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ABSTRACT
Blade optimization is more than ever a crucial activity for

helicopter manufacturers, always looking for performance im-

provements, noise reduction and vibratory comfort increase. Lat-

est studies have led to design new blade concepts including a

double swept plan shape, an evolutionary and increased twist an-

gle at the tip and a new layout for internal components like rov-

ing spars. Such blades exhibit a highly coupled behavior between

torsion, longitudinal and bending motions that should be accu-

rately modeled for predictive numerical tools. In this research

a highly accurate beam finite element is formulated in the ro-

tating frame to improve the static deformation calculation under

aerodynamic and centrifugal loads and thus enhance dynamic

and stability analysis usually performed for a helicopter develop-

ment. Numerical and experimental investigations are performed

to demonstrate the model reliability both for academic beams

with extreme shape and for actual blade design.

NOMENCLATURE
BAM Beam Advanced Model.

DoF Degree of Freedom.

FE Finite Element.

InP In Plane.

OuP Out of Plane.

∗Address all correspondence to this author.

SdB Standard Beam.

aξ ,η Shear coefficients.

Cξ ,η Additional shear angles.

E Young modulus.

G Shear modulus.

JT Torsion constant.

kξ ,η Timoshenko’s shear coefficients.

L Beam length.

q,qi Generalized coordinates.

T Kinetic energy.

U Strain Energy.

ε Strain.

θ Twist angle.

ρ Density.

σ Stress.

φ Torsion angle.

φξ ,η Bending angles.

Ω Speed of rotation.

(̇) Derivative of time ∂/∂ t.

()′ Derivative of space ∂/∂x.

〈 〉 Row vector.

{} Column vector.
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INTRODUCTION

Performance optimization is an essential goal aimed by

helicopter manufacturers to enhance their machines. Naturally,

blade design is an important research topic, targeting better lift

capabilities, noise reductions or vibratory comfort for both pas-

sengers and pilots. Such improvements lead to design composite

blades with curved shapes and important twist characteristics.

At the predesign stage, 3D models cannot be used regarding for

meshing issues, calculation time and parametric studies. That

is why many efforts have been and are still done in the field of

beam elastic modeling.

Early researches [1–3] introduced successively twist effects,

coupling between bending and torsion motions and coupling

terms due to gravity and shear center non coincidence. Initially

curved beams have been investigated in [4–6]. Librescu and

Song [7] treat the problem using thin walled beam theories

applied to composite blades. For more complicated beams, twist

dependency, geometrical non-linearity and rotational effects

have to be introduced properly in both kinetic and strain energies

before applying Hamilton’s principle to derive the equations of

motion. The reference work in the field of helicopter blade mod-

eling using this so-called "exact" method has been brought by

Hodges [8] who produced numerous publications on this topic

among them a survey paper [9] and the reference book [10]. His

work has been widely used since then for composite blade mod-

eling [11], cross-sectional characteristics calculation [12, 13],

and comprehensive analysis codes assessment [14].

Numerically speaking, elastic beam modeling is split up in

two independent parts: a 2D problem which lead to compute

cross-sectional mass and stiffness characteristics, and a 1D

problem for solving the equations of motion. In this research the

first problem is considered as a prerequisite, providing necessary

data input for the proposed beam model. Characteristics are

computed using [15] investigations on composite blade with

arbitrary cross-sections. Developments made by [16–18] intro-

duced a whole strain matrix able to properly reduce the initial

3D problem with a high level of reliability.

The Finite Element Method is a very convenient way to

solve the equations of motion (e.g. to solve the remaining 1D

problem), both for static purpose and dynamic analysis. Batoz

and Dhatt [19] give a global overview of beam finite element

modeling and one can refer to Lalanne and Ferraris [20] for

rotating issues applied to turbomachinery.

A highly accurate finite element based on Hermite’s func-

tions has been developed to increase convergence speed and

avoiding shear locking effect as shown in [21]. Besides, to

improve the modeling of the complex coupling between torsion

and bending motions, Timoshenko’s shear coefficient [22–24]

has been introduced in every matrices of the mechanical system,

including geometrical stiffness matrix and centrifugal force

work. Criesfield work [25] on the co-rotational formulation

has been used to provide to the highly accurate finite element
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FIGURE 1. LENGTH OF AN UNDEFORMED FIBER

the large deflection compliance required by hinged rotor blade

modeling. It is worth noticing here that equations of motion

have been derived in the rotational frame, in order to catch all

rotatory effects in the element definition.

A brief theoretical recall of the equations of motion devel-

opped in this research is given, emphasizing the geometrical

non-linearity of the strain field and the introduction of shear

effects. Then, the specific 1D Finite Element formulated gathers

efficiently in a new consistent Beam Advanced Model all the

effects encountered by a composite rotating blade with arbitrary

cross-sections and shapes. At last numerical and experimental

results are provided to illustrate the model capacities.

THEORY

By assumption the neutral fiber is taken as the reference axis.

The pure torsion motion is considered as independent from bend-

ing, longitudinal and coupling induced torsion motions and is ap-

plied separately. A second order approximation scheme is used

to derive non-linear equations of motion. Lagrange’s equations

are recalled here as they constitute a very common way to deter-

mine equations of motion using Hamilton’s principle applied to

strain and kinetic energies. The conservative and homogeneous

equations of motion are given by:

∂

∂ t

(

∂T

∂ q̇i

)

−
∂T

∂qi

+
∂U

∂qi

= 0 (1)

Beam strain field

The dimensional reduction introduced by beam theories re-

sults in the limitation of the strain field to fibers axial elongation

(and to the cross-section torsion angle). For initially curved beam

one has to consider only a short piece of the beam, with a length

dx, considered as straight. For twisted beam, with a twist angle

per unit length of θ ′, the fiber length calculation is illustrated in

Fig. 1. The length of an unspecified fiber M1M2 is then:

∣

∣

#         —

M1M2

∣

∣=

(

1+
1

2
(η2 +ξ 2)θ ′2

)

dx (2)
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FIGURE 2. DECOMPOSITION OF BEAM DEFORMATION

The initial R frame, defined by its origin N and its leading

axes
#—

x ,
#—

ξ and
#—

η , is used to describe the displacement field of

one of the beam cross-section (Fig. 2). The cross-section motion

is applied in two steps: first it undergoes the torsion motion rep-

resented by a twist angle φ around the shear center T , then the

elastic center N is moved by longitudinal motion u and bending

motions v and w.

Considering a point M of the initial cross-section, M′ is

its counterpart after torsion motion and M′′ its counterpart af-

ter bending and axial motions. M and T are simply linked by

their coordinates in initial R frame respectively 〈0,ξ ,η〉 and

〈0,ξt ,ηt〉. M′ an T are linked in the twisted frame by the same re-

lation which is rotated by the angle φ when expressed in R frame.

Introducing small bending angles φξ around
#—

ξ and φη

around
#—

η , one can retrieve the link between M′ and M′′ with

ηM′ and ξM′ the coordinates of M′ in R frame.
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
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(3)

The length of the fiber M1M2 after all motions being ap-

plied to cross-sections can be deduced by decomposing the vec-

tor
#          —

M′′
1 M′′

2 .
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M′′
1 M′′

2 =
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M′′
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#       —
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(5)

All calculations achieved, one can write the strain field of

a cross-section, with linear and non-linear parts containing cou-

pling terms between each of the motions. k and h are two con-

T1

N

O

N1

x #—xx+u
v
w

#—

ξ

M′′
1

#—

ξ

#—η#—η

φ
Ω

#—

X

#—

Z
#—

Y

FIGURE 3. CROSS-SECTION DISPLACEMENT FIELD

stants independent from motion parameters.

εl = u′−ξ φ ′
η +ηφ ′

ξ + kθ ′φ ′ (6)

εnl =
u′2

2
+

v′2

2
+

w′2

2
+

φ 2
η

2
η2θ ′2 +

φ 2
ξ

2
ξ 2θ ′2 +hφ ′2

+ξ 2
φ ′2

η

2
+η2

φ ′2
ξ

2
+(ξ −ξt)xφ ′

ξ φ ′

+(η −ηt)xφ ′
η φ ′+ξ θ ′u′φξ +ηθ ′u′φη +ηu′φ ′

ξ

−ξ u′φ ′
η +ξ ηθ ′φξ φ ′

ξ −ξ ηθ ′φη φ ′
η +ξ ηθ ′2φξ φη

−ξ ηφ ′
ξ φ ′

η −ξ 2θ ′φ ′
η φξ +η2θ ′φη φ ′

ξ

(7)

Timoshenko’s beam theory permits to link bending angles

and lateral displacements :

φη = v′+Cξ , φξ =−w′+Cη (8) , (9)

Beam velocity field

The fixed frame R0 is defined by O,
#—

X ,
#—

Y and
#—

Z in Fig. 3.

The speed of rotation of the beam around
#—

Z is Ω. Point O co-

ordinates in R frame is 〈xA,ξA,ηA〉. Using Eqn. (3), one can find

the position of a point M1 after application of the displacement

field.

#       —

OM′′
1 =

#   —

ON +
#     —

NN1 +
#      —

N1T1 +
#       —

T1M′
1 +

#          —

M′
1M′′

1 (10)
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(
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η

2

)
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(
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φ 2

ξ

2

)
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
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


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Introducing
#           —

ΩR1/R0
the rotational vector expressed in R frame,

the velocity of point M1 is then :

#    —

VM1
=

∂
#       —

OM′′
1

∂ t
+

#           —

ΩR1/R0
∧

#       —

OM′′
1 (12)

∂
#       —

OM′′
1

∂ t
=







u̇+ηφ̇ξ −ξ φ̇η

v̇− (η −ηt)φ̇
ẇ+(ξ −ξt)φ̇







R

(13)

#           —

ΩR1/R0
=







Ω1

Ω2

Ω3







R

(14)

Kinetic energy

Kinetic energy is directly calculated from the velocity field

along the beam :

T =
1

2

∫

V
ρV 2

MdV (15)

Kinetic energy terms can be gathered depending on their or-

der and their derivation with respect to time. 2nd order “velocity”

terms lead to define a mass matrix. The stiffness matrix can be

obtained with 2nd order “displacement” terms, while cross prod-

ucts between velocity and displacement terms make appear the

gyroscopic matrix. At last first order “displacement” terms cor-

respond to centrifugal force work. Other terms disappear when

Lagrange’s equations are applied.

T = Tmass +Tsti f f +Tgyro +Tc f +Tother (16)

Strain energy

The total strain energy is the sum of the pure torsion strain

energy resulting from the angle of torsion φ around the shear

center T and characterized by the torsion constant JT , and of the

strain energy due to fibers elongation.

U =UT +US (17)

UT =
1

2

∫

L
GJT φ ′2dx (18)

US =
1

2

∫

V
Eε2dV (19)

As the strain field can be decomposed in a linear and a non-

linear part, both shear dependent (Eqns. (8) (9) in (6) (7)), the

resulting strain energy should be divided as well :

US =Ulin +Unl +Uho +Ushear (20)

The classical linear strain energy comes from linear terms

cross-products:

Ulin =
1

2

∫

V
Eε2

l dV (21)

The effects of the initial stress σ0 are brought by non-linear

terms. Resulting strain energy is responsible for the stress stiff-

ening of the beam.

Unl =
∫

V
EεlεnldV =

∫

V
σ0εnldV (22)

The part of strain field coming from transverse shear

(Eqns. (24) (25)) produces a shear energy which is directly linked

to Timoshenko’s beam theory and its shear coefficients kξ and kη

for each bending axis :

Ushear =
1

2

∫

V
(2σxξ εxξ +2σxη εxη)dV (23)

2εxξ =−φη + v′ , 2εxη = φξ +w′
(24) , (25)

T 2
ξ

kξ S
=
∫

σxξ dS ,
T 2

η

kη S
=
∫

σxη dS (26) , (27)

with Tξ and Tη the transverse forces applied to the cross-section

and S its area. kS represents the equivalent sheared area also

often called “reduced section”.

Writing transverse shear stresses one can finally obtain the

shear energy.

σxξ = 2Gkξ εxξ , σxη = 2Gkη εxη (28) , (29)

Ushear =
1

2

∫

V
4G(kξ ε2

xξ + kη ε2
xη)dV (30)

Remaining high order terms Uho can be neglected regarding

to the approximation scheme.

Equations of motion
Introducing results from Eqns. (16) and (17) in Eqn. (1)

the final equations of motion governing the rotating beam move-

ments can be formed.

Mq̈+C(Ω)q̇+
(

K +KG(σ0)−KS(Ω
2)
)

q = FC(Ω
2)+Fext (31)

Conveniently the matrix form of the equations makes appear

classical mass matrix M, including rotatory inertia, and stiffness

matrix K, including shear and torsion stiffness. C is the gyro-

scopic matrix responsible for the Coriolis Effect acting on ro-
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tating beams. Two additional stiffness matrices are defined: KG

is the stress stiffening matrix due to centrifugal load, KS is the

spin softening matrix that counteracts KG in the rotating frame

to equilibrate the stiffness of the beam. FC and Fext are respec-

tively the centrifugal forces vector and the external forces vector

applied to the beam.

FINITE ELEMENT APPROACH

A Beam Advanced Model (BAM) is proposed in this paper

based on a highly accurate finite element. This element has to

minimize the number of DoF needed for a whole blade model

since it will have to fit into a comprehensive rotorcraft analysis

code in a second step of the model development. It takes prop-

erly into account shear effects avoiding though the shear lock-

ing numerical phenomena. It has some non-classical DoF for a

higher accuracy and is fully compliant with numerical methods

requirements of articulated rotor such as the co-rotational formu-

lation [25]. Moreover this element is devoted to rotational frame

studies in which vibrations of helicopter blades occur.

Formulation of the finite element

The choice of shape functions is one of the main issues

when formulating a FE, conditioning DoF that will be included

in the model, accuracy of the results and complexity of the

model.

In order to respect the equilibrium equations in the case of

axial and torsion motions, the BAM FE has to keep different

the nodal slopes of two adjacent FE. Consequently using such

a FE requires to have 10 DoF at each node (Fig. 4). However

it should be mentioned that another solution consists in using

a cubic isoparametric FE composed of four nodes having each

the classical 6 DoF. Such a FE permits modeling a step-section

beam with the same accuracy, but increases the number of nodes

making the numbering delicate to manage. The first approach is

retained because the numerical implementation is easier to carry

out and the number of DoF required is lower.

For lateral displacements, classical cubical shape functions

are chosen in order to link corresponding bending angles. The

BAM FE requires also cubical shape functions for longitudinal

displacement and for torsion motion.

u(x) = a1 +a2x+a3x2 +a4x3 (32)

v(x) = a5 +a6x+a7x2 +a8x3 (33)

w(x) = a9 +a10x+a11x2 +a12x3 (34)

φ(x) = a13 +a14x+a15x2 +a16x3 (35)

φ

φη

u

w

v

u′r , φ ′
r

u′l , φ ′
l φξ

FIGURE 4. BAM DEGREES OF FREEDOM FOR ONE NODE

Nodal displacements and their slopes constitute the DoF of

the FE. They are related to shape functions by boundary con-

ditions. First 6 DoF are classical 3D beam DoF used to locate

and orientate each node in space. The 4 remaining DoF are the

derivatives of longitudinal displacement and torsion angle com-

ing from left-side element and right-side element (resp. l and r

subscripts). Each node has to separate their contributions. The

BAM FE is then related to 20 DoF.

〈

δN

〉

=
〈

u1,v1,w1,φ1,φξ 1,φη1,u
′
1l ,u

′
1r,φ

′
1l ,φ

′
1r,

u2,v2,w2,φ2,φξ 2,φη2,u
′
2l ,u

′
2r,φ

′
2l ,φ

′
2r

〉

(36)

Coefficients of Eqns. (32) and (35) are easily found using el-

ement boundary conditions for longitudinal and torsion motions

(Eqns. (37) to (40)) . For bending motions, shear effects have to

be added in order to correctly derive shape functions coefficients.

This step is described in a dedicated section.

u(0) = u1 , u(L) = u2 (37)

u′(0) = u′1r , u(L) = u′2l (38)

φ(0) = φ1 , φ(L) = φ2 (39)

φ ′(0) = φ ′
1r , φ(L) = φ ′

2l (40)

Highly accurate beam element

Shape functions (32) to (35) are linear compositions of

Hermite’s cubical functions (see Fig. 5) which involve the

derivatives of each motion in the overall description of the beam

elastic behavior. This is the case in particular for the nodal

slopes of longitudinal and torsion motions. The interest is to be

able to let them free when connecting two beam elements, and

doing so to ensure torque and axial load transmission between

two elements with different cross-sectional characteristics,

with no need for a mesh refinement around the transition zone.

The accuracy of the beam model is then highly increased for

composite blades with a axial-torsion-bending coupled behavior.
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FIGURE 6. TORQUE AND AXIAL LOAD TRANSMISSION

The demonstration of the advantages of the BAM FE is quite

simple. Fig. 6 illustrates torque and axial load (resp. M and

σ ) transmission between two cylindrical elements with different

radius and made of two different materials. Strength of material

laws give Eqns. (41) to (44).

M1 = E1I1
∂φ1

∂x
, M2 = E2I2

∂φ2

∂x
(41) , (42)

σ1 =
E1

S1

∂u1

∂x
, σ2 =

E2

S2

∂u2

∂x
(43) , (44)

Torque and longitudinal load are to be transmitted from ele-

ment 1 to element 2. It is assumed that E1I1 6= E2I2 and
E1
S1

6= E2
S2

.

This implies that the derivatives of longitudinal and torsion mo-

tions on each side of the common node are not equal.

∂u1

∂x
6=

∂u2

∂x
,

∂φ1

∂x
6=

∂φ2

∂x
(45) , (46)

In Standard Beam FE (SdB) with linear shape functions

and 6 DoF per node, these derivatives can not be included

in the formulation. To get the same range of accuracy when

performing a clamped-free dynamic analysis looking for torsion

and longitudinal modes, one must use much more elements with

a SdB model.

Table 1 gives some results for the two cylinders example.

Reference results are obtained using a high number of beam

elements, both BAM and SdB converging toward this solution.

Cylinders characteristics : Length L1 = L2 = 1m, Ra-

dius r1 = 0.1m and r2 = 0.05m, Material characteristics

E1 = 2.1011N and E2 = 7.1010N, ρ1 = 7800Kg.m−3 and ρ2 =
2000Kg.m−3.

TABLE 1. FREQUENCIES OF FIRST MODES OF THE TWO

CYLINDERS EXAMPLE

Mode type Bend. 1 Bend. 2 Tors. 1 Tors. 2 Longi. 1

Ref. results 70.7197 147.419 752.791 949.289 1117.99

SdB 2 elem.

12 DoF

71.0376

(0.450%)

148.458

(0.705%)

819.160

(8.816%)

1062.49

(11.92%)

1196.71

(7.041%)

SdB 10 elem.

60 DoF

70.7223

(0.004%)

147.445

(0.017%)

755.4836

(0.358%)

953.787

(0.474%)

1121.19

(0.286%)

BAM 2 elem.

20 DoF

71.0392

(0.452%)

148.465

(0.709%)

752.826

(0.005%)

949.395

(0.011%)

1118.02

(0.002%)

BAM 4 elem.

40 DoF

70.7573

(0.053%)

147.657

(0.161%)

752.792

(0.000%)

949.290

(0.000%)

1117.99

(0.000%)

These results clearly show the benefits of BAM for torsion

and longitudinal modes. With only 2 elements (the minimum

number of elements required for this problem) BAM is right on

the reference results while SdB is far from the converged solu-

tion. It is worth noticing that accuracy for bending modes is

almost the same for the two models. Looking for an acceptable

solution with SdB (e.g. less than 0.5% of relative error) 10 ele-

ments are needed. Increasing the accuracy for BAM on bending

modes requires 4 elements. Finally, less DoF are needed with

BAM to get the same range of accuracy on any kind of mode.

Shear locking free element

Transverse shear effects modify the beam behavior in bend-

ing motions, adding cross-section rotations to ones produced

by lateral displacements. In Timoshenko’s theory lateral dis-

placements and bending angles are kinematically linked together

trough Eqns. (8) and (9). This relation between bending motions

parameters can be translated numerically by the field consistence

approach (see [21]).

Focusing on only one bending motion, Fig. 7 exhibits how

forces and momentum are balanced within a short piece of beam.

Equations (24), (26) and (28) can be combined to retrieve the

classical relation between the shear transverse force T and the

supplementary shear rotation angle Cξ .

T =Cξ kξ SG (47)

Static equilibrium and strength of material laws give the follow-

ing relations:

∂T

∂x
= 0 ,

∂M

∂x
= T (48) , (49)

∂φη

∂x
=

M
(50)
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FIGURE 7. BEAM EQUILIBRIUM

Deriving Eqn. (8) gives:

∂ 2φη

∂x2
=

∂ 3v

∂x3
(51)

Eventually Eqns. (47) to (51) permit to link the shear coefficient

kξ and the shear rotation angle:

Cξ =
EI

kξ G

∂ 3v

∂x3
(52)

As for longitudinal displacement and torsion angle, shape

function coefficients are deduced from boundary conditions at

element nodes, Eqns. (53) and (54).

v(0) = v1 , v(L) = v2 (53)

φη(0) = φη1 ,φη(L) = φη2 (54)

Deriving the shape function gives:

∂v

∂x
= a6 +2a7x+3a8x2 = φη −Cξ (55)

∂ 3v

∂x3
= 6a8 (56)

Using aξ =
12EI

GKξ SL2
the shear coefficient introduced by [26],

one can finally link the shear rotation angle with the shape

function coefficients. The shear coefficient aξ is conveniently

almost null for long slender beams for which shear effects can

be neglected, and ensures to retrieve a classical Euler-Bernoulli

model in this case, without shear locking effect.

Cξ =
L2aξ

2
a8 (57)

#—η

#—

ξ
TN

#—

Y

#—

Z

FIGURE 8. TWISTED AND CURVED BEAM

VALIDATION OF BAM

The BAM FE is implemented in MATLAB to assess its ca-

pabilities. Model validation is based on both numerical and ex-

perimental investigations.

Numerical validation

The assessment of the BAM FE has to be methodical

in order to validate separately all the assumptions that were

made and to investigate all non-classical effects encountered by

complex beams. In this scope some academic test beams were

defined specifically for this purpose. One of the most interesting

beams is a highly twisted homogeneous curved beam with a

semi-disc cross-section (Fig. 8). This beam is clamped-free,

rotating around its
#—

Z axis at a Ω speed of rotation.

Beam characteristics : Length L = 1m, Diame-

ter d = 70mm, Twist angle at tip θ = 90, Material

characteristics E = 2 1011Pa, ν = 0.3, ρ = 7800kg.m−3,

Shear coefficients ky = 0.766 kz = 0.863, Torsion con-

stant JT = 4.46 10−7m4.

TABLE 2. NATURAL FREQUENCIES OF THE 10 FIRST MODES

AT Ω = 100rad.s−1

Mode Type InP 1 OuP 1 InP 2 OuP 2 InP 3

SOLID186 29.6596 45.3156 160.809 201.843 504.470

BEAM44
28.9249

(-2.48%)

44.6130

(-1.55%)

157.071

(-2.32%)

200.120

(-0.85%)

494.204

(-2.04%)

BAM
28.7738

(-3.02%)

44.8059

(-1.12%)

158.077

(-1.70%)

202.662

(0.41%)

497.045

(-1.47%)

Mode Type OuP 3 InP 4 OuP 4 InP 5 OuP 5

SOLID186 609.725 914.543 1031.72 1230.98 1662.65

BEAM44
601.261

(-1.65%)

906.615

(-0.87%)

1010.01

(-2.10%)

1212.09

(-1.53%)

1647.14

(-0.93%)

BAM
601.261

(-1.39%)

905.701

(-0.97%)

1017.94

(-1.34%)

1211.01

(-1.62%)

1657.16

(-0.33%)
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FIGURE 10. TIP DISPLACEMENT UNDER CENTRIFUGAL

LOADS

Reference results are coming from a ANSYS 3D model

made of 6400 SOLID186 elements. SOLID186 element is a

hexagonal element with 20 nodes, 6 DoF per node. Two 1D

models are compared: BAM (40 elements) and an ANSYS

BEAM44 model (40 elements). BEAM44 is a 3D beam element

with 2 nodes, 6 DoF per node, compliant with arbitrary cross-

sections and rotating frame.

Table 2 presents the 10 first natural frequencies at

Ω = 100rad.s−1. Figure 9 is a Campbell diagram for the first

two modes up to 200rad.s−1. Modes are named whether they

have a deformed shape mainly in the XY plane (InP) or out of

this plane (OuP).

Correlation between reference 3D model results and BAM is

very satisfying. Frequency results keep in the range of ±3%

for the ten first modes. Mode shapes, not represented here,

are also well computed. BAM and BEAM44 have comparable

accuracy ranges as torsion motion is not dominant in mode

shapes. However this comparison permits to validate the good

behavior of BAM FE on a tricky test case.

Another interesting result is the tip displacement under

centrifugal loads. Displacements for
#—

X ,
#—

Y and
#—

Z directions are

represented in Fig. 10. It is very important to correctly compute

those displacements both for pure static analysis and for stress

stiffening computation which modifies significantly the dynamic

behavior of the beam. Again BAM and BEAM44 results are

very close. Both beam models slightly underestimate the tip

displacement, and doing so underestimate the axial stress and

the resulting stiffening of the beam. This statement can be seen

in Tab. 2 noticing that frequencies are slightly below the ones

computed with the 3D model.

All those results show that BAM is well suited for curved

and twisted rotating beams. In the case of actual helicopter

blades, the model encounters an aerodynamic load field in addi-

tion to centrifugal loads. Moreover it has to take into account the

composite cross-section. However this test case is quite repre-

sentative of the BAM FE ability to model complex shaped blades,

with a very good range of accuracy.

Experimental validation
The experimental assessment of BAM is scheduled on

the Eurocopter Blue EdgeTM blade which has a very specific

double swept plan shape (Fig. 11) optimized for acoustic and

performance. This blade takes advantage of a new composite

structure for fatigue and resistance, and of innovative aerody-

namic features including an increase of the twist angle along

the span. It gathers all the modeling issues the BAM FE has

been designed for. Only normalized results are available in

accordance with Eurocopter confidentiality policy.

Impulsive tests The first tests performed with the Blue

EdgeTM blade are impulsive tests for modal characterization.

The blade is hung by sandows to ensure “pseudo” free-free

boundary conditions. Measurement equipment is compound of

11 accelerometers distributed span wise, on the leading edge, on

the trailing edge and on the 25% chord axis. The natural modes

are excited with an impact hammer. The free-free dynamic

analysis is achieved with BAM. Normalized natural frequencies

are presented in Tab. 3 and first normalized deformed shapes in

Fig. 12.

This assessment has to be analyzed from a qualitative point

TABLE 3. NORMALIZED FREQUENCIES OF FIRST FREE-

FREE MODES

Mode type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Exp. results 1.000 3.26 5.81 6.01 11.74

BAM
0.998

(-0.23%)

3.29

(0.89%)

5.56

(-4.25%)

6.03

(0.31%)

11.90

(1.29%)
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FIGURE 12. NORMALIZED FIRST NATURAL MODE SHAPES

of view since two major issues are encountered. First one is the

difficulty to catch properly the global deformation of the blade

experimentally. Only projected deformed shapes are available,

coupling between motions is not measured. Second issue deals

with the position of the shear center which depends on the

boundary conditions. This position is slightly moved whether

clamped-free conditions (as when mounted on a rotor hub) or

free-free conditions are used. Anyway, these tests are important

to assess the model for dynamic purpose in the worst conditions.

From Tab. 3, it can be shown that BAM is not too far from

measurements, emphasizing the fact that the overall character-

istics of the blade are well represented. Figure 12 illustrates

the good prediction of the projected deformed shapes, even if

the first torsion mode seems to be difficult to apprehend. Those

results illustrates the robustness of BAM and its ability to model

with efficiency the dynamic of swept blades.
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FIGURE 13. TIP DISPLACEMENT VS. PITCH ANGLE

Bending test The second experimental test performed

is a bending test at rest, looking for tip displacement. The blade

is rigidly attached on a test bench by its root. The test bench is

driven in term of pitch angle. For each pitch angle a reference

position is measured while the blade is bending under its own

weight Mb. Then an additional mass is hung at 90% of the radius

R, and the relative tip displacement is measured. Two different

masses were used. A synthesis of the results are presented in

Fig. 13.

The global results are very satisfying, demonstrating a good

level of prediction of the bended shapes with BAM. The static

calculation of the deformation of a blade is essential when cou-

pling an elastic model to an aerodynamic code since the flow field

is highly influenced by the blade position. Even if those results

should be deepened and extended to torsion motion, they empha-

size the accuracy of BAM when large deflections are needed as it

is the case here, with a relative tip displacement close to 10% of

the blade radius. One can notice the slight differences between

two opposite positions of the blade. This is due to the non-

homogeneity of cross-sections. Some material non-linearities

could also explain the increase of the variation between BAM

and experimental results at a pitch angle close to 200deg. How-

ever since the stiffness of a rotating beam is mainly driven by its

stress stiffening, this error should vanish for a whirl tower test.

CONCLUSION

Beam theories have been studied for a long time. Though,

they can be enhanced for some specific applications which

require modeling non-classical effects such as rotational effects,

shear effects or non-linear geometric effects. In the field of

helicopter blade modeling this research aimed to design a new

beam FE with a high level of accuracy. Enhancements were

provided both for the establishment of the equations of motion

and for the FE formulation.
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Numerical investigations were performed to assess the FE.

The test beam with emphasized characteristics compared to an

actual blade has exhibited a very good behavior of the Beam Ad-

vanced Model FE, and a good accuracy both on mode shapes and

frequencies. First experimental results are provided to assess the

representativeness of the model for an actual blade design such

as the Eurocopter Blue EdgeTM blade. Some extended results,

including whirl tower test, will be discussed in a further paper.
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