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Abstract

This note investigate some finiteness properties of the category U of unstable modules. One shows finiteness

properties for the injective resolution of finitely generated unstable modules. One also shows a stabilization result

under Frobenius twist for Ext-groups.

1 Introduction

This note investigates some finiteness properties of the category U of unstable modules. For simplicity the case of the
prime 2 will only be considered. The main finiteness property of U is to be locally noetherian [MP67], see also [LZ86].
This means that if M is a finitely generated unstable module any sub-module is also finitely generated. Injective
objects of the category are described in [LS89]. It is natural and useful to ask for some control on injective resolutions.
Some of the results of the note could have been written earlier. They are implicit in some places, however it is worth
to present them all at the same time and explicitely. The first result of the paper is:

Theorem 3.1. Let M be an unstable finitely generated module. It has an injective resolution I• such that any Ik is
a finite direct sum of indecomposable injective unstable modules.

This is to be compared with an analogous theorem in the category F of functors from finite dimensional F2-vector
spaces to F2-vector spaces [S94, FLS94, ER03]:

Theorem 1.1. Let F be a polynomial functor taking finite dimensional values. There exist an injective resolution I•

of M such that any Ik is a finite direct sum of indecomposable injective functors.

In the sequel such injective resolutions (for both categories) will be called of finite type. The proof of 3.1 uses 1.1 but
is not a direct consequence.
The link between 3.1 and 1.1 is done by the functor f : U → F [HLS93]. This functor induces an equivalence
U → U/N il ∼= Fω of the quotient category of U by the full subcategory N il of nilpotent modules to the category of
analytic functors. It has a right adjoint m, the composition ℓ = m ◦ f is the localization functor away from N il. The
natural map M → ℓ(M) is initial for morphisms M → L, L being N il-closed i.e. such that ExtiU(N,L) = {0} for
i = 0, 1, any N ∈ N il [Gab62].
The functor ℓ is left exact and admits right derivatives ℓi. In some interesting cases described later the ℓi are computed
by Mac-Lane homology. Here is a general result:

Theorem 3.2. If M is a finitely generated unstable module the unstable modules ℓi(M) are finitely generated unstable
modules.

This is related to 3.1 but not (at least directly) equivalent.
Recall the Frobenius twist functor Φ on the category U [S94]. The stabilization result which follows is a direct corollary
of 3.1:

Theorem 3.3. Let M and N be two finitely generated unstable modules. Consider the direct system induced by the
maps Φk+1M → ΦkM :

. . . → ExtiU(Φ
kM,N) → ExtiU (Φ

k+1M,N) → . . .

For k large enough this map is an isomorphism, and the terms are isomorphic to ExtiF(f(M), f(N)).
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A similar stabilisation result holds in the category of strict polynomial functors for the map induced by the Frobenius
twist [FFSS99], F and G denoting strict polynomial functors of the same degree, and F (k) being the k-th Frobenius
twist: the system

. . . → ExtiP(F
(k), G(k)) → ExtiP(F

(k+1), G(k+1)) → . . .

stabilizes for k large. But in in general the colimit is not isomorphic to ExtiF (O(F ),O(G)), O : P → F is the forgetful
functor. However, in interesting cases it is isomorphic, it is true in particular when when F and G are the canonical
liftings of the simple objects in F in the category P . Another difference is that on the right hand side of the Ext-group
the module does come with a Frobenius twist: one has just N instead of Φk(N). Again in some interesting cases it is
possible to replace N by Φk(N). The main reason to keep N is that the colimit considered in the corollary is more
natural for topological applications.
It is also worth to note that it is not clear to the authors how to prove the result using projective resolutions. The
category U is locally noetherian. Thus, given a finitely generated module M , it is possible to construct a projective
resolution of M such that each term of the resolution is a finite direct sum of indecomposable projective modules.
However when replacing M by Φk(M), if the finite generation is preserved, one has no control on the size of a given
term in the resolution.

In particular if ExtiF(f(M), f(N)) ∼= {0} for k large enough ExtiU(Φ
k+1M,N) ∼= {0}. This case applies for i = 1 in

to the following case. Let Un, n ∈ N, the Krull filtration on U (see the next section). Let M be a finitely generated
unstable module, assume M ∈ Un/Un−1. Let R be the smallest sub-module in Un such that M/R ∈ Un−1. The
following is a corollary of 3.3:

Proposition 1.2. For k large enough the F2-vector space Ext1U (Φ
k(R ⊗R),M) is trivial.

This is applied in [CGS14]. This statement can be proved directly using only Steenrod operations, however it is much
more tedious.

2 Recollections: the nilpotent filtration, the Krull filtration and func-

tors

This section recalls briefly facts about the category U . One refers mostly to [S94] and [K95] for all of this material The
subcategory N ils, s ≥ 0, of U is the smallest thick subcategory stable under colimits and containing all s-suspensions
of unstable modules.

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

Proposition 2.1. Any unstable module M has a convergent decreasing filtration {Ms}s≥0 with Ms/Ms+1
∼= ΣsRs(M)

where Rs(M) is a reduced unstable module, i.e. which does not contain a non trivial. suspension.

An unstable module is nilpotent if it belongs to N il1. The following is proved in [S94] Lemma 6.1.4, see also [K95]:

Proposition 2.2. Let M be a finitely generated unstable module. Then the Ri(M) are finitely generated and trivial
if i is large enough.

The category of unstable modules U , as any abelian category, has a Krull filtration. It is by thick subcategories which
are stable under colimits

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

The category U0 is the largest thick sub-category generated by simple objects and stable under colimits. It is the
subcategory of locally finite modules, M ∈ U is locally finite if the span over Ap of any x ∈ M is finite. Having defined
by induction Un one defines Un+1 as follows. One introduces the quotient category U/Un whose objects are the same
of those of U but where morphisms in U that have kernel and cokernel in Un are formally inverted. Then (U/Un)0 is
defined as above and Un+1 is the pre-image of this subcategory in U via the canonical projection functor, see [Gab62]
for details. One has

Theorem 2.3. Let M ∈ U and Kn(M) be the largest sub-object of M that is in Un, then

M = ∪nKn(M)

Let us give some examples:
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• ΣkF (n) ∈ Un \ Un−1, the unstable modules F (n) are the canonical generators of U , generated in degree n by ιn
and Fp-basis P

Iιn, I an admissible multi-index of excess less than n;

• Λn(F (1)), F (1)⊗n ∈ Un \ Un−1...

There is a characterization of the Krull filtration in terms of the functor T̄ introduced by Jean Lannes. The functor
TV , V being an elementary abelian p-group, is left adjoint to M 7→ H∗BV ⊗M . If V = F2 denote it by T . As H∗BZ/2
splits up, in U , as F2⊕ H̃∗BZ/2 the functor T is naturally equivalent to Id⊕ T̄ . Below are the main properties of TV :

Theorem 2.4 ([La92, S94]). The functor TV commutes with colimits (as a left adjoint). It is exact. Moreover there
is a canonical isomorphism

TV (M ⊗N) ∼= TV (M)⊗ TV (N)

If M2 = ΣF2 it writes as TV (ΣM) ∼= ΣTV (M).
Below is the characterisation of the Krull filtration alluded to above:

Theorem 2.5. The following two conditions are equivalent:

• M ∈ Un ,

• T̄ n+1(M) = {0}.

A very nice proof of this result is in [K13], as well as in Nguyen The Cuong’s thesis [NTC14].

Corollary 2.6. If M ∈ Um and N ∈ Un then M ⊗N ∈ Um+n

Let F be the category of functors from finite dimensional F2-vector spaces to all vector spaces. Define a functor,
[HLS93], f : U → F by

f(M)(V ) = HomU (M,H∗(BV ))∗ = TV (M)0

Let Fn be the sub-category of polynomial functors of degree less than n. It is defined as follows. Let F ∈ F , let
∆(F ) ∈ F defined by

∆(F )(V ) = Ker(F (V ⊕ Fp) → F (V ))

Then by definition F ∈ Fn if and only if ∆n+1(F ) = 0. As an an example V 7→ V ⊗n is in Fn. The following holds for
any M ∈ U

∆(f(M)) ∼= f(T̄ (M)) ∼= T 0
V (M)

Thus, the diagram below commutes:

U0

f

��

�

�

// . . . �
�

// Un−1

f

��

�

�

// Un

f

��

�

�

// U

f

��

F0
�

�

// . . . �
�

// Fn−1
�

�

// Fn
�

�

// F

An injective unstable module always splits up as the direct sum of a reduced module and of a nilpotent one, moreover
(by definition) there are no non trivial maps from a nilpotent module to a reduced one ([S94] chapter 2 and 3). Thus,
any injective resolution I• in the U of an unstable module M has the following properties.

Proposition 2.7. For any k Ik writes as a direct sum Rk ⊕N k, the first module being reduced and the second one

nilpotent. The differential ∂k : Ik −→ Ik+1 writes as
(

∂k

r
0

ρk ∂k

n

)

: Rk ⊕ N k −→ Rk+1 ⊕ N k+1. The k-th cohomology

module of the quotient complex R• is (by definition) the k-th derived functor ℓk(M) of the localization functor away
from N il applied to M .

The functor f has a right adjoint m, the composition ℓ = m◦ f is the localization functor away from N il. The natural
map M → ℓ(M) is initial for M → L, L being N il-closed i.e. such that ExtiU(N,L) = {0} for i = 0, 1, any N ∈ N il
[Gab62]. In particular the localization of a nilpotent unstable module is trivial. It follows that:

Hk+1(N •) ∼= ℓk(M)

and the modules ℓk(M), k ≥ 1, are nilpotent (this can be seen directly). Moreover as the functor T preserves reduced
modules and nilpotent modules it commutes with ℓ one gets T (ℓ(M)) ∼= ℓ(T (M)). Thus because of 2.5
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Proposition 2.8. If M ∈ Un, then ℓi(M) ∈ Un−1, if i > 0.

As the tensor product of reduced injective unstable modules is still injective on has:

Corollary 2.9 (Kunneth formula). Let M and N be two unstable modules then:

ℓk(M ⊗N) ∼= ⊕i+j=k ℓi(M)⊗ ℓj(N)

One keeps the notation introduced above. Assume the resolution to be minimal, Ik+1 is the injective hull of
coker(∂k−1). On the other hand Rk+1 is the injective hull of the quotient R′k of coker(∂k−1

r ) by its largest nilpotent
submodule N(coker(∂k−1

r )). The results which follow are standard homological algebra.

Proposition 2.10. Let N ′k be the largest nilpotent submodule of coker(∂k−1). One has the following exact sequence:

{0} → ℓk(M) → coker(∂k−1
n ) → N ′k → ℓk+1(M) → {0}

If the resolution is minimal the unstable module Rk+1 is the injective hull of R′k, Nk+1 is the injective hull of N ′k.

If one is given an injective resolution I• of an unstable module M , f(I•) is an injective resolution of f(M). If moreover
one assumes M to be finitely generated then f(M) is a finite functor, using Kuhn’s terminology: it is polynomial and
takes finite dimensional values [K94-1]. Then 1.1, implies that a minimal resolution of f(M) is of finite type. This
implies easily that the reduced part of a minimal resolution of M is of finite type and in fact:

Proposition 2.11. Let M be a finitely generated unstable module, and I• a minimal injective resolution. Then f(I•)
is a minimal injective resolution of f(M).

As said it follows from what precedes and in particular if R ia a reduced injective unstable module the localization
R → ℓ(R) is an isomorphism, also if I is injective analytic functor [HLS93] then f ◦m(I) → I is an equivalence.

3 Proofs

One formulates 3.1 in a slightly different way than in the introduction, but equivalent.

Theorem 3.1. Let M be a finitely generated unstable module, there is an injective resolution I• of M in U such that
any Ik is a finite direct sum of modules of the type J(n)⊗H∗V .

In the introduction it is formulated for a minimal injective resolution. In this setting the result will be that Ik is a finite
direct sum of indecomposable injective unstable Ap-modules. Such modules are known to be of the form J(n) ⊗ Lλ,
Lλ being an indecomposable factor of some H∗V , [LS89] and see below. The two formulations are equivalent because
H∗V is a finite direct sum of indecomposable modules. The gain with the first one is that allows to use the functor
TV , instead of the division functor by indecomposable factors Lλ (see below). For what is necessary to the proofs all
of these functors share the same essential properties, however TV is much more manageable.
The indecomposable injective unstable modules are, as is said above, of the form J(n) ⊗ Lλ, where Lλ is a direct
factor in some H∗V . The isomorphism classes of indecomposable reduced injective unstable modules are indexed by
the simple representations over F2 of the groups GLn(F2). These representations are themselves indexed by 2-regular
partitions λ, 2-regular partitions are the strictly decreasing ones. The unstable module J(n)⊗Lλ is the injective hull
in U of of the unstable module ΣnSλ(F (1)); where Sλ is the simple functor in the category F associated to λ, this
functor is of degree |λ| ([PS98, Dj07, K94-2]).

Theorem 3.2. Let M ∈ Un be finitely generated, the derivatives of ℓ, for i > 0, ℓi(M) belong to Un−1. Moreover the
unstable modules ℓi(M) are finitely generated unstable modules.

The first part of the theorem is classical and follows from 2.5 and the commutation of T with ℓ.
The next result is the stabilization theorem:

Theorem 3.3. Let M and N be two finitely generated unstable modules. Then for any i the F2-vector space
ExtiF(f(M), f(N)) is the colimit over k of the F2-vector spaces ExtiU (Φ

kM,N). Moreover for k large enough the
colimit, along the maps Φk+1(M) → Φk(M), of the system:

. . . → . . .ExtiU (Φ
kM,N) → ExtiU(Φ

k+1M,N) → . . .

moreover for k large enough:
ExtiU (Φ

kM,N) ∼= ExtiF (f(M), f(N))
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The proofs of 3.1 and 3.2 will be done at the same time by induction over the Krull filtration. To prove 3.1 it is enough
to prove:

Proposition 3.4. Let M be a finitely generated unstable module and k an integer. There exists only a finite number
of unstable modules ΣnSλ(F (1)) such that ExtkU (Σ

nSλ(F (1)),M) is non trivial, and if it is non-trivial it is finite
dimensional.

Indeed, J(n)⊗Lλ is the injective hull of ΣnSλ(F (1)), and the dimension of the F2-vector space Ext
k
U (Σ

nSλ(F (1)),M)
is greater or equal to the number of occurrences of J(n)⊗ Lλ in the term Ik of a minimal resolution of M .

First step of the proofs of 3.1 and 3.2: U0.

Lemma 3.5. Both 3.1 and 3.2 are true for finitely generated locally finite unstable modules.

That the lemma is true for finitely generated objects in U0 is easy and very classical. The derived functors of the
localization are trivial and one can construct a finite resolution of a finitely generated object M in U0 because the
injective hull EM of M is also finite and thus finitely generated. Moreover, denote by v(M) the largest integer such
that M is trivial in degrees strictly larger than v(M), then v(EM/M) < v(M). This allows to show that minimal
resolution are finite.

Second step of the proofs of 3.1 and 3.2: F (1).

Lemma 3.6. Both 3.1 and 3.2 is true for the unstable module F (1).

This relies on computations in Mac Lane homology and explained in great details in [NTC14]. We give some infor-
mations below that are enough for our purpose.
The unstable modules ℓi(F (1)) are known to belong to U0 2.8, it remains to prove they are finitely generated. In fact,
they are explicitly known, computations depending on Mac Lane homology show that they are finite and thus finitely
generated. This follows from theorem 12.13 of ”Algèbre de Steenrod, modules instables et foncteurs polynômiaux”,
[ER03]. This allows to have some control on the N k using 2.10 and to prove by induction they are finite. It follows
directly from these results that the nilpotent part of the minimal resolution of F (1) is in each degree a finite direct
sum of Brown-Gitler modules.
It remains to show the result for the reduced part: that Rk of the minimal resolution of F (1) is a finite direct sum of
indecomposable injective unstable modules. This is a consequence of the corresponding result in the category F 1.1,
2.11.

Below are given some more informations on the reduced part of the resolution. One starts by a theorem which is
proved in [NTC14]. It is not necessary here but worth to be mentioned.

Proposition 3.7 (A. Touzé [To13, 4.18]). Let S be a simple functor, if Ext∗F(S, Id) is non trivial then the degree of
S must be a power of 2.

One offers a proof different from the one of [To13], it depends on:

Lemma 3.8. Let λ be a 2-regular partition, such that |λ| = n. The functor Λλ ∼= Λλ1 ⊗ . . .Λλt has a filtration whose
sub-quotients are either simple functors of degree m such that there exists h with 2hm = n, either tensor products
F ⊗G) of functors with no constant part (F ({0}) = G({0}) = {0}).

To prove the proposition consider Λλ ∼= Λλ1 ⊗ . . . ⊗ Λλt as a strict polynomial functor and use the classification of
simple objects in P . It follows from a theorem of Steinberg they are of the form, [K02]

S
(i1)
λ1 ⊗ S

(i2)
λ1 ⊗ . . .⊗ S

(it)
λt

where λ1, . . . , λt are 2-regular partitions, i1 < i2 < . . . < it, and S
(i)
λ is the i-th Frobenius twist of the canonical lifting

of the simple functor Sλ ∈ F to P .

The following more precise form of 3.8 is necessary to complete the proof and will be necessary later:

Lemma 3.9. Let λ be a 2-regular partition of the integer n. The composition series of the strict polynomial functor
Λλ has

• one sub-quotient Sλ,
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• all other simple sub-quotients of degree n as polynomial functors are Sµ with µ > λ, for the natural order on
partitions;

• Frobenius twists of functors S
(r)
ν , with 2r|ν| = n;

• non-trivial tensor products.

This result can be deduced easily from various publications, in particular [PS98, Dj07] which do not claim for originality.

Proposition 3.7 follows by induction. As if F and G are functors with no constant part, Ext∗F(F ⊗ G, Id) is trivial,
if Ext∗F(Λ

n, Id) is trivial, Ext∗F(Sλ, Id) will be for all simple functors of degree n by an increasing induction on the
degree and a descending one on the 2-regular partitions of n. The result follows because Ext∗F(Λ

n, Id) is trivial if (and
only if) n is not a power of 2 [FLS94].

Third step of the proofs of 3.1 and 3.2: tensor products and U1.

Proposition 3.10. If 3.1 and 3.2 hold for M and N , they hold for the tensor product M ⊗N .

Theorem 3.2 is true in this case, because of 2.9, it is true for the tensor product M ⊗N .
For theorem 3.1, let I• and J • be injective resolutions of M and N having the required property. The tensor
product H• = I• ⊗ J • is not an injective resolution of M ⊗N . Construct a Cartan-Eilenberg resolution H•,• of H•.
Applying to this double complex the functor HomU (S,−) yields an hypercohomology spectral sequence converging to
Extp+q

U (S,M ⊗N) with E2-term ExtpU(S,H
q).

The unstable moduleHq is a finite direct sum of modules J(k)⊗J(ℓ)⊗H∗V . Thus, the group ExtpU(S,H
q) is isomorphic

to a finite direct sum of groups ExtpU (TV (S), J(k)⊗ J(ℓ)), the F2-vector space V being of bounded dimension as there
are only finitely many factors. For i = p+ q let d be an upper bound of the dimensions.
Suppose now that S is of the form ΣnSλ(F (1)). These groups are trivial as son as n > sup(k + ℓ) or as soon as the
connectivity of TV (Sλ(F (1)), c(TV (Sλ(F (1))) is greater than sup(k + ℓ).

Lemma 3.11. The connectivity of Sλ(F (1)), c(Sλ(F (1))), is λ′
1 + 2λ′

2 + . . . + 2t−1λ′
t−1 − 1 ≥ λ′

1 − 1, λ′ being the
associated partition.

Using the properties of TV
∼= T dim(V ), the decomposition T ∼= F2 ⊕ T̄ . and the fact that Sλ(F (1)) ⊂ H̃∗(Z/2)λ

′1, one
shows that c(TV (Sλ(F (1))) ≥ λ′

1 − d− 1.
As a consequence, for a given V only a finite number of reduced simple unstable modules TV Sλ(F (1)) are of connectivity
less than a given constant.
The result follows.

This proves the theorems for U1. Indeed, they are true for U0, F (1) and by tensor product for any ΣnF (1), and any
finitely generated object object M ∈ U1 enters in a short exact sequence [S98], see also [K13]:

{0} → L′ → M → L⊗ F (1) → L” → {0}

where L,L, L” ∈ U0 and are finitely generated (see [K13] for a generalization). The result follows.

From now on one assumes that the theorems has been proved for objects in Un−1.

Fourth step of the proofs of 3.1 and 3.2: The case of Λn(F (1)).
The following step is the case of exterior powers. One assume the theorems hold for Λk(F (1)), and it holds for
Λk+1(F (1)).
If k is even Λk+1(F (1)) is a direct summand in Λk(F (1))⊗F (1), and 3.10 implies that 3.1 and 3.2 hold for Λk+1(F (1)).

If k is odd the situation is more complicate, one has short exact sequences:

{0} → W(k,1)(F (1)) → Λk(F (1))⊗ F (1) → Λk+1(F (1)) → {0}

{0} → Λk+1(F (1)) → W(k,1)(F (1)) → S(k,1)(F (1)) → {0}

and
{0} → Λk+1(F (1)) → Λk(F (1))⊗ F (1) → DW(k,1)(F (1)) → {0}

{0} → S(k,1)(F (1)) → DW(k,1)(F (1)) → Λk+1(F (1)) → {0}

These exact sequences define W(k,1)(F (1)) and DW(k,1)(F (1)).
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Assume (for the integer k) that ℓi(Λk+1(F (1))), ℓi(S(k,1)(F (1))) are finitely generated and show the result for k + 1.
The same is true for ℓi(W(k,1)(F (1))) and ℓi(DW(k,1)(F (1))).
Using the long exact sequences associated to the above exact sequences one first shows that ℓi(W(k+1,1)(F (1)))

is finitely generated. Then one gets the result for ℓi(Λ(k+2)(F (1))), next for ℓi(S(k+1,1)(F (1))) and finally for
ℓi(DW(k+1,1)(F (1))). This last case is not used in the induction.

The case of the exterior powers follows also from explicit computations [FFSS99].

Last step of the proofs of 3.1 and 3.2.
As the result holds for all exterior powers Λk(F (1)), it holds for tensor products of such modules. Then, 3.9 implies
it holds for any module Sλ(F (1)) |λ| = n and using 3.10 for all ΣnSλ(F (1)).
To finish the proof one uses the following two lemmas and the induction hypothesis on the Krull filtration.

Lemma 3.12. If a reduced unstable module M belongs to Un, ΩM belongs to Un−1.

The proof is left to the reader.

Lemma 3.13. If the theorem holds for a reduced unstable module M of Krull filtration n, and for all unstable of Krull
fitration n− 1 it holds for any submodule N of M so that there exist ℓ with ΦℓM ⊂ N ⊂ M .

This is because M/ΦkM ∈ Un−1.

The proof ends using 2.2 and the following:

Proposition 3.14. A finitely generated reduced unstable R of Krull filtration n has a finite filtration whose quotients
are suspensions of reduced modules of Krull filtration less than n, and whose associated functors are simple (of degree
less than n).

This means that the sub-quotients are or the form ΣnR, for some R so that ΦkSλ ⊂ R ⊂ Sλ for some λ. The required
filtration is obtained as follows. One considers the localization R → ℓ(R), following Kuhn, [K94-2], one knows that
f(R) = f(ℓ(R)) has a finite composition series. The proof is done by induction on the length of the composition series
of f(R). Consider an epimorphism on a a simple functor: f(R) → Sλ, and the associated unstable modules map
R → Sλ(F (1)), and its kernel K which is reduced, and to which one can apply the induction hypothesis.

To finish the proof of the theorem one applies the preceding lemma.

Proof of 3.3 and of the corollary
The proof of 3.3 follows directly from 3.1 from the fact the properties of the adjoint Φ̃ of Φ, and in particular from
the computation Φ̃(L⊗ J(n) ∼= L⊗ J(n/2), (L a reduced injective, and J(n/2) is trivial if n is not an integer). If N i

is a finite direct sum it is clear that for k large enough Φ̃k(N i) is trivial. The use of Φ̃ can be replaced by:

Proposition 3.15. Let M be a finitely generated unstable modules, assume N is nilpotent and has finite nilpotent
filtration. If k is large enough HomU (Φ

k(M), N) ∼= {0}.

Note that in particular a finitely generated module has a finite nilpotent filtration [S94], [K95]. Suppose Nt{0} ∼= {0}

for t > t0. The unstable module ΩΦk(M) is isomorphic to Σ2k−1ΦkΩM , and has trivial image in N if 2k − 1 > t0.
For the corollary, one observes that 3.3 allows to reduce to a computation in the category F . It is enough to show the
following:

Proposition 3.16. Let F be a polynomial functor of degree n, such that F ({0}) = {0}, R the smallest sub-functor
such that F/R is of degree n− 1. Then Ext1F (R⊗R,F ) ∼= {0}.

This last result is proved using the category bi−F , [FFSS99]. This result is used in[CGS14].
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