate the model. It has
been observed that the coupling term could not be ne-
glected on cyclic tensile test for different orientations
of the crenels.
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