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Coinduction Up-To in a Fibrational Setting

Filippo Bonchi∗ Daniela Petrişan∗ Damien Pous∗ Jurriaan Rot†

∗LIP, CNRS, ENS Lyon, Université de Lyon, UMR 5668 †LIACS - Leiden University

Abstract—Bisimulation up-to enhances the coinductive
proof method for bisimilarity, providing efficient proof
techniques for checking properties of different kinds of
systems. We prove the soundness of such techniques in a
fibrational setting, building on the seminal work of Her-
mida and Jacobs. This allows us to systematically obtain
up-to techniques not only for bisimilarity but for a large
class of coinductive predicates modelled as coalgebras. By
tuning the parameters of our framework, we obtain novel

techniques for unary predicates and nominal automata, a
variant of the GSOS rule format for similarity, and a new
categorical treatment of weak bisimilarity.

I. INTRODUCTION

A. Coinduction up-to

The rationale behind coinductive up-to techniques is

the following. Suppose you have a characterisation of an

object of interest as a greatest fixed-point. For instance,

behavioural equivalence in CCS is the greatest fixed-

point of a monotone function B on relations, describing

the standard bisimulation game. This means that to prove

two processes equivalent, it suffices to exhibit a relation

R that relates them, and which is a B-invariant, i.e., R ⊆
B(R). Such a task can however be painful or inefficient,

and one could prefer to exhibit a relation which is only a

B-invariant up to some function A, i.e., R ⊆ B(A(R)).
Not every function A can safely be used: A should

be sound for B, meaning that any B-invariant up to A

should be contained in a B-invariant. Instances of sound

functions for behavioural equivalence in process calculi

usually include transitive closure, context closure and

congruence closure. The use of such techniques dates

back to Milner’s work on CCS [21]; a famous example

of an unsound technique is that of weak bisimulation

up to weak bisimilarity. Since then, coinduction up-to

proved useful, if not essential, in numerous proofs about

concurrent systems (see [25] for a list of references); it

has been used to obtain decidability results [8], and more

recently to improve standard automata algorithms [7].

The theory underlying these techniques was first de-

veloped by Sangiorgi [27]. It was then reworked and

generalised by one of the authors to the abstract setting

of complete lattices [24], [25]. The key observation there

is that the notion of soundness is not compositional: the

composition of two sound functions is not necessarily

sound itself. The main solution to this problem con-

sists in restricting to compatible functions, a subset of

the sound functions which enjoys nice compositionality

properties and contains most of the useful techniques.

An illustrative example of the benefits of a modular

theory is the following: given a signature Σ, consider

the congruence closure function, that is, the function

Cgr mapping a relation R to the smallest congruence

containing R. It can be decomposed into small pieces as

follows: Cgr = Trn ◦ Sym ◦ Ctx ◦ Rfl , where Trn is

the transitive closure, Sym is the symmetric closure, Rfl

is the reflexive closure, and Ctx is the context closure

associated to Σ. Since compatibility is preserved by

composition (among other operations), the compatibility

of Cgr follows from that of its smaller components.

In turn, transitive closure can be decomposed in terms

of relational composition and context closure can be

decomposed in terms of the smaller functions that close

a relation w.r.t. Σ one symbol at a time. Compatibility of

such functions can thus be obtained in a modular way.

A key observation in the present work is that when

we move to a coalgebraic presentation of the theory,

compatible functions generalise to functors equipped

with a distributive law (Section III).

B. Fibrations and coinductive predicates

Coalgebras are a tool of choice for describing state

based systems: given an endofunctor F determining

its type (e.g., labelled transition systems, automata,

streams), a system is just an F -coalgebra. When F

has a final coalgebra, this gives a canonical notion of

behavioural equivalence [16]: two states x, y ∈ X are

equivalent if they are mapped to the same element in

the final coalgebra.

When the functor F preserves weak pullbacks—which

we shall assume throughout this introductory section

for the sake of simplicity—behavioural equivalence can

be characterised coinductively using Hermida-Jacobs

bisimulations [14], [30]: starting from an F -coalgebra

(X, ξ), one can define a monotone function B on binary



relations on X such that behavioural equivalence is the

largest B-invariant.

This function B is built from F and the coalgebra

(X, ξ) using fibrations: the category Rel of relations1 is

a fibration over Set by considering the functor p taking

a relation R ⊆ X2 to its support set X . Denote by RelX
the fibre above X , which is isomorphic in this case to the

poset category of relations on X . Since ξ is a morphism

from X to FX , its reindexing functor ξ∗ is a functor

from the fibre RelFX to the fibre RelX . Moreover, any

lifting F in Rel of the functor F restricts to a functor

FX from the fibre RelX to the fibre RelFX . We can

thus compose ξ∗ and such a lifting F to get a functor

on RelX , i.e., a monotone function on relations:

B , ξ∗ ◦ FX : RelX → RelX (†)

Final coalgebras for such functors B are called coinduc-

tive predicates [14], [13]. Every functor F has a canoni-

cal lifting to Rel; the associated coinductive predicate is

behavioural equivalence. By choosing other liftings of F ,

one can obtain other relations of interest. These include,

for instance, various behavioural preorders: similarity on

labelled transition systems (LTSs), language inclusion on

automata, or lexicographic ordering of streams. More-

over, by choosing a different fibration than Rel, one can

obtain coinductive characterisations of objects that are

not necessarily binary relations, e.g., unary predicates

like divergence, ternary relations, or metrics.

Our categorical generalisation of compatible functions

provides a natural extension of this fibrational framework

with a systematic treatment of up-to techniques: we

provide functors (i.e., monotone functions in the special

case of the Rel fibration) that are compatible with those

functors B corresponding to coinductive predicates.

For instance, when the chosen lifting F is a fibration

map, the functor corresponding to a technique called “up

to behavioural equivalence” is compatible (Theorem 1).

The canonical lifting of a functor is always such a

fibration map, so that when F is the functor for LTSs, we

recover the very first up-to technique from the literature,

namely “bisimulation up to bisimilarity” [21]. One can

also check that another lifting of this same functor but

in another fibration yields the divergence predicate, and

is a fibration map. We can thus deduce the validity of

the “divergence up to bisimilarity” technique.

C. Bialgebras and up to context

Another important class of techniques comes into play

when considering systems with an algebraic structure

1Whose objects are relations R⊆X2 and morphisms from R⊆X2

to S⊆Y 2 are maps from X to Y sending pairs in R to pairs in S.

(e.g., the syntax of a process calculus). A minimal

requirement for such systems usually is that behavioural

equivalence should be a congruence. In the special case

of bisimilarity on LTSs, several rule formats have been

proposed to ensure such a congruence property [1]. At

the categorical level, the main concept to study such

systems is that of bialgebras. Assume two endofunctors

T, F related by a distributive law λ : TF ⇒ FT . A λ-

bialgebra consists in a triple (X,α, ξ) where (X,α) is

a T -algebra, (X, ξ) is an F -coalgebra, and a diagram

involving λ commutes. It is well known that in such a

bialgebra, behavioural equivalence is a congruence with

respect to T [31]. This is actually a generalisation of

the fact that bisimilarity is a congruence for all GSOS

specifications [3]: GSOS specifications are in one-to-

one correspondence with distributive laws between the

appropriate functors [31], [2].

This congruence result can be strengthened into a

compatibility result [26]: in any λ-bialgebra, the contex-

tual closure function that corresponds to T is compatible

for behavioural equivalence. By moving to fibrations,

we generalise this result so that we can obtain up to

context techniques for arbitrary coinductive predicates:

unary predicates like divergence, by using another fibra-

tion than Rel; but also other relations than behavioural

equivalence, like the behavioural preorders mentioned

above, or weak bisimilarity.

The technical device we need to establish this result is

that of bifibrations, fibrations p whose opposite functor

pop is also a fibration. We keep the running example of

the Rel fibration for the sake of clarity; the results are

presented in full generality in the remaining parts of the

paper. In such a setting, any morphism f : X → Y in

Set has a direct image
∐

f : RelX → RelY . Now given

an algebra α : TX → X for a functor T on Set, any

lifting T of T gives rise to a functor on the fibre above

X , defined dually to (†):

C ,
∐

α ◦ TX : RelX → RelX (‡)

When we take for T the canonical lifting of T in Rel,

then C is the contextual closure function corresponding

to the functor T . We shall see that we sometimes need

to consider variations of the canonical lifting to obtain

a compatible up-to technique (e.g., up to “monotone”

contexts for checking language inclusion of weighted

automata—Section V-A).

Now, starting from a λ-bialgebra (X,α, ξ), and given

two liftings T and F of T and F , respectively, the

question is whether the above functor C is compatible

with the functor B defined earlier in (†). The simple

condition we give in this paper is the following: the dis-
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tributive law λ : TF ⇒ FT should lift to a distributive

law λ : T F ⇒ F T (Theorem 2).

This condition is always satisfied in the bifibration

Rel, when T and F are the canonical liftings of T and

F . Thus we obtain as a corollary the compatibility of

bisimulation of up to context in λ-bialgebras, which is

the main result from [26]—soundness was previously

observed by Lenisa et al. [19], [20] and then Bartels [2].

The present work allows us to go further in several

directions, as illustrated below.

D. Contributions and Applications

The main contribution of this paper is the abstract

framework developed in Section IV; it allows us to derive

the soundness of a wide range of both novel and well-

established up-to techniques for arbitrary coinductive

predicates. Sections V and VI are devoted to several such

applications, which we describe now.

When working in the predicate fibration on Set, one

can characterise formulas from modal logic as coin-

ductive predicates [9]. Our framework allows us to

introduce up-to techniques in this setting: we consider

the formula νx.〈τ〉x in Section V-B, and we provide

a technique called “divergence up to left contexts and

behavioural equivalence”. We use it to prove divergence

of a simple process using a finite invariant, while the

standard method requires an infinite one.

One can also change the base category: by considering

the fibration of equivariant relations over nominal sets,

we show how to obtain up-to techniques for language

equivalence of non-deterministic nominal automata [4].

In Section V-C, these techniques allow us to prove the

equivalence of two nominal automata using an orbit-

finite relation, where the standard method would require

an infinite one (recall that the determinisation of a

nominal automaton is not necessarily orbit-finite).

Another benefit of the presented theory is modularity

w.r.t. the liftings chosen to define coinductive predicates:

two liftings can be composed, and we give sufficient

conditions for deriving compatible functors for the com-

posite lifting out of compatible functors for its sub-

components (Section VI). We give two examples of such

a situation: similarity, and weak bisimilarity on LTSs.

By using Hughes and Jacobs’ definition of similar-

ity [15], we obtain that for “up to context” to be com-

patible it suffices to start from a monotone distributive

law (Section VI-A). In the special case of LTSs, this

monotonicity condition amounts to the positive GSOS

rule format [12]: GSOS [3] without negative premises.

In Section VI-B we propose a novel characterisation of

weak bisimilarity on LTSs, that fits into our framework.

This allows us to give a generic condition for “up to

context” to be compatible (and hence weak bisimilarity

to be a congruence). In particular, this condition rules

out the sum operation from CCS, which is well known

not to preserve weak bisimilarity.

II. PRELIMINARIES

We refer the reader to [17] for background on fibra-

tions and recall here basic definitions.

A functor p : E → B is called a fibration when

for every morphism f : X → Y in B and ev-

ery R in E with p(R) = Y there exists a map

f̃R : f∗(R) → R such that p(f̃R) = f satisfying

Q

∃!v
��
✤

✤
∀u

%%▲
▲▲

▲▲
▲▲

▲

f∗(R)
f̃R

// R

X
f

// Y

the universal property: any map

u : Q → R in E sitting above f

(i.e., p(u) = f ) uniquely deter-

mines a map v : Q→ f∗(R) such

that u = f̃Rv.

For X in B we denote by EX
the fibre above X , i.e., the subcat-

egory of E with objects mapped

by p to X and arrows sitting above the identity on X .

A map f̃ as above is called a Cartesian lifting of f

and is unique up to isomorphism. If we make a choice

of Cartesian liftings, the association R 7→ f∗(R) gives

rise to the so-called reindexing functor f∗ : EY → EX .

The fibrations considered in this paper are bicartesian

(both E and B have a bicartesian structure strictly

preserved by p) and split, i.e., the reindexing functors

behave well with respect to composition and identities:

(1X)∗ = 1EX
and (f ◦ g)∗ = g∗ ◦ f∗.

A functor p : E → B is called a bifibration if both

p : E → B and p : Eop → Bop are fibrations. A fibration

p : E → B is a bifibration if and only if each reindexing

functor f∗ : EY → EX has a left adjoint
∐

f ⊣ f∗,

see [17, Lemma 9.1.2].

Example 1. Let Pred be the category of predicates:

objects are pairs of sets (P,X) with P ⊆ X and

morphisms f : (P,X)→ (Q, Y ) are arrows f : X → Y

that can be restricted to f
∣∣
P
: P → Q.

Similarly, we can consider the category Rel whose

objects are pairs of sets (R,X) with R ⊆ X2 and

morphisms f : (R,X)→ (S, Y ) are arrows f : X → Y

such that f × f can be restricted to f × f
∣∣
R
: R→ S.

The functors mapping predicates, respectively, rela-

tions to their underlying sets are bifibrations. The fibres

PredX and RelX sitting above X are the posets of

subsets of X , respectively relations on X , ordered by

inclusion. The reindexing functors are given by inverse

image and their left adjoints by direct image.

Given fibrations p : E → B and p′ : E ′ → B and

F : B → B, we call F : E → E ′ a lifting of F when
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p′F = Fp. Notice that a lifting F restricts to a functor

between the fibres FX : EX → EFX . When the subscript

X is clear from the context we will omit it.

A fibration map between p : E → B and p′ : E ′ →
B is a pair (F , F ) such that F is a lifting of F that

preserves the Cartesian liftings: (Ff)∗F = Ff∗ for any

B-morphism f . We denote by Fib(B) the category of

fibrations with base B.

Example 2. A Set-endofunctor T has a canonical rela-

tion lifting Rel(T ) : Rel → Rel. Represent R ∈ RelX as

a jointly mono span X ← R → X and apply T . Then

Rel(T )(R) is obtained by factorising the induced map

TR → TX × TX . When T preserves weak pullbacks,

(Rel(T ), T ) is a fibration map (see e.g. [15]).

III. COMPATIBLE FUNCTORS

Given two monotone functions A,B : C → C on a

complete lattice C, A is said to be B-compatible if

AB ⊆ BA. In [25, Theorem 6.3.9], it is shown that B-

compatible functions are sound, that is, everyB-invariant

up to A is included in a B-invariant.

This result is an instance of a more general fact

which holds in any category C with countable coproducts

and for any pair of endofunctors A,B equipped with

a distributive law γ : AB ⇒ BA. Indeed, following

the proof of [2, Theorem 3.8], for any BA-coalgebra

ξ (that is a B-invariant up to A) one can find a B-

coalgebra ζ (that is a B-invariant) making the next

diagram commutative.

X
ξ ��

κ0 // AωX
ζ��

BAX
Bκ1

// BAωX

(Here Aω denotes the coproduct
∐

i≤ω A
i of all finite

iterations of A and κ0, κ1 are the injections of X and

AX respectively, into AωX .)

Similarly, that compatible functions preserve bisim-

ilarity [25, Lemma 6.4.3] is an instance of the well-

known fact [31] that a final B-coalgebra νB lifts to a

final γ-bialgebra for γ : AB ⇒ BA. When C is a lattice,

this entails that A(νB) ⊆ νB. For instance, if B is a

predicate for bisimilarity andA is the congruence closure

function, we obtain that bisimilarity is a congruence

whenever the congruence closure function is compatible.

As discussed in the Introduction, the main interest in

compatible functions comes from their nice composi-

tionality properties. This leads us to define compatibility

of arbitrary functors of type Cn → Cm rather than just

endofunctors.

Definition 1. Let B : C → C be an endofunctor on a

category C. We say that a functor A : Cn → Cm is B-

compatible when there exists a natural transformation

γ : ABn ⇒ BmA.

This definition makes it possible to use the internal

notions of product and pairing to emphasise the com-

positionality aspect. For instance, coproduct becomes

a compatible functor by itself, rather than a way to

compose compatible functors.

Proposition 1. Compatible functors are closed under the

following constructions:

(i) composition: if A : Cn → Cm and A′ : Cm → Cp

are B-compatible, so is A′ ◦A : Cn → Cp;

(ii) pairing: if (Ai : C
n → C)i∈ι are B-compatible, so

is 〈Ai〉i∈ι : C
n → Cι;

(iii) product: if A : Cn → Cm and A′ : Cp → Cr are

B-compatible, so is A×A′ : Cn+p → Cm+r.

Moreover, the following functors are B-compatible:

(iv) Id : C → C;

(v) the constant functor to the carrier of any B-

coalgebra, in particular the final one if it exists;

(vi) the coproduct functor
∐

: Cω → C.

(All omitted proofs can be found in the Appendix.)

IV. UP-TO TECHNIQUES IN A FIBRATION

Throughout this section we fix a bifibration p : E → B,

an endofunctor F : B → B, a lifting F : E → E of F and

a coalgebra ξ : X → FX . Intuitively, the studied system

lives in the base category B while its properties live in

EX , the fibre above X . We thus instantiate the category

C from the previous section with EX .

As explained in the Introduction (†), we discuss proof

techniques for the properties modelled as final coalgebras

of the functor ξ∗ ◦ FX : EX → EX , that we refer

hereafter as F ξ. In Rel, when F is the canonical lifting

Rel(F ), F ξ-coalgebras are exactly the Hermida-Jacobs

bisimulations [14].

To obtain sound techniques for F ξ, it suffices to

find F ξ-compatible endofunctors on EX . We provide

such functors by giving conditions on the lifting F ,

abstracting away from the coalgebra ξ at hand.

A. Compatibility of Behavioural Equivalence Closure

The most basic technique is up to behavioural equiv-

alence, a prime example of which is Milner’s up to

bisimilarity [21], where a relation R is mapped into

∼R∼. Its compatibility is a corollary of:

Theorem 1. Suppose that (F , F ) is a fibration map.

For any F -coalgebra morphism f : (X, ξ)→ (Y, ζ), the

functor f∗ ◦
∐

f is F ξ-compatible.
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Proof sketch: We exhibit a natural transformation

(f∗ ◦
∐

f ) ◦ (ξ
∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ (f∗ ◦

∐
f )

obtained by pasting the 2-cells in the following diagram:

EX
F // EFX

ξ∗
//

∐
Ff

%%▲
▲▲

▲▲
▲

⇓

EX

∐
f

//

⇓

EY
f∗

//
99

ζ∗rr
rr
rr
r

⇓

EX

EFY
(Ff)∗

%%▲
▲▲

▲▲
▲

⇓

EX

∐
f

// EY
f∗

//

F
99rrrrrrr
EX

F // EFX

ξ∗
// EX

(See Appendix B-A for more details.)

Concretely, consider the fibrations Pred → Set, re-

spectively Rel→ Set, and let f be the unique coalgebra

morphism from ξ to a final F -coalgebra (assumed to

exist). The endofunctor f∗ ◦
∐

f—referred hereafter as

Bhv—maps a predicate, respectively a relation, into its

closure under behavioural equivalence.

Corollary 1. Let (X, ξ) be a coalgebra for a weak pull-

back preserving functor F : Set→ Set. The behavioural

equivalence closure functor Bhv is Rel(F )ξ-compatible.

Proof: (Rel(F ), F ) is a fibration map whenever F

preserves weak pullbacks (see e.g. [15]).

From Theorem 1 we also derive the soundness of up-to

Bhv for unary predicates: the liftings used in coalgebraic

modal logic [9] are fibration maps [16].

B. Compatibility of Equivalence Closure

Compatibility of equivalence closure is derived mod-

ularly from compatibility of reflexive, symmetric and

transitive closures. We first need to express composition

of relations in a fibrational setting. We construct for that

the n-fold product in the category Fib(B), denoted by

E×Bn → B. The objects in E×Bn are tuples of objects in

E belonging to the same fibre. This product is computed

fibrewise, that is, E×Bn
X =EnX . For n=0, we have E0=B.

Hereafter, we are interested in functors G : E×Bn → E
that are liftings of the identity functor on B: for each X

in B we have functors GX : EnX → EX . An example

of such a functor is relational composition ⊗ : Rel×Set

Rel→ Rel mapping R,S ⊆ X×X to their composition.

Proposition 2. Let G : E×Bn → E be a lifting of the

identity, with a natural transformation GF
n
⇒ FG.

Then GX is F ξ-compatible.

We list now several applications of the proposition for

the fibration Rel→ Set.

(n=0) Let Rfl : Set → Rel be the functor mapping each

set X to ∆X , the identity relation on X . RflX is

F ξ-compatible if (∗) ∆FX ⊆ F∆X .

(n=1) Let Sym : Rel → Rel be the functor mapping each

relation R ⊆ X2 to its converse R−1 ⊆ X2. SymX

is F ξ-compatible if (∗∗) F (R)−1 ⊆ F (R−1) for all

relations R ⊆ X2.

(n=2) Let ⊗ : Rel ×Set Rel → Rel be the relational

composition functor. Then ⊗X is F ξ-compatible if

(∗∗∗) FR⊗ FS ⊆ F (R ⊗ S) for all R,S ⊆ X2.

If moreover T1, T2 : RelX → RelX are two F ξ-

compatible functors, their pointwise composition

T1 ⊗ T2 = ⊗X ◦ 〈T1, T2〉 is F ξ-compatible by

Proposition 1 (i,ii).

The transitive closure functor Trn is obtained from ⊗
in a modular way: Trn =

∐
i≥1(−)

i where (−)0 = Id

and (−)i+1 = Id⊗ (−)i. Using Proposition 1 we get

Corollary 2. Let (X, ξ) be a coalgebra for a functor

F : Set→ Set. The reflexive and symmetric closure func-

tors RflX and SymX are Rel(F )ξ-compatible. More-

over, if F preserves weak pullbacks, then the transitive

closure functor TrnX is Rel(F )ξ-compatible.

Proof: The above conditions (∗) and (∗∗) always

hold for F = Rel(F ); (∗∗∗) holds for Rel(F ) provided

F preserves weak pullbacks.

When F ξ has a final coalgebra S, one can define a

“self closure” functor Slf = S̃ ⊗ Id ⊗ S̃, where S̃ is

the constant to S functor. Thanks to Proposition 1, this

functor is compatible whenever (∗∗∗) holds. It coincides

with Bhv when F is the canonical lifting Rel(F ) and F

preserves weak pullbacks: S is just behavioural equiva-

lence in this case. If instead we consider the lifting that

yields weak bisimilarity (to be defined in Section VI-B),

Slf corresponds to a technique called “weak bisimulation

up to weak bisimilarity”, while Bhv corresponds to

“weak bisimulation up to (strong) bisimilarity”.

C. Compatibility of Contextual Closure

For defining contextual closure, we assume that the

state space of the coalgebra ξ : X → FX is equipped

with an algebra α : TX → X ; more precisely, we fix a

bialgebra (X,α, ξ) for a distributive law λ : TF ⇒ FT .

Theorem 2. Let T , F : E → E be liftings of T and F . If

λ : T F ⇒ F T is a natural transformation sitting above

λ, then
∐

α ◦T is F ξ-compatible.

Proof sketch: We exhibit a natural transformation

(
∐

α ◦ T ) ◦ (ξ
∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ (

∐
α ◦ T ) .

This is achieved in Figure 1 by pasting five natural trans-

formations, obtained as follows (see Appendix B-C):

(a) is the counit of the adjunction
∐

λX
⊣ λ∗X .

(b) comes from λ being a lifting of λ.
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EX EFX EX ETX EX

ETFX

EFTX EFTX

EX ETX EX EFX EX

⇓ (d)

F ξ∗

T

⇓ (b)

T
∐

α

⇓ (c)

(Tξ)∗

∐
λX

⇓ (a)
λ∗X

⇓ (e)

∐
Fα

T
∐

α

F

F ξ∗

Fig. 1. Compatibility of contextual closure in a fibration

(c) comes from the bialgebra condition, the fibration be-

ing split, and the units and counits of the adjunctions∐
α ⊣ α

∗,
∐

Fα ⊣ (Fα)∗, and
∐

λX
⊣ λ∗X .

(d) arises since T is a lifting of T , using the universal

property of the Cartesian lifting (Tξ)∗.

(e) comes from F being a lifting of F , combined with

the unit and counit of the adjunction
∐

α ⊣ α
∗.

When the fibration at issue is Rel → Set and T is

the canonical lifting Rel(T ), one can easily check that∐
α ◦Rel(T ) applied to a relation R gives exactly its

contextual closure as described in [26]. For this reason,

we abbreviate
∐

α ◦Rel(T ) to Ctx . When moreover F

is the canonical lifting Rel(F ), we get:

Corollary 3 ([26, Theorem 4]). Let (X,α, ξ) be a

bialgebra for λ : TF ⇒ FT on Set. The contextual

closure functor Ctx is Rel(F )ξ-compatible.

Proof: Rel(−) is a 2-functor [16, Exercise 4.4.6],

so that λ = Rel(λ) fulfils the assumption of Theorem 2.

Our interest in Theorem 2 is not restricted to prove

compatibility of up to Ctx . By taking non canonical

liftings of T , one derives novel and effective up-to

techniques, such as the monotone contextual closure and

the left-contextual closure defined in Sections V-A and

V-B. In order to apply Theorem 2 for situations when

either T or F is not the canonical relation lifting, one

has to exhibit a λ sitting above λ. In Rel, such a λ exists

if and only if for all relations R ⊆ X2, the restriction

of λX × λX to T FR corestricts to F TR. A similar

condition has to be checked for Pred→ Set.

D. Abstract GSOS

For several applications, it is convenient to con-

sider natural transformations of a slightly different type

λ : T (F × Id) ⇒ FT, where T is the free monad over

T . These are called abstract GSOS specifications since,

as shown in [31], they generalise GSOS rules to any

behaviour endofunctor F . As recalled in Appendix B-D,

each such λ induces a natural transformation λ† : T(F ×
Id)⇒ (F×Id)T, whose bialgebras are the objects of our

interest. In order to prove compatibility via Theorem 2,

one should exhibit a λ† sitting above λ†. The following

lemma simplifies such a task.

Lemma 1. Let λ : T (F × Id) ⇒ F T be a natural

transformation sitting above λ : T (F × Id)⇒ FT. Then

there exists a λ† : T(F × Id)⇒ (F × Id)T sitting above

λ† : T(F × Id)⇒ (F × Id)T.

For a bialgebra (X,α, 〈ξ, id〉), the existence of λ† en-

sures, via Theorem 2, compatibility w.r.t. (F × Id)〈ξ,id〉,
which is not exactly F ξ . However, this difference is

harmless in poset fibrations: coalgebras for the two func-

tors coincide, and for any pointed functor A compatible

with (F × Id)〈ξ,id〉, every F ξ-invariant up to A is also

an (F × Id)〈ξ,id〉-invariant up to A.

V. EXAMPLES

A. Inclusion of weighted automata

To illustrate how to instantiate the above framework,

we consider weighted automata. We first give a short

description of their coalgebraic treatment [6]. For a

semiring S and a set X , we denote by SX
ω the set of

functions f : X → S with finite support. These functions

can be thought of as linear combinations
∑

x∈X f(x) ·x,

and in fact S−
ω : Set → Set is the monad sending each

set X to the free semi-module generated by X .

A weighted automaton over a semiring S with al-

phabet A is a pair (X, 〈o, t〉), where X is a set of

states, o : X → S is an output function associating

to each state its output weight and t : X → (SX
ω )A

is a weighted transition relation. Denoting by F the
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functor S × (−)A, weighted automata are thus coal-

gebras for the composite functor FS−
ω . By the gener-

alised powerset construction [28], they induce bialgebras

for the functor F , the monad S
−
ω , and the distribu-

tive law λ : S−
ωF ⇒ FS−

ω given for all sets X by

λX(
∑
ri(si, ϕi)) = 〈

∑
risi, λa.

∑
riϕi(a)〉. Indeed

every (X, 〈o, t〉) induces a bialgebra (SX
ω , µ, 〈o

♯, t♯〉)
where µ is the multiplication of S−

ω and 〈o♯, t♯〉 : SX
ω →

S × (SX
ω )A is the linear extension of 〈o, t〉, defined as

(Fµ) ◦ λ ◦ (S
〈o,t〉
ω ).

For a concrete example we take the semiring R+ of

positive real numbers. A weighted automaton is depicted

on the left below: arrows x
a,r
→ y mean that t(x)(a)(y) =

r and arrows x
r
⇒ mean that o(x) = r.

x
0
��

a,1
''
y
1
��

a,1

��

a,1

hh

x
0
KS

a // y
1
KS

a // x+y
1
KS

a // · · ·

y
0
��

a
// x+y
1
��

a
// x+2y

2
��

a
// · · ·

(1)

On the right is depicted (part of) the corresponding bial-

gebra: states are elements of (R+)Xω (hereafter denoted

by v, w), arrows v
a
→ w mean that t♯(v)(a) = w and

arrows v
r
⇒ mean that o♯(v) = r.

Whenever S carries a partial order ≤, one can take

the lifting F : Rel→ Rel of F defined for R ⊆ X2 by:

{((r, ϕ), (s, ψ)) | r ≤ s ∧ ∀a.ϕ(a) R ψ(a)} ⊆ (FX)2.

Then the functor F 〈o♯,t♯〉 = 〈o♯, t♯〉∗ ◦ F : RelX →
RelX maps a relation R ⊆ X2 into

{(x, y) | o♯(x) ≤ o♯(y) ∧ ∀a.t♯(x)(a) R t♯(y)(a)} .

The carrier of a final F 〈o♯,t♯〉-coalgebra is a relation,

denoted by -, which we call inclusion: when S is the

Boolean semiring, it coincides with language inclusion

of non-deterministic automata.

For any two v, w ∈ SX
ω , one can prove that v - w

by exhibiting a F 〈o♯,t♯〉-invariant relating them. These

invariants are usually infinite, since there are infinitely

many reachable states in a bialgebra SX
ω , even for finite

X . This is the case when trying to check x - y in (1):

we should relate infinitely many reachable states.

In order to obtain finite proofs, we exploit the alge-

braic structure of bialgebras and employ an up to context

technique. To this end, we use the canonical lifting of

the monad S−
ω , defined for all R ⊆ X2 as

Rel(S−
ω )(R) =

{(∑
rixi,

∑
riyi

)
| xi R yi

}

We prove that the endofunctor Ctx =
∐

µ ◦Rel(S
−
ω )

is F 〈o♯,t♯〉-compatible by Theorem 2: it suffices to check

that for any relation R on X , the restriction of λX×λX
to Rel(S−

ω )F (R) corestricts to FRel(S−
ω )(R). This is the

case when for all n1,m1, n2,m2 ∈ S such that n1 ≤
m1 and n2 ≤ m2, we have (a) n1 + n2 ≤ m1 + m2

and (b) n1 · n2 ≤ m1 · m2. These two conditions are

satisfied, e.g., in the Boolean semiring or in R+ and thus,

in these cases, we can prove inclusion of automata using

F 〈o♯,t♯〉-invariants up to Ctx . For example, in (1), the

relation R = {(x, y), (y, x+y)} is a F 〈o♯,t♯〉-invariant up

to Ctx (to check this, just observe that (x+y, x+2y) ∈
Ctx(R)). This finite relation thus proves x - y.

Unfortunately, condition (b) fails for the semiring R of

(all) real numbers. Nevertheless, our framework allows

us to define another up-to technique, which we call

“up to monotone contextual closure”. It is obtained by

composing
∐

µ and a non-canonical lifting of R−
ω :

R
−
ω (R) =

{(∑
rixi,

∑
riyi

)
|
ri ≥ 0⇒ xi R yi
ri < 0⇒ yi R xi

}

The restriction of λX × λX to R
−
ωF (R) corestricts

to FR
−
ω (R). Therefore, by Theorem 2, the monotone

contextual closure is F 〈o♯,t♯〉-compatible.

B. Divergence of processes

Up-to techniques can be instrumental in proving unary

predicates. We take the fibration Pred → Set and

we focus on the divergence predicate νu.〈τ〉u defined

on LTSs. The latter are coalgebras ξ : X → F (X)
for the Set-functor FX = Pω(L × X), where L =
{a, a, b, b . . . , τ} is a set of labels containing a special

symbol τ and Pω is the finite powerset functor. We lift

F to F
〈τ〉

: Pred→ Pred, defined for all sets X as

F
〈τ〉

X (P ⊆ X) = {S ∈ FX | ∃(τ, x) ∈ S, x ∈ P}.

The final F
〈τ〉

ξ -coalgebra consists precisely of all the

states in X satisfying νu.〈τ〉u. Hence, to prove that a

state p diverges, it suffices to exhibit an F
〈τ〉

ξ -invariant

containing p.

When the LTS is specified by some process algebra,

such invariants might be infinite. Suppose for instance

that we have a parallel operator defined by the following

GSOS rules and their symmetric counterparts:

x
l
→ x′

x|y
l
→ x′|y

x
a
→ x′ y

a
→ y′

x|y
τ
→ x′|y′

.

Consider the processes p
a
→ p|p and q

a
→ q. To prove

that p|q diverges, any invariant should include all the

states that are on the infinite path p|q
τ
→ (p|p)|q

τ
→ . . . .

Instead, an intuitive proof would go as follows: as-

sume by coinduction that p|q diverges and prove that the
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τ successor (p|p)|q also diverges. Rather than looking

further for the τ -successors of (p|p)|q, observe that

(a) since p|q diverges by hypothesis, then also (p|q)|p
diverges, and

(b) since (p|q)|p is bisimilar (i.e., behavioural equiva-

lent) to (p|p)|q, then also (p|p)|q diverges.

Formally, (b) corresponds to using the functor Bhv from

Section IV-A. For (a) we define the left contextual clo-

sure functor as Ctx ℓ(P⊆X) = {x|y | x ∈ P, y ∈ X}.

Indeed, it is easy to see that P = {p|q} is an F
〈τ〉

ξ -

invariant up to Bhv◦Ctx ℓ, i.e, P ⊆ F
〈τ〉

ξ ◦Bhv◦Ctx
ℓ(P ).

In order to prove soundness of this “up to behavioural

equivalence and left contextual closure”, we show com-

patibility of Bhv and Ctx ℓ separately. For the former,

we note that F
〈τ〉

is defined exactly as in coalgebraic

modal logic [9], [13] and thus (F
〈τ〉
, F ) is a fibration

map: Theorem 1 applies. The functor Ctx ℓ is defined

just as Ctx , but instead of the canonical lifting of the

endofunctor for binary operations T (X) = X×X we

use the predicate lifting T (P ⊆ X) = P×X ⊆ TX . In

Appendix C, we show that the conditions of Lemma 1

are met for the distributive law given by the above GSOS

rules. Compatibility of Ctx ℓ follows from Theorem 2.

C. Equivalence of nominal automata

Nominal automata and variants [4] have been consid-

ered as a means of studying languages over infinite al-

phabets, but also for the operational semantics of process

calculi [22]. We refer the reader to [23] for background

on the category Nom of nominal sets. These are sets

equipped with actions of the group of permutations on a

countable set A of names, satisfying an additional finite

support condition.

Consider the nominal automaton below. The part

reachable from state ∗ corresponds to [5, Example I.1].

∗

a

�� a // a

b

�� a // ⊤

a

		

⋆

a
::✉✉✉✉✉✉ b // a′ b

xx
a
OO

It is important to specify how to read this drawing: the

represented nominal automaton has as state space the

orbit-finite nominal set {∗}+{⋆}+A+A′+{⊤}, where

A′ is a copy of A. It suffices in this case to give only one

representative of each of the five orbits: we span all the

transitions and states of the automaton by applying all

possible finite permutations to those explicitly written.

For example, the transition a
c
→ a is obtained from a

b
→

a by applying the transposition (b c) to the latter.

With this semantics in mind, one can see that the state

∗ accepts the language of words in the alphabet A where

some letter appears twice: it reads a word in A, then

it nondeterministically guesses that the next letter will

appear a second time and verifies that this is indeed

the case. The state ⋆ accepts the same language, in

a different way: it reads a first letter, then guesses if

this letter will be read again, or, if a distinct letter—

nondeterministically chosen—will appear twice.

Formally, nominal automata are FPω-coalgebras 〈o, t〉
where F : Nom → Nom is given by FX = 2 × XA

and the monad Pω is the finitary version of the power

object functor in the category of nominal sets (mapping a

nominal set to its finitely-supported orbit-finite subsets).

In our example, o(a) = 0 and t(a) is the following map:

t(a) =

{
b 7→ {a} b#a
a 7→ {⊤}

By the generalised powerset construction [28], 〈o, t〉
induces a deterministic nominal automata, which is a

bialgebra on Pω(X) with the algebraic structure given

by union. To prove that ∗ and ⋆ accept the same

language, we should play the bisimulation game in the

determinisation of the automaton. However, the latter

has infinitely many orbits and a rather complicated

structure. A bisimulation constructed like this will thus

have infinitely many orbits. Instead, we can show that

the orbit-finite relation spanned by the four pairs

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗},A′)

is a bisimulation up to congruence (w.r.t. union).

The soundness of this technique is established in

Appendix D using the fibration Rel(Nom) → Nom

of equivariant relations. We derive the compatibility of

contextual closure using Theorem 2, and compatibility

of the transitive, symmetric, and reflexive closures us-

ing Proposition 2. Compatibility of congruence closure

follows from Proposition 1(i).

VI. COMPOSITIONAL PREDICATES

In this section we consider a structured way of defin-

ing coinductive predicates, by composing lifted functors.

Assume a fibration p : E → B and a functor ⊗ : E ×B

E → E . Given two liftings F1, F2 : E → E of the same

endofunctor F on B, one can then define a composite

lifting ⊗ ◦ 〈F1, F2〉, which we denote by F1 ⊗ F2. We

will instantiate this to the fibration Rel → Set with

relational composition for ⊗, to define simulation and

weak bisimulation as coinductive predicates.

One advantage of this approach is that the compati-

bility of up-to-context can be proved in a modular way.
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Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒

⊗T
2

above Id: T ⇒ T . Let both F1 and F2 be liftings of

F . If λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above

the same λ : TF ⇒ FT , then there exists λ : T (F1 ⊗
F2)⇒ (F1 ⊗ F2)T above λ.

The canonical lifting Rel(T ) satisfies the first hypoth-

esis of the theorem when ⊗ is relational composition.

A. Simulation up-to

We recall simulations for coalgebras as introduced

in [15]. An endofunctor F on Set is said to be ordered

if it factors through the forgetful functor from Pre (the

category of preorders) to Set: this means that for every

X , FX is equipped with a preorder ⊑FX . An ordered

functor gives rise to a constant relation lifting ⊑ of F

defined as ⊑(R ⊆ X2) = ⊑FX . Then the lax relation

lifting Rel(F )⊑ is defined as

Rel(F )⊑ = ⊑⊗ Rel(F )⊗⊑

where ⊗ is relational composition. For a coalgebra

ξ : X → FX , the coalgebras for the endofunctor

ξ∗◦Rel(F )⊑X—which we denote as Rel(F )⊑ξ —are called

simulations; the final one is called similarity. We list two

examples of ordered functors and their associated notion

of simulations, and refer to [15] for many more.

Example 3. For weighted automata on a semiring S

equipped with a partial order ≤, the functor FX = S×
XA is ordered with ⊑FX defined as (s, φ) ⊑FX (r, ψ)
iff s ≤ r and φ = ψ. It is immediate to see that Rel(F )⊑

coincides with the lifting F defined in Section V-A.

For LTSs, the functor FX = Pω(A ×X) is ordered

with subset inclusion ⊆. In this case a simulation is a

relation R ⊆ X2 such that for all (x, y) ∈ R: if x
a
−→ x′

then there exists y′ such that x′
a
−→ y′ and x′Ry′.

An ordered functor F is called stable if (Rel(F )⊑, F )
is a fibration map [15]. Since polynomial functors are

stable, as well as the one for LTSs [15], the following

results hold for the coalgebras in Example 3.

Proposition 3. If F is a stable ordered functor, then

Bhv , Slf , and Trn are Rel(F )⊑ξ -compatible.

Proof: Compatibility of Bhv comes from Theo-

rem 1. Compatibility of Slf and Trn comes from Propo-

sition 2: stable functors satisfy (∗∗∗) [15, Lemma 5.3].

We proceed to consider the compatibility of up to

context, for which we assume an abstract GSOS spec-

ification λ : T (F×Id) ⇒ FT. By Theorem 3, prov-

ing compatibility w.r.t. Rel(F )⊑ξ is reduced to proving

compatibility w.r.t. its components Rel(F ) and ⊑. For

the former, compatibility comes immediately from the

proof of Corollary 3. For the latter, we need to assume

that the abstract GSOS specification is monotone, i.e,

such that for any set X , the restriction of λX × λX
to Rel(T )(⊑FX ×∆X) corestricts to ⊑FTX . If T is a

polynomial functor representing a signature, then this

means that for any operator σ (of arity n) we have

b1 ⊑FX c1 . . . bn ⊑FX cn

λX(σ(b,x)) ⊑FTX λX(σ(c,x))

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and

similarly for c,x. If ⊑ is the order on the functor for

LTSs, monotonicity corresponds to the positive GSOS

format [12] which, as expected, is GSOS [3] without

negative premises. Monotonicity turns out to be precisely

the condition needed to apply Lemma 1, yielding

Proposition 4. Let λ be a monotone abstract GSOS

specification and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then

Ctx is (Rel(F )⊑ × Id)〈ξ,id〉-compatible.

B. Weak bisimulation-up-to

A weak bisimulation is a relation R ⊆ X2 on the

states of an LTS such that for every pair (x, y) ∈ R: (1) if

x
l
−→ x′ then y

l
⇒ y′ with (x′, y′) ∈ R and (2) if y

l
−→ y′

then x
l
⇒ x′ with (x′, y′) ∈ R. Here → and ⇒ are two

LTSs, i.e. coalgebras for the functor FX = Pω(L×X),
and ⇒ is the saturation [21] of →. Weak bisimilarity

can alternatively be reduced to strong bisimilarity on⇒,

but the associated proof method is rather tedious. To

remain faithful to the above definition, we define weak

bisimulations via the following lifting of F×F :

F × F = ρ⊗ Rel(F × F )[⊇⊆] ,

where ρ is the constant functor defined as ρ(R ⊆ X2) =
{((U, V ), (V, U)) | U, V ∈ FX} and Rel(F × F )[⊇⊆]

is the lax relation lifting of F × F for the ordering

(U1, V1)[⊇⊆](U2, V2) iff U2 ⊆ U1 and V1 ⊆ V2.

For an intuition, observe that an F ×F -coalgebra is a

pair 〈ξ1, ξ2〉 : X → FX × FX of LTSs that we denote

with →1 and →2. An invariant for Rel(F × F )
[⊇⊆]
〈ξ1,ξ2〉

is

a relation R ⊆ X2 such that for each (x, y) ∈ R: (1) if

y
l
−→1 y

′ then x
l
−→1 x

′ with x′Ry′, and (2) if x
l
−→2 x

′

then y
l
−→2 y

′ with x′Ry′. Composing with ρ “flips” the

LTSs →1 and →2: an invariant for F × F 〈ξ1,ξ2〉 is now

an R ⊆ X2 such that: (1) if y
l
−→1 y

′ then x
l
−→2 x

′ with

x′Ry′, and (2) if x
l
−→1 x

′ then y
l
−→2 y

′ with x′Ry′.

It is easy to see that for 〈ξ1, ξ2〉 = 〈→,⇒〉, coalgebras

for F × F 〈ξ1,ξ2〉 are weak bisimulations and the final

coalgebra is weak bisimilarity.

9



In Appendix E, we show that (F × F , F ) is a fibration

map and by Theorem 1 we now obtain the following.

Corollary 4. Bhv is F × F 〈ξ1,ξ2〉-compatible.

For 〈ξ1, ξ2〉 = 〈→,⇒〉, behavioural equivalence is

simply strong bisimilarity. Consequently, Corollary 4

actually gives the compatibility of weak bisimulation up

to strong bisimilarity [25]. One could wish to use up

to Slf or up to Trn for weak bisimulations. However,

the condition (∗∗∗) from Section IV-B fails, and indeed,

weak bisimulations up to weak bisimilarity or up to

transitivity are not sound [25].

For up to context, we use Theorem 3 to reduce

compatibility w.r.t. F × F to compatibility w.r.t. ρ and

Rel(F × F )[⊇⊆] (for which we can reuse the result of

the previous section).

Proposition 5. Let λ : T (F × Id) ⇒ FT be a

positive GSOS specification and (X,α, 〈ξ1, id〉) and

(X,α, 〈ξ2, id〉) be two λ†-bialgebras then Ctx is

(F × F × Id)〈ξ1,ξ2,id〉-compatible.

The above proposition requires both → and ⇒ to

be models [1] of the same positive GSOS specification

λ. This means that the rules of λ should be sound

for both → and ⇒. For instance, in the case of CCS,

⇒ is not a model of λ because the rule for non-

deterministic choice is not sound for ⇒. Nevertheless,

we can use our framework to prove the compatibility

of weak bisimulation up to contextual closure w.r.t. the

remaining operators.

VII. DIRECTIONS FOR FUTURE WORK

Our nominal automata example leads us to expect that

the framework introduced in this paper will lend itself to

obtaining a clean theory of up-to techniques for name-

passing process calculi. For instance, we would like to

understand whether the congruence rule format proposed

by Fiore and Staton [11] can fit in our setting: this would

provide general conditions under which up-to techniques

related to name substitution are sound in such calculi.

Another interesting research direction is suggested by

the divergence predicate we studied in Section V-B.

Other formulas of (coalgebraic) modal logic [9] can be

expressed by taking different predicate liftings, and yield

different families of compatible functors. This suggests

a connection with the proof systems in [10], [29]: we

can regard proofs in those systems as invariants up to

some compatible functors. By using our framework and

the logical distributive laws of [18], we hope to obtain a

systematic way to derive or enhance such proof systems,

starting from a given abstract GSOS specification.
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APPENDIX A

PROOFS FOR SECTION III

The following Proposition generalises the composi-

tionality results for compatible functions on lattices,

see [24] or [25, Proposition 6.3.11].

Proposition 1. Compatible functors are closed under the

following constructions:

(i) composition: if A : Cn → Cm and A′ : Cm → Cp

are B-compatible, so is A′ ◦A : Cn → Cp;

(ii) pairing: if (Ai : C
n → C)i∈ι are B-compatible, so

is 〈Ai〉i∈ι : C
n → Cι;

(iii) product: if A : Cn → Cm and A′ : Cp → Cr are

B-compatible, so is A×A′ : Cn+p → Cm+r.

Moreover, the following functors are B-compatible:

(iv) Id : C → C;

(v) the constant functor to the carrier of any B-

coalgebra;

(vi) the coproduct functor
∐

: Cω → C.

Proof:

(i) Given γ : ABn ⇒ BmA and γ′ : A′Bm ⇒ BpA′

we obtain

A′ABn A′γ +3 A′BmA
γ′A +3 BpA′A

(ii) Given natural transformations γi : AiB
n ⇒ BAi

for all i ∈ ι we obtain a natural transformation

〈Ai〉i∈ιB
n Bι〈Ai〉i∈ι

〈AiB
n〉i∈ι

〈γi〉i∈ι +3 〈BAi〉i∈ι

(iii) Given γ : ABn ⇒ BmA and γ′ : A′Bp ⇒ BrA′

we construct γ×γ′ : (A×A′)Bn+p ⇒ Bm+r(A×
A′)

Items (iv), (v) and (vi) are trivial. For example, the

latter is immediate using the universal property of the

coproduct.

APPENDIX B

PROOFS FOR SECTION IV

The next simple Lemma about liftings in fibrations

will be used throughout this appendix, e.g., to prove

Proposition 2, but also Theorem 2.

Lemma 2. Let p : E → B and p′ : E ′ → B be two

fibrations and assume T : E → E ′ is the lifting of a

functor T : B → B. Consider a B-morphism f : X →
Y . Then there exists a natural transformation:

θ : T ◦ f∗ ⇒ (Tf)∗ ◦ T : EY → E
′
TX .

Proof: In order to define θR for some R in EY ,

we use the universal property of the Cartesian lifting

T̃ fT (R). In a diagram:

T (f∗(R))

(Tf)∗(TR) TR

TX TY

T (f̃R)

T̃ fTR

θR

Tf

(2)

Lemma 3. Let p : E → B be a bifibration and assume

F : E → E is the lifting of a functor F : B → B.

Consider a B-morphism f : X → Y . Then there exists

a natural transformation:

ρ :
∐

Ff ◦ F ⇒ F ◦
∐

f : EX → EFY .

Proof: The proof uses the universal property of

the opcartesian liftings. Equivalently, from Lemma 2

we have a natural transformation Ff∗ ⇒ (Ff)∗F .

Taking the adjoint transpose via
∐

Ff ⊣ (Ff)∗ we get a

natural transformation
∐

Ff Ff
∗ ⇒ F . A further adjoint

transpose via the adjunction
∐

f ⊣ f
∗ yields the desired

ρ :
∐

FfF ⇒ F
∐

f .

A. Proofs for Section IV-A

Theorem 1. Suppose that (F , F ) is a fibration map.

For any F -coalgebra morphism f : (X, ξ)→ (Y, ζ), the

functor f∗ ◦
∐

f is F ξ-compatible.

Proof: We exhibit a natural transformation

f∗ ◦
∐

f ◦ (ξ
∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ f∗ ◦

∐
f

obtained by pasting the 2-cells (a), (b), (c), (d) in the

following diagram:

EX
F // EFX

ξ∗
//

∐
Ff

%%▲
▲▲

▲▲
▲

⇓(b)

EX

∐
f

//

⇓(d)

EY
f∗

//
99

ζ∗rr
rr
rr
r

⇓(c)

EX

EFY
(Ff)∗

%%▲
▲▲

▲▲
▲

⇓(a)

EX

∐
f

// EY
f∗

//

F
99rrrrrrr
EX

F // EFX

ξ∗
// EX

(a) Since (F , F ) is a fibration map we have that

Ff∗ = (Ff)∗F (3)

(b) This is a consequence of Lemma 3.
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(c) is a natural isomorphism and comes from the fact

that f is a coalgebra map and the fibration is split.

(d) is obtained from (c) using the counit of
∐

f ⊣ f
∗

and the unit of
∐

Ff ⊣ (Ff)∗

∐
fξ

∗ +3
∐

fξ
∗(Ff)∗

∐
Ff

∐
ff

∗ζ∗
∐

Ff
+3 ζ∗
∐

Ff

B. Proofs for Section IV-B

In this section we prove Proposition 2. For the sake of

clarity we explain how F
n

is defined for n = 2. Recall

that E ×B E is obtained as a pullback of p along p in

Cat. For a lifting F of F , the functor F
2

makes the

next diagram commute.

E ×B E //

��

F
2

''

E

p

��

F

%%▲
▲▲

▲▲
▲▲

E ×B E
❴
✤

//

��

E

p

��

E
p

//

F ''P
PP

PP
PP

P B
F

&&▼
▼▼

▼▼
▼

E
p

// B

This means that on each fibre we have

F
n

X = (FX)n : EnX → E
n
FX .

As a consequence of Lemma 2 we obtain:

Lemma 4. Let p : E → B and assume G : E×Bn → E
is a lifting of the identity on B. If f : X → Y is a B-

morphism, there is a canonical natural transformation

θ : G(f∗)n ⇒ f∗G : EY → EGX .

Proof: This is an instance of Lemma 2 for T = Id
and T = G. We also use that the Cartesian lifting of a B-

morphism f in E×Bn is (f∗)n, where f∗ is the Cartesian

lifting in E .

Proposition 2. Let G : E×Bn → E be a lifting of the

identity on B such that there exists a natural transfor-

mation GF
n
⇒ FG. Then GX is F ξ-compatible.

Proof: Consider the natural transformation obtained

as the composition

GX(ξ∗)n(F )n ⇒ ξ∗GX(F )n ⇒ ξ∗FGX

and use that (ξ∗ ◦F )n = (ξ∗)n ◦ (F )n. The first natural

transformation comes from Lemma 4 applied for ξ.

C. Proofs for Section IV-C

In the next Theorem we only use that the fibration

p : E → B is a bifibration and is split. 2

Theorem 2. Let T , F : E → E be liftings of T and F . If

λ : T F ⇒ F T is a natural transformation sitting above

λ, then
∐

α ◦T is F ξ-compatible.

Proof: We exhibit a natural transformation
∐

α ◦ T ◦ ξ
∗ ◦ F ⇒ ξ∗ ◦ F ◦

∐
α ◦ T .

This is achieved in Figure 1 by pasting five natural

transformations, obtained as follows:

(a) is the counit of the adjunction
∐

λX
⊣ λ∗X .

(b) comes from λ being a lifting of λ, see Lemma 5.

(c) comes from the bialgebra condition, the fibration be-

ing split, and the units and counits of the adjunctions∐
α ⊣ α∗,

∐
Fα ⊣ (Fα)∗, and

∐
λX
⊣ λ∗X . See

Lemma 6.

(d) arises since T is a lifting of T , using the uni-

versal property of the Cartesian lifting (Tξ)∗, see

Lemma 2.

(e) comes from F being a lifting of F , combined with

the unit and counit of the adjunction
∐

α ⊣ α
∗, see

Lemma 3.

Lemma 5. Consider a fibration p : E → B, two

B-endofunctors F, T with corresponding liftings T , F .

Assume λ : TF ⇒ FT is a natural transformation and

λ : TF ⇒ FT sits above λ. Then there exists a 2-cell

as in the diagram below:

EX EFX ETFX

EX ETX EFTX

F

id

T

T F

λ∗X⇓ (4)

Proof: For R ∈ EFTX the R-component of the

required natural transformation is the dashed line in

the diagram below and is obtained using the universal

2The Beck-Chevalley condition is not required for the functors
∐

f .
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property of the Cartesian lifting of λX .

TFR

λ∗(FTR) FTR

TFX FTX

λR

λ̃FTR

λX

(5)

The naturality in R can be easily checked and is a

consequence of the uniqueness of the factorisation.

Lemma 6. Given (X,α, ξ) an λ-bialgebra as in (6)

TX X FX

TFX FTX

α

Tξ

ξ

Fα

λX

(6)

and p : E → B a split fibration, there exists a 2-cell

ETFX ETX EX

EFTX EFX EX

(Tξ)∗

∐
λX

∐
α

∐
Fα

ξ∗

id⇓ (7)

Proof: We obtain the required natural transforma-

tion as the composite of the natural transformations

of (8) below.
∐

α ◦(Tξ)
∗

⇓ (
∐

λ ⊣ λ
∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦
∐

λ

⇓ (
∐

Fα ⊣ (Fα)∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦ (Fα)∗ ◦
∐

Fα ◦
∐

λ

⇓ (bialg)

∐
α ◦α

∗ ◦ ξ∗ ◦
∐

Fα ◦
∐

λ

⇓ (
∐

α ⊣ α
∗)

ξ∗ ◦
∐

Fα ◦
∐

λ
(8)

Except for the third one, these 2-cells are obtained

from the units or counits of the adjunctions recalled

on the right column. The third natural transformation is

actually an isomorphism and arises from (X,α, ξ) being

a bialgebra and the fibration being split.

D. Proofs for Section IV-D

In this section we will prove Lemma 1. First we recall

some basic facts on the free monad T over a functor T

on some category C.

Assuming T has free algebras over any X in C one

can show that the free monad T over T exists. We can

define TX as the free T -algebra on X , or equivalently,

as the initial algebra for the functor X+T (−). Thus for

each X in C one has an isomorphism

[ηX , κX ] : X + TTX → TX.

The η above gives the unit of the monad T. The monad

multiplication µ : TTX → TX is given as the unique

morphism obtained by equipping TX with the TX +
T (−)-algebra structure [id, κX ].

Recall from [31] that there exists a bijective corre-

spondence between natural transformations

λ : T (F × Id)⇒ FT

and distributive laws

λ† : T(F × Id)⇒ (F × Id)T.

We briefly recall here how λ† is obtained from λ. For

X in B, we equip (F × Id)TX with a FX×X+T (−)-
algebra structure, given by the sum of :

FX ×X
(F×Id)ηX

// (F × Id)TX

FTTX
FµX

// FTX

T (F × Id)TX

λTX

77♣♣♣♣♣♣♣♣♣♣♣

Tπ2TX
''◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

//❴❴❴❴❴❴❴❴❴ (F × Id)TX

OO

��

TT
κX

// TX

Hence λ
†
X is defined as the unique (F × Id)X + T (−)-
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algebra morphism:

TT(F × Id)X
T (λ†

X
)
//

κ(F×Id)X

��

T (F × Id)TX

〈FµXλTX κX(Tπ2T)X〉

��

T(F × Id)X
λ
†
X //❴❴❴❴ (F × Id)TX

(F × Id)X

η(F×Id)X

OO

(F×Id)ηX

66♠♠♠♠♠♠♠♠♠♠♠♠

(9)

The following technical lemma is needed to establish

that whenever the lifting of T of a functor T has free

algebras, the free monad over T is the lifting of the free

monad over T .

Lemma 7. Consider a lifting T of a B-endofunctor T

and assume T has free algebras.

1) The functor p : E → B has a right adjoint 1 : B →
E inducing an adjunction

Alg(T )

Alg(1)

33
⊥ Alg(T )

Alg(p)
ss

2) The functor Alg(p) preserves the initial algebras.

3) When P ∈ EX for some X in B, the free T -algebra

over P sits above the free T -algebras over X .

4) The free monad T over T exists and is a lifting of

the free monad T over T .

Proof:

1) Since the fibration considered here is bicartesian,

one can define 1(X) as the terminal object in EX .

Then the statement of this item is an immediate

consequence of [14, Theorem 2.14].

2) follows because Alg(p) is a left adjoint.

3) follows from item 1) applied for the lifting P + T

of X + T .

4) is an immediate consequence of item 3).

Lemma 1. Consider a lifting T of a B-endofunctor T

and assume T has free algebras. Let λ : T (F × Id) ⇒
FT be a natural transformation sitting above λ : T (F ×

Id)⇒ FT. Then λ
†
: T(F × Id)⇒ (F × Id)T sits above

λ† : T(F × Id)⇒ (F × Id)T.

Proof: We know that TX is the free T -algebra on

X . Let

[ηX , κX ] : X + TTX → TX

denote the initial X + T (−)-algebra. Similarly, let

[ηP , κP ] : P + TTP → TP

denote the initial P + T (−)-algebra. By Lemma 7 we

know that when P ∈ EX we have that [ηP , κP ] is a

lifting of [ηX , κX ].

For P ∈ EX the map λ
†

P is defined similarly to (9),

as the unique map such that:

TT(F × Id)P
T (λ

†

P )
//

κ(F×Id)P

��

T (F × Id)TP

〈FµPλ
TP κP (Tπ2T)P 〉

��

T(F × Id)P
λ
†

P //❴❴❴❴ (F × Id)TP

(F × Id)P

η(F×Id)P

OO

(F×Id)ηP

77♥♥♥♥♥♥♥♥♥♥♥♥

(10)

By Lemma 7 we have that the (F×Id)P+T (−)-algebras

T(F×Id)P and (F×Id)TP of diagram (10) sit above the

(F × Id)X + T (−)-algebras T(F × Id)X , respectively

(F × Id)TX of diagram (9). By uniqueness of λ
†
X it

follows that λ
†

P sits above λ
†
X .

APPENDIX C

DETAILS ON DIVERGENCE

In this appendix, we discuss some details for showing

compatibility of Ctx ℓ that were omitted in the main text

for lack of space.

First of all, observe that the GSOS rules defining

the parallel operator corresponds to a distributive law

λ : T (F × Id) ⇒ FT, which is defined for all sets X ,

x, y ∈ X and S, T ∈ Pω(L×X) as

(S, x), (T, y) 7→ {(l, x′|y) | (l, x′) ∈ S}

∪ {(l, x|y′) | (l, y′) ∈ T }

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T }

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T }.

Intuitively, S and T are the sets of transitions of the

states x and y. The first set {(l, x′|y) | (l, x′) ∈ S}
corresponds to the first GSOS rule

x
l
→ x′

x|y
l
→ x′|y

and similarly for the others.

By virtue of Lemma 1, to prove compatibility of Ctx ℓ,

we only have to show that for all predicates P ⊆ X ,

the restriction of λX to T (F
〈τ〉
× Id)P corestricts to

F
〈τ〉

TP , that is whenever (S, x), (T, y) ∈ T (F
〈τ〉
×

Id)P , then λX((S, x), (T, y)) ∈ F
〈τ〉

TP .

The latter means, by definition of F
〈τ〉

, that there

exists a (τ, t) ∈ λX((S, x), (T, y)) such that t ∈ TP .
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This can be proved as follows: since S ∈ F
〈τ〉
P , then

there exists (τ, x′) ∈ S such that x′ ∈ P . By definition

of λX , (τ, x′|y) ∈ λX((S, x), (T, y)). Finally, since

x′ ∈ P , then x′|y ∈ TP .

APPENDIX D

DETAILS ON NOMINAL AUTOMATA

In this section we assume the reader has some famil-

iarity with nominal sets, see [23].

A. The base category

We denote by A a countable set of names. The

category Nom of nominal sets has as objects sets X

equipped with an action · : Sym(A) × X → X

of the group of finitely supported permutations on A

(that is, permutations generated by transpositions of the

form (a b)) and such that each x ∈ X has a finite

support. Morphisms in Nom are equivariant functions,

i.e., functions that preserve the group action.

B. The fibration at issue

It is well known that Nom can equivalently be de-

scribed as a Grothendieck topos. Since Nom is a regular

category, by [17, Observation 4.4.1] we know that the

subobject fibration on Nom is in fact a bifibration.

Furthermore, by a change-of-base situation described

below we obtain the bifibration Rel(Nom)→ Nom, see

also [17, Example 9.2.5(ii)]

Rel(Nom) //

��

Sub(Nom)

��

Nom
I→I×I

// Nom

Objects of Rel(Nom) are equivariant relations. That is,

if X is a nominal set, a nominal relation on X is just a

subset R ⊆ X2 such that xRy implies (π · x)R(π · y)
for all permutations π. This bifibration is also split and

bicartesian.

C. The functors and the distributive law

We will use the following Nom-endofunctors:

1) F : Nom → Nom given by FX = 2×XA, where

2 = {0.1} is equipped with the trivial action and

XA is given by the internal hom. Concretely, an

element f ∈ XA is a function f : A→ X such that

there exists a finite subset S ⊆ A and f(π(a)) =
π · f(a) for all names a ∈ A and permutations π ∈
Sym(A) fixing the elements of S.

2) Pω : Nom→ Nom that maps a nominal set X to its

orbit-finite finitely supported subsets. In particular

one can check that Pω is a monad and let µ denote

its multiplication, given by union.

The functors Pω and F are related by a distributive

law

λ : PωF ⇒ FPω.

For a nominal set X , the map λX is given by the product

of the morphisms acting on S ∈ PωF (X) by

S 7→ 1 ∈ 2 iff 1 ∈ (Pωτ1)(S)

and

S 7→ λa.{x ∈ X |∃f ∈ (Pωτ2)(S). f(a) = x} ∈ (PωX)A

where τ1, τ2 are the projections from FX to 2, respec-

tively XA.

D. The liftings

The distributive law λ can be lifted to Rel(Nom),
see [16, Exercise 4.4.6].

Rel(λ) : Rel(Pω)Rel(F )⇒ Rel(F )Rel(Pω).

Concretely, for R ∈ Rel(Nom)X , the nominal relation

Rel(F )(R) is given by (o, f) Rel(F )(R) (o′, f ′) iff o =
o′ and for all a ∈ A we have f(a)Rf ′(a).

On the other hand Rel(Pω) is given by

S Rel(Pω)(R) S′ iff for all x ∈ S exists y ∈ S′

with xRy and for all y ∈ S′ exists x ∈ S with xRy.

As for Rel(λ)R, this is obtained as the restriction of

λR × λR to Rel(Pω)Rel(F )(R).

E. Soundness of bisimulation up to congruence

Nondeterministic nominal automata [4] can be mod-

elled as FPω-coalgebras, while deterministic nominal

automata are represented as F -coalgebras. The classical

notion of finiteness is replaced by orbit-finiteness—from

a categorical perspective this makes sense, since orbit-

finite nominal sets are exactly the finitely presentable

objects in the lfp category Nom.

The generalised powerset construction [28] can be ap-

plied in this situation as well, that is, a nondeterministic

nominal automata modelled as a coalgebra

〈o, t〉 : X → 2× Pω(X)A

yields an F -coalgebra structure

〈o♯, t♯〉 : PωX → 2× (PωX)A,

on PωX , given by the composite F (µ) ◦ λ ◦ Pω(〈o, t〉).
The reason why determinisation fails in a nominal set-

ting [4] is that the finitary power object functor Pω

does not preserve orbit finiteness. This is the case in

the example of Section V-C.

Notice that (PωX,µ, 〈o
♯, t♯〉) is a λ-bialgebra.

The fibrations Rel(Nom) → Nom and Sub(Nom) →
Nom are well-founded in the sense of [13], hence the
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final Rel(F )〈o,t〉-coalgebra exists and can be computed

as the limit of an ωop-chain in the fibre Rel(Nom)X ,

see [13, Theorem 3.7]. We will use this coinductive

predicate to prove that two states of a nominal automata

accept the same language.

We can apply Theorem 2 to prove that the con-

textual closure Ctx =
∐

µ ◦Rel(Pω) is Rel(F )〈o♯,t♯〉-
compatible.

Thus bisimulation up to context is a valid proof

technique for nominal automata.

Moreover, we can apply Proposition 2 to prove com-

patibility of the up to reflexive, symmetric and transitive

closure techniques, respectively.

(n=0) Let Rfl : Nom→ Rel(Nom) be the functor mapping

each nominal set X to ∆X , the identity relation

on X . Then RflX is Rel(F )〈o,t〉-compatible since

∆FX = Rel(F )∆X .

(n=1) Let Sym : Rel(Nom) → Rel(Nom) be the functor

mapping each nominal relation R ⊆ X2 to its

converse R−1 ⊆ X2. SymX is F 〈o,t〉-compatible

since F (R)−1 ⊆ F (R−1) for all relations R ⊆ X2.

(n=2) Let ⊗ : Rel(Nom)×NomRel(Nom)→ Rel(Nom) be

the nominal relational composition functor. Com-

position of nominal relations is computed just as

in Set and one can show that Rel(F ) preserves it.

Thus ⊗ is Rel(F )〈o,t〉-compatible.

Employing Proposition 1 and the fact that congruence

closure is obtained as the composition of the equivalence,

context and reflexive closure functors we derive that

bisimulation up to congruence is a sound technique.

F. The concrete example

The nondeterministic nominal automaton of Sec-

tion V-C (reported on the left below) is given for-

mally by an FPω-coalgebra 〈o, t〉 on the nominal set

1 + 1+ A+ A+ 1. For simplicity we denote the second

copy of A by A′. The map 〈o, t〉 is given below on the

right.

∗

a

�� a // a

b

�� a // ⊤

a

		

⋆

a
::✉✉✉✉✉✉ b // a′ b

xx
a
OO

∗ 7→ (0, a 7→ {∗, a})

a 7→

(
0,

{
b 7→ {a} b#a

a 7→ {⊤}

)

⋆ 7→ (0, a 7→ {a} ∪ A
′ \ {a′})

a′ 7→

(
0,

{
b 7→ {a′} b#a

a 7→ {a}

)

⊤ 7→ (1, a 7→ {⊤})

The determinisation of this automaton has infinitely

many orbits. For example, the determinisation of the part

reachable from ∗ is partially represented by

{∗}
a // {∗, a}

b
��

a // {∗, a,⊤}

b��

abb

{∗, a, b}
a,b

//

c��

{∗, a, b,⊤}
c��

a,bbb

...
...

However, we can prove that ∗ and ⋆ accept the same

language, showing that the nominal relation R spanned

by

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗},A′)

is a bisimulation up to congruence, that is, R ⊆
Rel(F )〈o♯,t♯〉Cgr (R).

This is shown in Figure 2: for each pair in R, we check

that the successors are in Cgr (R). Note that for the

pairs ({a}, {a, a′}) and ({⊤}, {a,⊤}), in the second and

third rows, one needs to check the successors for a and

for a fresh name b. Instead for the pairs ({∗}, {⋆}) and

({∗},A′) in the first row, only successors for a should

be checked (since a does not belong to the support of

these states).

The only non-trivial computation is to check whether

{∗, a}Cgr(R){a} ∪ (A′ \ {a′}). We proceed as follows:

{∗, a} Cgr (R) {a} ∪ A′

Cgr (R) {a, a′} ∪ (A′ \ {a′})
Cgr (R) {a} ∪ (A′ \ {a′}).

APPENDIX E

PROOFS FOR SECTION VI

Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒

⊗T
2

above Id : T ⇒ T . Let both F1 and F2 be liftings of

F . If λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above

the same λ : TF ⇒ FT , then there exists λ : T (F1 ⊗
F2)⇒ (F1 ⊗ F2)T above λ.

Proof: Since F1 and F2 are liftings of F : B → B
it follows that 〈F1, F2〉 : E → E ×B E is a lifting of

F . Moreover 〈λ1, λ2〉 : T
2
〈F1, F2〉 ⇒ 〈F1, F2〉T is a

lifting of λ.

Using that ⊗ : E ×B E → E lifts the identity we get

that F1 ⊗ F2 = ⊗ ◦ 〈F1, F2〉 is also a lifting of F .

T ⊗ 〈F1, F2〉
γ〈F1,F2〉+3 ⊗T

2
〈F1, F2〉

⊗〈λ1,λ2〉+3 ⊗〈F1, F2〉T

TF
id +3 TF

λ +3 FT
(11)

The required λ is obtained as the composite ⊗〈λ1, λ2〉◦
γ〈F1, F2〉 sitting above λ as in (11).
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{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ {⋆}

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ A′

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{a}

a

��

R ❴❴❴❴❴❴ {a, a′}

a

��

{⊤}
Cgr(R)

{a,⊤}

{a}

b

��

R ❴❴❴❴❴❴ {a, a′}

b

��

{a}
Cgr(R)

{a, a′}

{⊤}

a

��

R ❴❴❴❴❴❴ {a,⊤}

a

��

{⊤}
Cgr(R)

{⊤}

{⊤}

b

��

R ❴❴❴❴❴❴ {a,⊤}

b

��

{⊤}
Cgr(R)

{a,⊤}

Fig. 2. Proving R to be a bisimulation up to congruence

A. Proofs for Similarity

Proposition 4. Let λ be a monotone abstract GSOS

specification and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then

Ctx is (Rel(F )⊑ × Id)〈ξ,id〉-compatible.

Proof: Recall that Ctx is defined as
∐

α◦Rel(T) and

that, for the canonical lifting, it holds that Rel(T)⊗ ⊆
⊗Rel(T)2. We decompose the lifting Rel(F )⊑ × Id as

(⊑× Id)⊗ (Rel(F )× Id)⊗ (⊑× Id)

where Id is the constant functor mapping R ⊆ X2 to

∆X . By Theorem 3 we reduce the proof of the fact

that Rel(T ) distributes over Rel(F )⊑ × Id to the fact

that Rel(T ) distributes over ⊑ × Id and Rel(F ) × Id
separately.

For the latter, observe that Rel(F )×Id = Rel(F×Id).
Since Rel(−) is a 2-functor [16, Exercise 4.4.6], we take

λ
†
1 : Rel(T)Rel(F × Id)⇒ Rel(F × Id)Rel(T ) as Rel(λ).

For the former we need to use Lemma 1 and exhibit

a λ : Rel(T )(⊑ × Id) ⇒ ⊑Rel(T) sitting above λ. This

amounts to show that, for all relations R ⊆ X2, the

restriction of λX×λX to Rel(T )(⊑×Id)R corestricts to

⊑Rel(T)R. Note that since ⊑ and Id are constant, this

is exactly the condition for monotone abstract GSOS.

This guarantees the existence of λ
†
2 : Rel(T)(⊑× Id)⇒

(⊑× Id)Rel(T) sitting above λ†.

The existence of λ
†
1 and λ

†
2 ensures, via Theorems 3

and 2, that Ctx is (Rel(F )⊑ × Id)〈ξ,id〉-compatible.

B. Proofs for Weak Bisimilarity

Lemma 8. (F × F , F ) is a fibration map.

Proof: Let f : X → Y be a function and R ⊆ X2

be a relation. Then

F × F ((f × f−1(R))

= {(S,U, V,W ) |

∀(a, x) ∈ S. ∃(a, y) ∈ W. f(x)Rf(y),
∀(a, y) ∈ V. ∃(a, x) ∈ U. f(x)Rf(y)}

= {(S,U, V,W ) |

∀(a, x′) ∈ Ff [S]. ∃(a, y′) ∈ Ff [W ]. x′Ry′,
∀(a, y′) ∈ Ff [V ]. ∃(a, x′) ∈ Ff [U ]. x′Ry′}

= (Ff × Ff × Ff × Ff)−1(F × F (R))

Proposition 5. Let λ : T (F × Id) ⇒ FT be a

positive GSOS specification and (X,α, 〈ξ1, id〉) and

(X,α, 〈ξ2, id〉) be two λ†-bialgebras then Ctx is

(F × F × Id)〈ξ1,ξ2,id〉-compatible.

Proof: From λ : T (F × Id) ⇒ FT, we define

λ̃ : T (F × F × Id)⇒ (F × F )T as 〈λ ◦ T (τ1 × τ3), λ ◦
T (τ2×τ3)〉 where τi are the projections from F×F×Id
to F and Id. Such λ̃ induces a distributive law

λ̃† : T(F × F × Id)⇒ (F × F × Id)T.

From the λ†-bialgebras (X,α, 〈ξ1, id〉) and

(X,α, 〈ξ2, id〉), we construct (X,α, 〈ξ1, ξ2, id〉)
which is a λ̃†-bialgebra.

Recall that Ctx is defined as
∐

α◦Rel(T) and that, for

the canonical lifting, it holds that Rel(T)⊗ ⊆ ⊗Rel(T)2.

We decompose the lifting F × F × Id as

(ρ× Id)⊗ (Rel(F × F )[⊇⊆] × Id)

where Id is the constant functor mapping R ⊆ X2 to

∆X . By Theorem 3 we reduce the proof of the fact that
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Rel(T ) distributes over F × F×Id to the fact that Rel(T )
distributes over ρ×Id and Rel(F×F )[⊇⊆]×Id separately.

For the former, by Lemma 1, we have to prove that

for all relations R ⊆ X2, the restriction of λ̃X × λ̃X
to Rel(T )(ρ × Id)R corestricts to ρRel(T)R. This can

be easily checked by using the fact that both ρ and

Id are constant and exploiting the definition of λ̃. As

a consequence there exists a λ̃1
†

: Rel(T)(ρ × Id) ⇒
(ρ× Id)Rel(T) sitting above λ̃†.

For Rel(F ×F )[⊇⊆]× Id we can reuse Proposition 4,

but first we have to prove that the GSOS specification λ̃

is monotone w.r.t. [⊇⊆]. Via simple computations, one

can check that this is indeed the case when the original

GSOS specification λ is positive. As a consequence there

exists a λ̃2
†

: Rel(T)(Rel(F ×F )[⊇⊆]× Id)⇒ (Rel(F ×
F )[⊇⊆] × Id)Rel(T) sitting above λ̃†.

The existence of λ̃1
†

and λ̃2
†

entails, via Theorems

3 and 2 compatibility of Ctx for (F × F × Id)〈ξ1,ξ2,id〉.
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