N
N

N

HAL

open science

Submixing and Shift-invariant Stochastic Games
Hugo Gimbert, Edon Kelmendi

» To cite this version:

Hugo Gimbert, Edon Kelmendi. Submixing and Shift-invariant Stochastic Games. 2014.

00936371v3

HAL Id: hal-00936371
https://hal.science/hal-00936371v3

Preprint submitted on 23 Mar 2022 (v3), last revised 24 Mar 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-00936371v3
https://hal.archives-ouvertes.fr

Submixing and Shift-Invariant Stochastic Games

Hugo Gimbert! and Edon Kelmendi?

ICNRS, LaBRI, Université de Bordeaux, France
*Max Planck Institute for Software Systems, Germany

March 23, 2022

Abstract

We study optimal strategies in two-player stochastic games that are played on
a finite graph, equipped with a general payoff function. The existence of optimal
strategies that do not make use of memory and randomisation is a desirable
property that vastly simplifies the algorithmic analysis of such games. Our main
theorem gives a sufficient condition for the maximizer to possess such a simple
optimal strategy. The condition is imposed on the payoff function, saying the
payoff does not depend on any finite prefix (shift-invariant) and combining two
trajectories does not give higher payoff than the payoff of the parts (submixing).
The core technical property that enables the proof of the main theorem is that of
the existence of e-subgame-perfect strategies when the payoff function is shift-
invariant. Furthermore, the same techniques can be used to prove a finite-memory
transfer-type theorem: namely that for shift-invariant and submixing payoff
functions, the existence of optimal finite-memory strategies in one-player games
for the minimizer implies the existence of the same in two-player games. We show
that numerous classical payoff functions are submixing and shift-invariant.
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1 Introduction

The games that we study are played between two players on a finite graph. Every
vertex of the graph belongs to one of the players, the one that decides which edge
should be taken next. The result of such a play is an infinite path in the graph. The
objective of the game is given using a payoff function, which maps infinite paths to
real numbers. The maximizer or Player 1, wants to maximize the payoff, while his
adversary (the minimizer) wants the opposite.

The study of such games has been an active area of research for a few decades, in a
variety communities; especially in that of theoretical computer science and economics.
They are used to model simplified adversarial (zero-sum) situations. In computer
science they are used in verifying properties of systems, but also as a very beneficial
theoretical tool in logic and automata theory.

In this paper we consider stochastic games, a more general model where in every
step, after an action is chosen, there is a probability distribution on the set of vertices
according to which the next vertex is chosen. In this scenario, Player 1 wants to
maximize the expected payoff, and his adversary to minimize it.

Well-known examples of games played on graphs are the discounted games, mean-
payoff games, games equipped with the limsup payoff function and parity games.
These four classes of games share a common property: both players have very simple
optimal strategies, namely optimal strategies that are both deterministic and stationary.
These are strategies that guarantee maximal expected payoff and choose actions
deterministically (without randomisation) and this deterministic choice depends only
on the current vertex (it does not use memory). When games admit such strategies
for the maximizer they are called half-positional, when they admit such strategies for
both players they are called positional. This property is highly desirable and it is often
the starting point for further algorithmic analysis.

The broad purpose of the present paper is to study what is the common quality of
games that makes it possible for them to admit deterministic and stationary optimal
strategies.

Context. There have been numerous papers about the existence of deterministic
and stationary optimal strategies in games with different payoff functions. Shapley
proved that stochastic games with discounted payoff function are positional using an
operator approach [Sha53]]. Derman showed the positionality of one-player games with
expected mean-payoff reward, using an Abelian theorem and a reduction to discounted
games [Der62]. Gilette extended Derman’s result to two-player games [Gil57] but
his proof was found to be wrong and corrected by Ligget and Lippman [LL69]]. The
positionality of one-player parity games was addressed in [[CY90] and later on extended
to two-player games in [[CJHO3| [Zie04]. Counter games were extensively studied
in [BBE10] and several examples of positional counter games are given. There are also
several examples of one-player and two-player positional games in [Gim07, Zie10]. A
whole zoology of half-positional games is presented in [Kop09] and another example
is given by mean-payoff co-Biichi games [[CHJ05]. The proofs of these various results
are quite heterogeneous, making it difficult to find a common property that explains
why they are positional or half-positional.



Some effort has been made to better understand conditions that make games (half)
positional, which has made apparent that payoff functions that are shift-invariant and
submixing play a crucial role. Our contributions lie in this direction.

Contributions. The results of the present paper can be summarised as follows.

First, the main theorem says that a sufficient condition for the game to be half-
positional is for the payoff function to be shift-invariant and submixing. We give an
informal explanation of this condition. Payoff functions f map infinite paths of the
graph

S0515283 *+*

to real numbers. A payoff function is shift-invariant if it does not depend on finite
prefixes, in other words

f(p s0s18253 ) = f(s0515253 ),

for any finite prefix p, i.e. we can shift the trajectory to the left without changing the
payoff. A payoff function is submixing on the other hand, if for any two infinite paths

50515253
oty tat3 -+

shuffling (or combining) them such as

505152 $384 55565758

bty 13141516 b7ty -
does not give better payoff, that is:

f(sos1s2t0t183S4 2131415165556 575173 -+-) < max{f(sos1s2 =), f(totitz =) }.

Theorem 1.1. Games equipped with a payoff function that is shift-invariant and sub-
mixing are half-positional.

As mentioned above, half-positional games are those where the maximizer has
a simple kind of strategy that is optimal. There is nothing special about this player,
if instead of the submixing condition, we define an “inverse” submixing condition,
namely one that requires that the combined payoff is larger than the minimum of
the parts, we would have an analogous theorem that proves the existence of simple
optimal strategies for the minimizer. Furthermore there are payoff functions for which
both versions of the submixing condition hold, and for these games the theorem proves
positionality. The conditions in the statement of the theorem are not necessary; we
will provide examples and discuss this fact. The proof of Theorem|[1.1]is by induction
on number of edges, it uses Lévy’s 0-1 law, as well as the following crucial property of
the games under consideration. Namely that games equipped with a payoff function
that is both bounded and Borel-measurable admit e-subgame-perfect strategies, for
every € > 0. A proof of this fact can be found in [MY15].



A second contribution comes as a corollary of the techniques developed for the
main theorem. It is a transfer-type theorem that lifts the existence of optimal finite-
memory strategies in one-player games (also known as Markov decision processes) to
the same for two-player games.

Theorem 1.2. Let f be a payoff function that is both shift-invariant and submixing.

Assume that in all games equipped with f and fully controlled by the minimizer, for
every € > 0, the minimizer has an e-optimal strategy with finite memory. Then in every
(two-player) game, for every € > 0, the minimizer has an e-subgame-perfect strategy that
has finite memory.

The statement also holds for € = 0, that is: if the minimizer has an optimal strategy
with finite memory in every game that he fully controls, then in every (two-player) game
as well he has a subgame-perfect strategy with finite memory.

Furthermore this theorem is proved by effectively constructing the e-subgame-
perfect strategies in the two-player games. Those are obtained by combining and
simplifying e-optimal strategies in one-player games.

Related work. For one-player games it was proved by the first author that every
one-player game equipped with a payoff function that is both shift-invariant and
submixing is positional [Gim07]. This result was successfully used in [BBE10] to
prove positionality of counter games. A weaker form of this condition was presented
in [GZ04] to prove positionality of deterministic games (i.e. games where transition
probabilities are equal to 0 or 1, not stochastic). Kopczynski proved that two-player
deterministic games equipped with a shift-invariant and submixing payoff function
that takes only two values is half-positional [Kop06]].

A result of Zielonka [Zie10]] provides a necessary and sufficient condition for the
positionality of one-player games. The condition is expressed in terms of the existence
of particular optimal strategies in multi-armed bandit games. When trying to prove
the positionality for a particular payoff function, the condition in [Zie10] is harder to
check than the submixing property which is purely syntactic.

Some results on finite-memory determinacy have been obtained in [BRO™20],
with different requirements: the size of the memory should be independent from the
arena, whereas in this paper we do not make such an assumption.

The pre-print version of this present paper [GK14] has already been used in a
number of works, mostly pertaining the algorithmic game theory community. We
mention the papers that we are aware of. In [[CD16]], Chatterjee and Doyen study
payoff functions that are a conjunction of mean-payoff objectives, and prove that they
are in co-NP for finite-memory strategies. They use Theorem|[L.1} and for Theorem [4.1]
they observe that in the special case of finite-memory strategies there is a simple
combinatorial proof, which bypasses the use of martingale theory. In [BKW18] the
authors consider arbitrary boolean combination of expected mean-payoff objectives
and the main theorem of the present paper appears as Theorem 1, and is the starting
point of their further algorithmic analysis. Games played on finite graphs where the
information flow is perturbed by non-deterministic signalling delays are considered
in [BvdB15l], where submixing and shift-invariant payoff functions play a central



réle. Our results and proof techniques were also used by Mayr, Schewe, Totzke and
Wojtczak to establish a finite-memory transfer theorem analogous to the second part
of Theorem 1.2]and to prove that games with energy-parity objectives and almost-sure
semantics lie in NP n co-NP [MSTW21]].

Organisation of the paper. We fix the notation and give the relevant definitions
in Section 2| where one can also find an overview of the proof. We give examples of
shift-invariant and submixing payoff functions in Section 3] as well as show how the
Theorem|[1.1]can be used to recover numerous classical determinacy results. In Section[4]
we define reset strategies as a method of obtaining e-subgame-perfect strategies, which
exist due to Theorem [4.1] The proof of the main theorem, Theorem is given in
Section[5] and that of the transfer theorem for finite-memory strategies, Theorem|1.2]
in Section[7]

2 Preliminaries

The purpose of this section is to introduce the basic notions that we need about
stochastic games with perfect information, that is the definitions of: games, payoff
functions, strategies and values.

Games A game is specified by the arena and the payoff function. While the arena
determines how the game is played, the payoff function specifies the objectives that
the players want to reach.

We use the following notations throughout the paper. Let S be a finite set. The
set of finite (respectively infinite) sequences on S is denoted S (respectively S¢). A
probability distribution on S is a function 6 : S — [0, 1] such that ) g 6(s) = 1. The
set of probability distributions on S, we denote by A(S).

Definition 2.1 (Arena). A stochastic arena with perfect information is a tuple:

(S, S1, S2. A, (A(5))sess P)
where
« S is a finite set of states (that is nodes of the graph) partitioned in two sets (S1,S2),
« A is a finite set of actions,
« for each state s € S, a non-empty set A(s) c A of actions available in s,
« and transition probabilities p : S x A — A(S).

An arena is fully controlled by the minimizer if A(s) is a singleton for every s € S;.

An infinite play in an arena A is an infinite sequence p = spassiaz -+ € (SA)® such
that for every n € IN, an1 € A(sy). A finite play in A is a finite sequence in S(AS)”
which is the prefix of an infinite play.

With each infinite play is associated a payoff computed by a payoff function. Player 1
(the maximizer) wants to maximize the expected payoff while Player 2 (the minimizer)



has the exact opposite preference. Formally, a payoff function for the arena A is a
bounded and Borel-measurable function

f:(SA)® >R
which associates with each infinite play h a payoff f(h).

Definition 2.2 (Stochastic game with perfect information). A stochastic game with
perfect information is a pair

(A.f)

where A is an arena and f a payoff function for the arena A.

Strategies A strategy in an arena A for Player 1 is a function
o : (SA)'S; — A(A)

such that for any finite play soay -+ sp, and every action a € A, if o(spay -+ sp)(a) > 0
then the action a belongs to A(sp), i.e. the played action is available. Strategies for
Player 2 are defined similarly and are typically denoted 7. General strategies can have
infinite memory as well as randomise among the available actions at every step. We
are interested in a very simple sub-class of strategies, namely those that do not use
any memory, or randomisation.

Definition 2.3 (Deterministic and stationary strategies). A strategy o for Player 1 is
deterministic if for every finite play h € (SA)*S; and action a € A,

o(h)(a) >0 = o(h)(a) = 1.

A strategy o is stationary if o(h) only depends on the last state of h. In other words o is
stationary if for every state t € S; and for every finite play h = spay -+ ait,

o(h) = o(t).

Given an initial state s € S and strategies o and 7 for players 1 and 2 respectively,
the set of infinite plays that start at state s is naturally equipped with a sigma-field
and a probability measure denoted P{"" that are defined as follows. Given a finite play
h and an action a, the set of infinite plays h(AS)® and ha(SA)“ are cylinders that we
abusively denote h and ha. The sigma-field is the one generated by cylinders and P§°*
is the unique probability measure on the set of infinite plays that start at s such that
for every finite play h that ends in state ¢, for every action a € A and state r € S,

PO (ha | B = o(h)(a) ifteSy, "
¥ r(h)(a) ift€Sy,
PY°" (har | ha) = p(t,a,r1). (2)

For n € N, we denote S, and A, the random variables defined by
Sn(soarsy ++) = s,

def
An(spaisy ) = an.



Values and optimal strategies Let G be a game with a bounded measurable payoff
function f. The expected payoff associated with an initial state s and two strategies o
and r is the expected value of f under P{"*, denoted E{"* [f]. The maxmin and minmax
values of a state s € S in the game G are:

maxmin(G)(s) £ sup inf EZ'? [f],
o T
minmax(G)(s) £ inf sup EZ'? [f].
T o
By definition of maxmin and minmax, for every state s € S, maxmin(G)(s) <

minmax(G)(s). As a corollary of the Martin’s determinacy theorem for Blackwell
games [Mar98| Section 1], the converse inequality holds as well:

Theorem 2.4 (Martin’s second determinacy theorem, [Mar98| Section 1]). Let G be a
game with a Borel-measurable and bounded payoff function f. Then for every state s € S:

val(G)(s) £ maxmin(G)(s) = minmax(G)(s).
This common value is called the value of state s in the game G and denoted val(G)(s).

The existence of a value guarantees the existence of e-optimal strategies for both
players and every € > 0.

Definition 2.5 (Optimal and e-optimal strategies). Let G be a game, € > 0 and o a
strategy for Player 1. Then o is e-optimal if for every strategy T and every state s € S,

E2" [f] = minmax(G)(s) - €.
The definition for Player 2 is symmetric. A 0-optimal strategy is simply called optimal.

A stronger class of e-optimal strategies are e-subgame-perfect strategies, which
are strategies that are not only e-optimal from the initial state s but stay e-optimal
throughout the game. More precisely, given a finite play h = sp --- s, and a function g
whose domain is the set of (in)finite plays, by g[h] we denote the function g shifted
by h:

glhl(toarts ) glhaity ) if sy = to,
g(toarty +)  otherwise.

Definition 2.6 (e-Subgame-Perfect Strategy). Let G be a game equipped with a payoff
function f. A strategy & for Player 1 is said to be e-subgame-perfect if for every finite
playh 1= sy sp,
inf ES"}7 [£[h]] > sup inf EZ7 [f[A]] - .
T o T

n



Shift-invariant and submixing Without loss of generality we can assume that
there is a finite set C (colours assigned to the states of the game) such that the payoff
function f is a function

f : C? > R,

that is Borel-measurable and bounded. We define the two conditions with respect to
such payoff functions.

Definition 2.7 (Shift-Invariant). The payoff function f is shift-invariant if and only if
for all finite prefixes p € C* and trajectories u € C®,

flp u) = f(w).

Note that shift-invariance is a stronger condition than saying: if one can get v’ € C*
from u € C® by replacing finitely many letters then f(u) = f(«’). Sometimes in the
literature this stronger condition is called “prefix-independent” or “tail-measurable”.
Intuitively shift-invariant payoff functions are such that they only measure asymptotic
properties, and do not talk about indices.

A factorisation of u € C? is a sequence uy, Uy, ... of non-empty finite words (i.e.
elements of C*) such that

U=uugus- --.

For u, v, w € C?®, we say that w is a shuffle of u and v if there are respective factorisa-
tions uy, Uy, ..., and v, v, ... such that

W= U1 U1 U Uy .

Definition 2.8 (Submixing). The payoff function f is submixing if and only if for all
u, v, w € C® such that w is a shuffle of u and v we have

f(w) = max{f(w), f(v)}.

The submixing condition says that one cannot shuffle two losing trajectories to
make a winning one. This requirement simplifies the kind of strategies that the players
need.

The submixing condition is not symmetric over the players, and it implies different
results for different players (notice the difference between Theorem 1.1} and Theo-
rem 1.2). We define the inverse-submixing condition which is its reflection about the
players:

Definition 2.9 (Inverse-Submixing). The payoff function f is inverse-submixing if and
only if for all u, v, w € C® such that w is a shuffle of u and v we have

f(w) = min{f(u), f(v)}.

There are payoff functions that are both submixing and inverse-submixing (e.g.
the parity function); for such payoffs Theorem [1.1]implies simple optimal strategies
for both players, i.e. positionality.



3 Applications and Examples

In this section we give a variety of examples of payoff functions that are shift-invariant
and submixing, some of them very well-known, others less so. Thus we unify a number
of classical positional determinacy results and also sketch how straightforward it is
to apply Theorem [1.1| to novel payoff functions. Furthermore, we comment on the
hypothesis of Theorem[I.1} Are the conditions necessary? What do they imply about
the optimal strategies of the minimizer? Under what operations is this class of payoff
functions closed? We start by listing a few well-known examples.

3.1 Unification of Classical Results

The mean-payoff function has been introduced by Gilette [Gil57]]. It measures average
performances. Each state s € S is labeled with an immediate reward r(s) € R. With
an infinite play spaj s1 - is associated an infinite sequence of rewards ry = r(sp), 11 =
r(s1), ... and the payoff is:

n

def 1. 1
fmean(ror1 -++) = lim sup Z ri.
n  n+lig

The discounted payoff has been introduced by Shapley [Sha53]]. It measures long-
term performances with an inflation rate: immediate rewards are discounted. Each
state s is labeled not only with an immediate reward r(s) € R but also with a discount
factor 0 = A(s) < 1. With an infinite play h labeled with the sequence (rp, Ag)(r1, A1) -+ €
(R % [0, 1)) of daily payoffs and discount factors is associated the payoff:

Faisc (o, Ao)(ri, A1) ) € 1o + Aory + AdgArra + -+

The parity condition is used in automata theory and logics [GTWO02]. Each state s
is labeled with some color ¢(s) € {0, ..., d}. The payoff is 1 if the highest color seen
infinitely often is even, and 0 otherwise. For ¢yc; - € {0, ...,d},

« | 0if limsup, ¢, is even,
fPar(cocl =) H { Pn e

1 otherwise.

The limsup payoff function has been used in the theory of gambling games [MS96]].
States are labeled with immediate rewards and the payoff is the limit supremum of the
rewards:

def 1.
Jisup(rort ) = limsup rp.
n

The liminf payoff function can be defined similarly.
The two following propositions follow easily from Theorem|[1.1}

Proposition 3.1. The payoff functions fisup, fiinf, fpar and fmean are shift-invariant and
submixing. Moreover fisp, fiinf, and fpar are inverse-submixing as well.

10



Proposition 3.2. In every two-player stochastic game equipped with the parity, limsup,
liminf, mean or discounted payoff function, Player 1 has a deterministic and stationary
strategy which is optimal. The same is true for Player 2 for the parity, limsup and liminf

payoff.

One comment should be made about the discounted payoff function: While it
is not shift-invariant, it is possible to reduce games equipped with this function to
games with the mean-payoff function, by interpreting discount factors as stopping
probabilities as was done in the seminal paper of Shapley [Sha53]]. One can find details
of this reduction in [Gim07, [Gim06]].

Thus we have unified a number of classical results, thereby giving a common
reason for the half-positionality of seemingly unrelated games. The approaches that
can be found in the literature for proving that these games are (half-)positional are
diverse, as one can see, for example, by consulting the papers [[CY90] and [MS96] that
show positionality for parity games and limsup games, respectively. The existence of
deterministic and stationary optimal strategies in mean-payoff games has a colourful
history attached. The first proof was given by Gilette [Gil57] based on a variant
of Hardy and Littlewood theorem. Later on, Ligget and Lippman found the variant
to be wrong and proposed an alternative proof based on the existence of Blackwell
optimal strategies plus a uniform boundedness result of Brown [LL69]. For one-player
games, Bierth [Bie87] gave a proof using martingales and elementary linear algebra
while [VTRF83|] provided a proof based on linear programming and a modern proof can
be found in [NS03] based on a reduction to discounted games and the use of analytical
tools. For two-player games, a proof based on a transfer theorem from one-player to
two-player games can be found in [Gim06|[GZ09| [GZ16].

3.2 Other Examples

We mention a few more recent examples of games.

One-counter stochastic games have been introduced in [BBE10], in these games
each state s € S is labeled by a relative integer ¢(s) € Z. Three different winning
conditions were defined and studied in [BBE10]]:

lim sup Z cj = +00 (3)
n O<i<n

lim sup Z cj = —00 (4)
n O<i<n

fmean(cocl .)>0 (5)

The positive average condition defined by (5) is a variant of mean-payoff payoff, which
may be more suitable to model quality of service constraints or decision makers with
a loss aversion. One can naturally defined a payoff function fyosavg, that outputs 1 if
the condition holds, and 0 otherwise.

Although fposavg seems similar to the fmean function, maximizing the expected
value of fyosavg and doing the same for fiean, are two different goals. For example, a
positive average maximizer prefers seeing the sequence 1,1, 1, ... for sure rather than
seeing with equal probability % the sequences 0, 0,0, ... or 3,3, 3, ... while a mean-value

11



maximizer prefers the second situation to the first one. To the best knowledge of
the authors, the classical techniques developed in [Bie87, INS03| [VTRF83] cannot be
used to prove positionality of games equipped with the positive average condition.
However, since fposavg can be defined as the composition of the submixing function
fmean With an increasing function it is submixing itself. As a consequence of the main
theorem of the present paper, it then follows that games that are equpped with fyosave
are half-positional.

Another recent example are the generalized mean payoff games, that were intro-
duced in [[CDHR10]. Each state is labeled by a fixed number of immediate rewards
(r(l), e r(k)), which define as many mean payoff conditions (fr%lean, ,frﬁean). The
winning condition is:

Visiskflo (r3i>r§") ) > 0. (©)

In the special case of mean-payoff co-Biichi games, a subset of the states are called
Biichi states, and the payoff of Player 1 is —co if Biichi states are visited infinitely often
and the mean-payoff value of the rewards otherwise. One can easily check that such
a payoff mapping is shift-invariant and submixing. Although we do not explicitly
handle payoff mappings that take infinite values, it is possible to approximate the
payoff function by replacing —oco by arbitrary small values to prove half-positionality
of mean-payoff co-Biichi games.

The general payoffs captured by the condition in (6) are not submixing, however,
a natural variant is: Optimistic generalized mean-payoff games are defined similarly
except the winning condition is

s
3i, finean = 0.

It is an exercise to show that this winning condition is submixing. More generally,
if fi1, ..., fn are submixing payoff mappings then max{fi, ..., f,} is submixing as well.
As a consequence of this observation and Theorem games with the optimistic
generalized mean-payoff condition are half-positional. Such games are not positional
however. One can show that the minimizer requires (finite) memory. Intuitively, he
needs to use the memory to remember which dimensions have to be decreased, in
order to render the condition false. There are even examples of shift-invariant and
submixing payoff functions where the minimizer requires infinite memory to play
optimally. Here is one of them.

The set of colours is {a, b}. The payoff function is equal to -1 if and only if the
word w € {a, b} that it inputs contains infinitely many as, infinitely many bs, and
moreover

w=a"ba"ba™b -,

is such that lim inf, ny = co, otherwise it is equal to 0.

One final but interesting example of a payoff function that is shift-invariant, sub-
mixing, and even inverse-submixing (hence positional for both players in two-players
games) is the positive frequency payoff. Every state is labeled by a color from a set C,

12



each of which has a payoff u(c). An infinite play generates an infinite word of colors:
def
w = (162 -,

For a color ¢ and n € N define #(c, ¢ycy -+ ¢,) to be the number of occurrences of the
color c in the prefix cyc; -+ ¢y The frequency of the color ¢ in w is defined as:

#
freq(c, w) < lim sup M’

n—oo n

and the payoff
fireq(w) “max{u(c) : ceC, freq(c, w) > 0}.

Other examples can be found in [Gim07, Kop09, |Gim06]), and in the papers cited in the
introduction.

3.3 The Class of Shift-Invariant and Submixing Functions

In this section we have already used two operators under which the class of shift-
invariant and submixing functions is closed:

o If f1,.... fi are shift-invariant and submixing then so is
f(w) = max{fi(w),..., fi(w)}.
« If f is shift-invariant and submixing, and g is an increasing function then
gf
is shift-invariant and submixing.

The proofs are routine.

The class of shift-invariant and submixing functions does not seem to have any
non-trivial closure property. For example, even though this class is closed under
max above, it is not closed under addition. That is if f; and f; are submixing, then
f(w) := fi(w) + fo(w) need not be. To see this, consider the example with colors a and
b, and f; such that it maps to 1 if a occurs infinitely often, and 0 otherwise, and f»
defined symmetrically.

Furthermore, neither condition is necessary in Theorem discounted games are
positional but not shift-invariant, and fiean Wwith lim inf instead of lim sup is positional
but not submixing. However, as we have seen, this class contains many interesting
payoff functions, and it is the salient property that allows one to prove the existence
of positional optimal strategies. Perhaps even more importantly, it is typically trivial
to check whether a given payoff function is shift-invariant and submixing.
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4 e-Subgame-Perfect Strategies

The proof of Theorem 1.1 hinges on a crucial property of games with perfect informa-
tion, namely the fact that they admit e-subgame-perfect strategies, for all € > 0.

Theorem 4.1. Games equipped with a payoff function that is bounded and Borel-
measurable, admit e-subgame-perfect strategies, for every € > 0.

In this section we sketch the proof of this theorem, by giving a construction that
takes some e-optimal strategy o and turns it into a 2e-subgame-perfect strategy 6. A
full proof can be found in Mashiah-Yaakovi’s paper [MY15| Proposition 11] in a more
general setting, in the preprint version of the current paper [[GK14l Section 3], as well
as in [FHMP21].

The theorem is completely symmetric about the players, so it is sufficient to show
that, say, the maximizer has e-subgame-perfect strategies.

An e-optimal strategy o is a strategy that ensures (to within €) the largest payoff
that it can be ensured from the starting position of the game. As the game progresses,
if the adversary makes a non-optimal move at some point, that allows one to gain
more, an e-optimal strategy does not necessarily take advantage of this slip up. The
e-subgame-perfect strategies are that subset of strategies that do take advantage of any
such non-optimal action of the adversary. How does one turn an e-optimal strategy
to an e-subgame-perfect strategy? One simple observation suffices: if after the non-
optimal action is played, o simply forgets the past, i.e. resets its memory, then the
payoff will be larger. We explain why the strategy that always resets the memory
when the adversary has played a non-optimal action is 2e-subgame-perfect. First, let
us make this construction precise.

A strategy o is not 2e-subgame-perfect if and only if there exists some finite play
h := sy s, such that

inf EZ"MT [£[h]] < sup inf EZ 7 [f[h]] - 2€; @)

2

the reset strategy simply resets its memory when this happens. We give the formal
definitions.

Definition 4.2. The finite play h := s -+ sy, is called a (€, o)-drop if (7) holds. We write
A(e, o)(h) = his a (e, o)-drop.

It is plain that one can factorise any infinite play that has infinitely many drops,
into hihy --- where each h; is a (¢, o)-drop, but no strict prefix of h; is (€, o)-drop. For
example:

| is a (¢, o)-drop

8 ks p,

—_— 7 P

S0 40 S10152 A2 53 43 54 44 55 A5/S6 A6 S7 47 5348 S9 A9 -
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Definition 4.3. We define the date of the most recent (or latest) drop for all sy -+ s,
inductively as:

Ale, 0)(s0) £0

A(e, U)(SO sn) d:"'f {n l_fh 1sa (6, G)—drop

A(e, 0)(sg - sp-1) otherwise,

where

h<s s, and % A(e, o)(so +* Sp-1).

The date of the most recent drop in the example above looks as follows:

| is a (e, o)-drop
hy hs hs hy
——— —
——

,,,,,,,,,,,,,,, e —— T

S0 Ao $1A152 A2 530354 44 55 d556 0657475848 S9 Ay *+

Ne, a)(sp - s9) =8
A, a)(sg - s5) =2

The reset strategy resets its memory whenever a drop occurs, ie. it keeps the
memory since the most recent drop:

Definition 4.4 (Reset Strategy). For any strategy o we define the reset strategy & as:
(0 -+ sn) = o(se -+ sn),

where
€% Ae, 0)(so -+ sn).

The crux of the proof of Theorem [4.1]is to show that under the strategy & only
finitely many resets occur, almost surely. Intuitively, this is because after every (e, o)-
drop, by resetting the memory, the maximizer gains at least some amount ¢ that is
bounded away from zero. But it is not possible to gain infinitely many times § because
the payoff function is assumed to be bounded.

One way of formally proving this observation is to use martingale theory. We
start with a strategy o that is e-optimal, and such that it only ever chooses actions
that never decrease the value on average. Then one shows that only finitely many
drops occur almost surely with the strategy &, and that furthermore the strategy ¢
is itself e-optimal. For the former, Doob’s optional stopping theorem, and forward
convergence theorem [Wil91l Theorem 11.5] are useful. Finally one proves:

Lemma 4.5. Let G be a game equipped with a shift-invariant payoff function. Let
€ = 0 be a non-negative real number and o be an e-optimal strategy in G. Then ¢ is
2e-subgame-perfect in G.

The e-optimal strategies that we use, to turn into 2e-subgame-perfect strategies &,
are guaranteed to exist by Martin’s theorem, Theorem
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5 Half-Positional Games

We prove the main theorem:

Theorem 1.1. Games equipped with a payoff function that is shift-invariant and sub-
mixing are half-positional.

Neither of the conditions in the statement is necessary, as we saw from the examples
given in Section 3| Necessary and sufficient conditions for positionality are known for
deterministic games [GZ05]. However the shift-invariant and submixing conditions
are general enough to recover several known classical results, and to provide several
new examples of games with deterministic stationary optimal strategies. Before we
proceed with the proof we remark:

Remark 5.1. A symmetric proof to that of Theorem|[1.1} the subject of this section, can be
used to prove a statement like that of Theorem([1.1] where Player 1 is replaced by Player 2
and submixing is replaced by inverse-submixing. A corollary of this is that games with
shift-invariant, submixing and inverse-submixing payoff functions are positional.

Consider a game G fulfilling the conditions of the theorem. The proof proceeds by
induction on the actions of the maximizer, that is on the quantity

N©)Z Y (A(s) - 1).
s€Sq
It proceeds by removing more and more actions of the maximizer and showing that at
every step the value has not decreased, until we are left with a single choice from every
state that belongs to the maximizer. The unique choice will then be the positional
optimal strategy.

If N(G) = 0 there is no choice for maximizer, hence he has a deterministic and
stationary optimal strategy. If N(G) > 0 there must be a state s € S such that Player 1
has at least two actions in §, i.e. A(S) has at least two elements. We split the game G in
two strictly smaller subgames G; and Gg.

Definition 5.2 (Split of a game). Let G be a game with N(G) > 0 and § € S a state of
G controller by Player 1 in which there are at least two actions available, i.e. A(S) has
at least two elements. Partition A(S) into two non-empty sets: A1 and Az. Let G1 and
Gy be the games obtained from G by restricting the actions in the state s to A; and A;
respectively. Then (G1, Gy) is called a split of G on s.

The induction step relies on the two results stated in the next theorem. The first
result says that the value of § in the original game cannot be larger than that of the
restricted games. The second result shows that Player 1 can play optimally in G by
selecting one of the subgames and play optimally in it.

Theorem 5.3. Let G be a game equipped with a payoff function that is shift-invariant
and submixing. Let (G1, G2) a split of G on s. Then

val(G)(§) = max{val(G1)(s), val(G32)(S)}. (8)
Assume moreover that val(G1)(S) = val(G2)(S). Then, for every s € S,
val(G)(s) = val(G1)(s). 9)
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Theorem|[L.1]is a simple corollary of Theorem 5.3}

Proof of Theorem([1.1} The proof is by induction on N(G). If N(G) = 0 there is no choice
for maximizer, hence he has a deterministic and stationary optimal strategy. If N(G) > 0
then we choose a split (G1, G2) of G on a pivot state S. By symmetry, we can choose a
split such that val(G1)($) = val(G2)(§). Then, according to (9) in Theorem[5.3] a strategy
for Player 1 which is optimal in Gy is also optimal in G. By induction hypothesis, there
exists a positional optimal strategy in Gy, thus G is half-positional. O

The rest of the section is dedicated to the proof of Theorem5.3] We fix a game G
and a split (G1, Gz) of G on the state s. The inequality

val(G)(S) = max{val(G1)(8), val(G2)(5)}

is clear, since Player 1 has more choice in G than he has in G; and G;. We witness
the converse inequality with a strategy for Player 2, called the merge strategy, which
merges two e-subgame-perfect strategies in the respective smaller games. This is done
in Section[5.3] The definition of the merge strategy hinges on the projection of plays
in the main game G to plays in the restricted games G; and Gy, which is done in
section[5.1] Then we analyse the two possible outcomes: (a) after some date the play
remains only in game G; (or only in game Gg), (b) the play switches infinitely often
between the two smaller games. This analysis is performed in sections[5.4|and
For the latter case (b) we use the submixing property to show that Player 1 cannot
get a better payoff by switching between the two smaller games that he could get by
staying in one of the subgames.

5.1 Projecting a play in G to a couple of plays in the subgames

There is a natural way to project a play h of the game G starting in § to a couple of
plays k1 and h; in the restricted games G; and G respectively, starting from s as well.
The two projections are computed simultaneously and inductively. Initially, 2 = § and
both projections hy and h;y are also equal to s. Each step of the play in G is appended to
either h; or hy, depending on the action a played the last time the state § was visited:
if a belongs to A; then the new step is appended to h1, otherwise it is appended to hy.
The computation of k1 and hy is illustrated on Figure

Formally, we define two maps 71, 7y from finite plays in G starting from § to finite
plays in G and Gy respectively, starting from § as well. Let h = spagsj ... s, be a finite
play in G starting in § and has a continuation of h in G, with one more transition
(sn, a, s). Let last(has) be the action played in has after the last visit to S i.e.

a ifs, =35
last(has) = Amax{j€0...n | s;=5} = {last(h) otherwise.
Then
mi(h)as if last(has) € A4

mhas) = {ﬂl(h) if last(has) € Az .
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h1 in G1 §a1... §a1... §a1...

[m

hin G Sa... Say... Saz... Say... Sap...
|2

hy in Gy Say... Say...

Figure 1: The play h is the concatenation of finite plays starting in s,
represented by blocks whose colours depend on the first action played
after s, blue if the action belongs to A; and pink if it belongs to A,. The
projection hj = 71(h) in G is the concatenation of the blue blocks while
hy = m(h) is the concatenation of the pink blocks. The projections lose
some information about the play in G: swapping two contigous blocks
of different colors in k& does not modify the projections h; and hs.

And m is defined symmetrically with respect to A; and Aj.
This definition can be extended to infinite plays in a natural way. Let h = spapsi ...
be an infinite play in G starting in $. Then 7 (h) is the limit of the sequence

(1(s0a0S1 - Sn))peN -

The projection (h) can be either finite or infinite, depending whether the play
ultimately stays in Gy or not. If after some time the last action chosen in § is always
in Ay, all subsequent moves in G are appended to the projection in Gy, while the
projection to G never gets updated and stays finite.

5.2 Linking the payoff in G to the payoffs in the subgames

The payoff in G can be related to the payoff in the subgames. We introduce the events

Stay, ,(G2) = {vm = n,last(SyAg ... SmAmSm+1) € Az}

Stay ,(G2) E U Stay. ,(Gz) .
nelN

If Stay. ,(G2) holds, we say that the play stays in G after step n whereas if Stay (Gz)
holds, we say that the play ultimately stays in G.

Those two events can be described equivalently as a non-update of the projection
to Gy after some point. For that, we make use of the random variables:

def

IT= SpAgSt -+ I £ 1 (SoAoSt ), I, = 75(Sp Ao Sy ++).

Recall that S, and A, are the random variables which output respectively the n-th
state s, and action a, when the play is spagpsi a; ---. We see that IT is simply the identity
map outputing the play in G while II; is essentially equivalent to x;, it is a random
variable that maps the infinite play in game G to its finite or infinite projection in
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game G;. Then
Stay, ,(G2) = {II1 = m(SoA1 -+ Sp)}
Stay,(Gg) = {II; is finite} .
The events Stay. ,(G1) and Stay,(G) are defined symmetrically. Define the event
Switch & (—| Stay,,(G1) A= Stayw(G2)) = { both I1; and II; are infinite } .

The following lemma shows that the payoff in G is tightly related to the payoffs in the
subgames G; and Ga.

Lemma 5.4. Let f be a prefix-independent and submixing payoff function. Every infinite
play in G belongs to exactly one of the three events {Stay(G1), Stay ,(G2), Switch}.
Moreover,

if Stay,(G1) holds then f(II) = f(II;) . (10)
If Stay,(G2) holds then f(IT) = f(IL,) . (11)
If Switch holds then f(II) < max( f(II;), f(Ilz)) . (12)

Proof. Since both projections in G; and Gy cannot be finite at the same time then
(Stay,,(G1), Stay ,(G2), Switch) is a partition of the infinite plays in G. If I1; is finite
then IT and II, share an infinite suffix and the prefix-independence of f implies (10).
The case where I is finite is symmetric, hence . If both IT; and II, are infinite then
the sequence of actions (last(Sp ... SnAnSn+1))neN switches infinitely often between A
and A thus s is visited infinitely often. Moreover, in this case II is a shuffle of II; and
II, and since f is submixing, follows. O

5.3 The Merge Strategy

In light of Lemma it is intuitively clear that to play well in G, Player 2 has to
play well in both subgames G; and G;. Fix € > 0. The merge strategy for Player 2
is the composition of two strategies 7 and 7; for Player 2 in the subgames G; and
G respectively. We require 7; and 7} to be e-subgame-perfect in the corresponding
subgames; their existence is guaranteed by Theorem

Definition 5.5. The merge strategy t* is a strategy in G for Player 2 which ensures that
I1; is consistent with 7} and Iy is consistent with t5 when the play starts from s. Let h
be a finite play in G from § and ending in a state controlled by Player 2, then
T =
w5 (ma(h))  if last(h) € Ay .

The merge strategy is well-defined because if last(h) € A; then both h and 71 (h)
end with the same state, controlled by Player 2.

In the next two sections, we show that the merge strategy guarantees to Player

2 some upper-bounds on the expected payoffs, which reflect the bounds given in
Lemma 5.4 for payoffs of individual plays.
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5.4 On plays consistent with the merge strategy and ultimately
staying in G,

In this section, we show that in case the play ultimately stays in Gy, then the expected
payoff is upper-bounded by val(G2)(s) + €.

For simplicity, we require € to be small enough so that 7> does not select any
value-increasing action, in the following sense.

Lemma 5.6. In Gy, fix a state s controlled by Player 2 and an action a available in that
state. Denote

4(s,a) = <Z p(s,a,t) Val(Gz)(t)) - val(G2)(s) .
tes
Then 6(s, a) = 0.
In case 8(s, a) > 0 then a is said to be value-increasing in s. In that case, if moreover
€ is strictly smaller that 5(s, a), then 7} never selects the action a in a play ending in state
s.

Proof. Since the payoff function is prefix-independent, and s is controlled by Player
2, then (s, a) = 0, because after Player 2 chooses a in s, he can proceed with an
€¢’-optimal strategy from the states t such that p(s, a, t) > 0, for an arbitrary ¢ > 0.
Assume e strictly smaller that §(s, a). Then rg never selects a in state s, otherwise this
would contradict the e-subgame perfection of 7;: Player 1 could proceed with some
(8(s, a) - €)/2-optimal strategy in Gz and get an expected payoff strictly greater than
val(Gy)(s) + €. O

Lemma 5.7. Assume that f is prefix-independent and € is small enough to guarantee
that i never selects any value-increasing action. Let o be a strategy for Player 1 in G

such that JP?’T” (Stay,,(Gz)) > 0. Then
#
EJT [f | Stay,,(Gz)] < val(Gz)(5) + € . (13)

Proof. The first ingredient of the proof is the sequence of random variables (V) N,
where V;, denotes the value in G of the last vertex of m(Sp A1 -+ Sp). Since the play
starts in state §,

Vo = val(G2)(5) .

The value of V, does not change unless the projection of the play to G; via m; does.
Since IT; is consistent with 7 and since 7; never selects any value-increasing action,

(Vn)nen is a super martingale .

The second ingredient in the proof is a stopping time T, defined as follows. For
every finite play & = syag ... s, in G starting in § and consistent with o and 7*, denote

P(h) = ]Pg’fﬂ (Stay, ,(G2) | h is a prefix of the play)
Fix some €’ > 0 and denote T the stopping time

szin{nE]N|qS(Svo...Sn)zl—e/} ,
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with the usual convention min(@) = .

We use the event {T < oo} as an approximation of the event Stay (G2) by proving
]P?’Tﬂ (Stay,(G2) | T <) = 1-¢ (14)
#
PZT (T < oo | Stay,(Gz)) = 1 . (15)
The inequality holds because by definition of ¢, for every n € N,
#
PO (Stay,,(G2) | T=n)=1-¢ .

We show (15). Fix €’/ > 0. By definition of Stay,(Gz), there exists n; € N such that

PIT (Stay,, (Gz) | Stay,(Gz)) = 1-¢” . (16)

According to Lévy’s 0-1 law (see e.g. [Wil91, Theorem 14.4]), the sequence of ran-
dom variables (]Eg’T# [Stayan (G2) | So, ... » Sn]) N almost-surely converges to the
ne

indicator function 1g4,y_ (G,)- Thus,
=ny

# #
]Pg’f (Elng > nl,Eg’T [Stayznl(Gz) | So,...,Snz] >1-¢€| Stayznl(Gz)) =1.
Since nz = ny implies Stay, ,,, (Gz2) < Stay. ,, (G2),

#
P (3n2, §(So. 1S 2 1= € | Stay,,, (G2)) =1 .
Equivalently,
#
PZ™ (T < oo | Stay., (G2) = 1 .
and with we get

]P?’T# (T < o0 | Stayw(Gg)) =1-¢" .

This holds for every €’ > 0, hence (15).

Since €’ > 0 can be chosen arbitrarily small, then according to and (15), to
show our goal (13), it is enough to establish:

EZ7 [ 1T < oo] = val(G)®) + €+ 2¢ [l - (7)

This is well-defined, because (15) ensures JP?’H (T < o) = ]P?’T” (Stay,(G2)) > 0, and
f is bounded.

Since (Vy)neN is a bounded super martingale, we can deduce from Doob’s Forward
Convergence Theorem [Wil91 Theorem 11.5] that (V;),en converges almost-surely.
We denote Vr the random variable equal to (lim,, V;,) if T = coand V, if T = n.
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We deduce (17) from the following three inequalities:

EZ™ [Vr] = val(G2)(3) (18)
EZT [Vr | T = o] = val(Gy)(3) (19)
BT [f | T < o] < BZT [Vp | T <o0]+ € +2¢ - [[f]leo - (20)

Assuming and do hold, then ]E?’Tu [V | T < 0] = val(Gz)(s). Injecting this
inequality in (20), we get (17), and the lemma is proved.

We prove the three inequalities (18)- (20). The inequality is obtained using
the equality Vj = val(Gz)(s) and applying Doob’s Optional Stopping Theorem (Section
10.10 in [Wil91])) to the bounded super-martingale (V},),en and the stopping time T,

#
which implies E"" [Vr] < Vo.
To prove , we prove an even stronger statement:

P77 (V7 = val(Gy)(3) | T =) = 1

If T = oo then, according to , the event Stay, (Gz) does not hold. Thus, according
to Lemmal5.4] either Stay ,(G1) or Switch holds. In the first case, (V) e is ultimately
constant equal to val(G2)(s). In the second case, the play Il visits § infinitely often.
Since (Vy), converges almost-surely to V7 then V1 = val(G)(S).

Finally, we prove . Denote ht the random variable defined when T is finite,
which outputs the prefix of the play of length T, i.e.

ht = SoAy...ST
and let h such that JP?’T” (hT = h) > 0. Denote t the last state of h. Let oy be strategy
in Gy which coincides with o[h] as long as the play stays in Gy. Then:
# # .
EJ" [f | hr = h] =EZ" [f | his a prefix of the play]
hl,7*[h
— E?[ 1.7 [h] [f]

#
<EPT M [F] 4 2 - |fllen
# h
=N f] 26 i
< val(Ga)(t) + € + 2€” - |[flloo
#
=EZ" [Vr | hy = h]+ €+ 2€¢ - [|flloo -

The first equality holds because IP?’T} (h7 = h) > 0 thus no strict prefix h” of h satisfies
#(h') = 1 - ¢, and if h is a prefix of the play then ht = h. The second equality holds
by prefix-independence of f. The first inequality holds because ¢(h) = 1 - €’ thus the
strategies o[h] and oy coincide with probability = 1 - €/, and when they do not the
payoff difference is at most 2||f]||c. The third equality holds because 7[h] coincides
with 7 [m2(h)] when the play stays in G2. The second inequality is by e-subgame
optimality of 7} in G2. The last equality holds by definition of V7.

Since this holds for every possible value h of ht when T < oo, and there are at
most countably many such values, the inequality follows. O
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5.5 On plays consistent with the merge strategy and switching
infinitely often between the two subgames

In this section, we provide an upper-bound on the payoff of plays which switch
infinitely often between G1 and Gg.

Lemma 5.8. Assume that f is prefix-independent and submixing. For all strategies o,
]Pg’rn (f = max{val(G1)(s),val(G1)(5)} + € | Switch) = 1. (21)

Proof. By definition of Switch, if Switch occurs then both projections IT; and IT; are
infinite and visit § infinitely often. According to the inequality (12) in Lemma[5.4] to
prove it is enough to show, for every i € {1, 2},

]P;f’f‘1 (f(I1;) = val(G;)(s) + € | I1; is infinite and reaches § infinitely often) =1 . (22)

By symmetry, it is enough to show when i = 1. For that, we define a strategy
01 in Gy such that for every measurable event & in the game Gy,

#
27 (&) = PO (ITy is infinite and TT; € &}). (23)

Denote by = (respectively <) the prefix relation (respectively strict prefix) over finite
or infinite plays. The strategy o1 in G is defined as:

ot
o1(h1)(a) = Py (hia <10 [ hy < ITy),

if IP?’T” (h1 < II) > 0 and otherwise o1(h1) is chosen arbitrarily. The event h; < IIj
means that not only h; appears as a prefix of the projection of the play on Gy, but
moreover at least one more action has been played in G; after that, so o7 is equivalently
defined as ,

o1(h1)(a) = ]P?’T (hja=<T1I; |3b e A b <11) .

Remark that in general, o7 is a mixed strategy.

We proceed with the proof of (23). Let € be the set of measurable events &£; in Gy
for which holds. We prove first that & contains all cylinders h1(SA)® of G1, which
relies on the following inequalities:

#
P77 (hy) = PO (hy < TIy) (24)
> P (I is infinite and Ty € h1(SA)®) .

We abuse the notation and denote h; the event {h; is a prefix of the play}. The second
inequality is by definition of prefixes. The inequality is proved by induction on the
length of h;. When h; is the single initial state § then both terms in are equal to 1,
and the inequality is an equality. Let hjar be a finite play in G; and assume that
holds for k1. There are two cases, depending who controls the last state of h;, denoted
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t. In case t is controlled by Player 1 then

# #
PIT (har) = PO (hy) - o1 (ha)(@) - p(t.a,7)
#
=P (hy < 1I1) - o1(h1)(a) - p(t.a,7)
_ o o,
—]P§ (h15H1)~]PS~ (hlasl'll\h1<1'[1)-p(t,a,r)
O',T“ O',T»
= PY" (b <T0)-PY" (ha=TIy [hy <T0y) - p(ta,r)  (25)
~ P (hya<Th)-p(tar)

#
= ]P?’T (hlars Hl) s

where the first and last equalities hold by definition of the probability measure, the
first inequality by induction hypothesis and the second equality is by definition of
01. The second inequality holds because the event h; < II; is contained in the
event h; = II;. This inclusion and the corresponding inequality might be strict: for
example if Stay_,(Gz) holds, i.e. if the play always stay in Gy, then the event § < ITj
has probability 0 while the event s < ITy has probability 1.

Now we prove inequality (24), in case ¢ is controlled by Player 2. For every finite
play h] in Gy, denote C(h]) the set of finite plays A’ in G starting in § and such that
mi(h’) = hf and last(h’) € A;. Equivalently, &’ belongs C(h}) if and only m; projects h’
on A1, but no strict prefix of 4’ is projected on h].

;n,r}‘ (hyar) = IP?’TY (h1) - 7} (h1)(a) - p(t,a, 1)
= PO (hy < T) - 7 (ha)(@) - p (6@ )
= Y PO (W) )@ ptar)

WeC(hy)
O',T“
= > PIT (W)WY p(tar)
WEC(hy)
#
= Z ]P?’T (h/ar)
WeC(hy)
O','l'w
= ), P ()
h’e€C(hyar)

#
Z]P?’T (hlarsﬂl) .

The first equality is by definition of the probability measure. The inequality is by
induction hypothesis. The second equality holds because the event k1 < II; is the
disjoint union of the events (h’)ec(n,): if the projection of an infinite play h to G
starts with hj, then there is a single prefix of this play in C(h1), this is the shortest
(finite) prefix of h whose projection in Gy is k1. The last equality holds by a similar
argument. The third equality is by definition of 7*. The fourth equality is by definition
of the probability measure. To show the fifth equality, we establish C(hjar) = {har |
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h’ € C(hy)}. We start with the inclusion {h’ar | i’ € C(h1)} < C(hiar). Let i’ € C(hy).
Since my(h’) = hy and last(h’) € A; then A’ and h; have the same last state, i.e. t.
And t is controlled by Player 2, hence t # 5. Thus last(h’ar) = last(h’) € A; and
m(h’ar) = m(h")ar. For the converse inclusion C(hyar) < {h’ar | h’ € C(h;)} take
h’”" € C(hyar) and write h’/ = h’a’r’, where @’ and r’ are the last action and state of h”/.
Since last(h’”’) € A then z(h”') = m(h)a’r’. Since h”” € C(hyar) then (k") = hyar,
hence (k') = hy and a = @’ and r = r’ hence h’” € C(h;)ar. This completes the proof
of the inequality (24).

Observe that € is stable by finite disjoint unions, hence € contains all finite disjoint
unions of cylinders, which forms a boolean algebra. Moreover € is a monotone class,
so we can apply the monotone class theorem (see for example [Bil08| Theorem 3.4]).
This implies that & contains the sigma-field that is generated by cylinders, which by
definition is the set of all measurable events in the game Gj. This completes the proof

of (23).

Next we prove that
#
ol (f < lim inf val(G1)(Sn) + e) -1 (26)

Observe that due to the fact that 7] is e-subgame-perfect and that f is shift-invariant,
then for all n € IN,

# e # e
EZ" [f | So. Ag. e, Su] = BG5S 6] < w6y + e

and as a consequence,
#
liminf EZ"™ [f | So, Ao, ..., Su] < liminf val(G1)(Sp) + € . (27)
n n

According to Lévy’s 0-1 law (see e.g. [Wil91, Theorem 14.4]), the sequence of ran-

#
dom variables: (IE?’T1 [f | So, Ao, ---» Sn])neN converges point-wise to the random vari-
able f(SpAoS1 -++). As a consequence the left handside of is almost-surely equal to

f and we get (26).

Denote & the event

&1 = {f > val(G1)(S) + € and § is reached infinitely often} .

#
According to (26), P;"™ (£1) = 0. We apply (23) to &1 and get

]P?’T# (I is infinite and TI; € &) =0 .

By definition of &1, this last equality is equivalent to with i = 1. O

5.6 Proof of Theorem[5.3|

Proof of Theorem[5.3 To prove the first statement (8) in Theorem|[5.3] we combine the
two lemmas proved in the two previous sections in order to show:

Vo, EZ [f] < max{val(Gy)(5), val(Go)(3)} + € . (28)
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The bound can be obtained as follows. According to Lemma 5.4} the three events
Stay,(G1), Stay,(G2) and Switch partition the set of infinite plays. In case Stay ,(G1)
occurs, Lemmal5.7|guarantees that the expected payoff is no more than val(G;)()+e. By
symmetry, in case Stay ,(G2) occurs, the expected payoff is no more than val(G2)(s) + €.
And in case Switch occurs, Lemma 5.8 guarantees that the payoff is almost-surely no
more than max{val(G1)(s), val(G2)(s)} + €. Thus holds. The inequality

val(G)(S) = max{val(G1)(8), val(G2)(5)}

is clear, since Player 1 has more choice in G than he has in G; and Gy. And € can be
chosen arbitrarily small in , hence the first statement (8) of Theorem

We proceed with the second statement of Theorem [5.3] Assume that
val(G1)(S) = val(G2)(S) . (29)
We have to show (9), i.e.
Vs € S, val(G)(5) = val(G1)(s) -

According to (8), we already now that this equality holds for §, and we shall extend it
to all states s € S.

Recall that the merge strategy was defined only for plays that start in state s; we
enlarge this definition, profiting from the assumption (29). First, extend the definition
of last(h) to any play h that has visited § at least once, in which case last(h) denotes
the action that is played right after the last visit of & to 5. Second, for all finite plays h
that end in a state controlled by Player 2,

(hy Tf(m(h)) if h never visited s or last(h) € A;
- 5 (ma(h))  if h has visited § at least once and last(h) € A.

The merge strategy is well-defined because if h never visited § or if last(h) € A; then
both h and 3 (h) end with the same state, controlled by Player 2. And if h has visited §
at least once and last(h) € Ay then both h and m3(h) end with the same state, controlled
by Player 2.

We prove that ¥ guarantees a payoff smaller than val(G1)(s) + € for every state s.
Fix o a strategy for Player 1 in G, and define ¢” to be the strategy that plays like o as
long as the play does not reach the pivot state s. Whenever the pivot state is reached,
the strategy o’ switches definitively to a strategy of that is optimal in the game Gy,
whose existence is guaranteed by the induction hypothesis. The plays consistent with
o’ and 7 stay in the subgame Gq. Since 7* coincides with 7{ on plays staying in Gy,
and since Tf is e-optimal in Gy, we can write for all s € S:

B[] = B [f] = valG)() + e 0

Let h be a finite play that is consistent with ¢ and 7*, whose last state is § and which
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does not visit § before the last step. Then

EZ [ |1 = B0
< val(Gy)(s) + €

?fsff[h] [f] re
S M

=Eg/’7“[f|h]+e.

<E

The first and third equalities hold because f is prefix-independent. The first inequality
holds because the strategy 7*[h] is e-optimal from state $, for the following reason.
The strategy 7*[h] coincides with the strategy obtained by merging 7{ [h] and 7 on
the pivot state §, both of which are e-subgame-perfect in the respective subgames.
Since was proved for any merge of two e-subgame-perfect strategies, we can
apply to the strategy 7*[h], and conclude that the latter is e-optimal from state 5.
The second inequality holds because of is optimal in G;. The second equality holds
because ¢’[h] = of. Finally

EST [f| R <EST [f Al +e . (31)

Since the strategies o and ¢’ coincide on those plays that never reach §, and
holds for all finite plays reaching § for the first time, then for every s € S,

Eg’f‘* [f] = ]Eg/’fﬁ [fl+e
By using (30) now we have that for all s,
EZT [f] = val(Gy)(s) + 2e. (32)

This holds for every strategy o and € > 0 arbitrarily small, thus val(G)(s) < val(Gy)(s).
The converse inequality is obvious, because Player 1 has more freedom in G than in
G1, hence the second statement (9) of Theorem 5.3 O

Remarks about the merge strategy. We observe a byproduct of the proof of Theo-
rem namely that has yielded 2e-optimality of the merge strategy:

Observation 5.9. The merge strategy t* constructed with e-subgame-perfect pieces is
2e-optimal in the game G.

After this observation, since the merge strategy is obtained by merging two e-
subgame-perfect strategies, a natural question to ask is whether 7* is 2e-subgame-
perfect in the G? The answer is negative; consider the following simple example:
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u

The goal of Player 1 is to visit the state ¢ infinitely often (say that if he achieves this
goal he receives a payoff 1, otherwise 0), and every action is deterministic. The blue
states are controlled by Player 1, and the red ones by his opponent. In the subgame
G1 we remove the action s — t. In particular in the game G; the positional strategy
{ which chooses u — s and t — s is subgame-perfect. We can therefore use it to
construct a merge strategy . However this merge strategy is not 2e-subgame-perfect,
since in case Player 1 uses the suboptimal action s — u, his opponent does not profit
by taking the self-loop forever.

6 From One-player Games to Two-player Games

The construction of the merge strategy in the previous section reveals that games that
are equipped with shift-invariant and submixing payoffs have the following interesting
property. While they yield very simple optimal strategies for Player 1, they allow
his opponent to recombine strategies that work for one-player games (also known as
Markov decision processes) and use them in a two-player game.

A general result allows to lift the existence of e-optimal strategies from S in
one-player games to two-player games.

An arena is said to be fully controlled by the minimizer if all states are controlled
by Player 2. Fix a payoff function f that is both shift-invariant and submixing.

Definition 6.1. Let S be a class of strategies for minimizer.

Say that the class S is stable by the reset operation if for every game G equipped
with f and every strategy t of minimizer in G, if r belongs to S then the reset strategy T
belongs to S as well.

Say that the class S is stable by the merge operation if for every game G equipped
with f, for every split (G1,Gz2) of G and for every strategies v} and 7; in Gy and Gy, if
both 7 and t; belong to S then their merge t* belongs to S as well.

Like in Proposition say that the arena .A’ is a restriction of the arena A if one
gets A’ from A by erasing some actions from some states.

Theorem 6.2. Let f a shift-invariant payoff function, A a family of arenas that are
closed under restrictions and $ a family of strategies for minimizer which are stable by
both reset and merge operations.

Assume that in every game (A, f) with A € A that is fully controlled by the minimizer,
for every € > 0 the minimizer has an e-optimal strategy that belongs to S. Then, in every
two-player game (A, f) with A € A, the minimizer has an e-subgame perfect strategy
that belongs to S.
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The statement holds for € = 0 as well, that is: assume that in all games (A, f) with
A € A that is fully controlled by the minimizer, the minimizer has an optimal strategy
that belongs to S. Then, in every two-player game (A, f) with A € A, the minimizer has
a subgame perfect strategy that belongs to S.

Proof. Let G = (A, f) with A € A. The proof of both statements is by induction on
N(G), as in the proof of the main theorem in the previous section.

The base of the induction follows from the assumption about games fully controlled
by the minimizer, since we can give to the minimizer the control of states in which the
maximizer has a single action, without changing the value of the game.

When N(G) > 0, the induction step is performed using a split (G1, G2) of G on a
pivot state s. Remark that both arenas belong to A, therefore the induction hypothesis
for the first (resp. the second) statement says that for every € > 0, there are two
strategies 7; and 7; in the games G and G, respectively, which belong to S and are
e-subgame perfect (resp. subgame perfect) in their respective subgames. Since S is
stable by the merge operation, then the strategy r* obtained by merging 7} and 7}
also belongs to S.

We carry over the induction step for the first (resp. the second) statement. Ac-
cording to Observation ¥ is 2e-optimal (resp. is optimal). We apply Lemmaﬂto
t* which guarantees that the reset strategy obtained from 7* is 4e-optimal (resp. is
optimal). Moreover by hypothesis this strategy belongs to S. O

7 The Finite Memory Transfer Theorem

We give the proof of Theorem 1.2] that was announced in the introduction.

Theorem 1.2. Let f be a payoff function that is both shift-invariant and submixing.

Assume that in all games equipped with f and fully controlled by the minimizer, for
every € > 0, the minimizer has an e-optimal strategy with finite memory. Then in every
(two-player) game, for every € > 0, the minimizer has an e-subgame-perfect strategy that
has finite memory.

The statement also holds for € = 0, that is: if the minimizer has an optimal strategy
with finite memory in every game that he fully controls, then in every (two-player) game
as well he has a subgame-perfect strategy with finite memory.

Theorem 1.2 follows from Theorem [6.2]and the following results, which establish
that the class of finite-memory strategies is stable by the reset (Proposition[7.1) and
merge (Lemmal7.2) operations.

Proposition 7.1. Let A be a family of arenas that are closed under restrictions and f
a shift-invariant payoff function. If for games whose arena is in A and whose payoff
function is f, and for every € > 0, Player 1 (respectively Player 2) has an e-optimal
strategies o with finite memory, then he also has an e-subgame-perfect strategies with
finite memory, namely the reset strategies o. This holds as well for optimal strategies, i.e.

ife=0.

Proof. Let A € A be an arena. Remove the actions of Player 1 that are not locally
optimal (with respect to the payoff function f) to get a restriction .A’. From the
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hypothesis, it follows that there are e-optimal strategies in (A’, f) that have finite
memory, and consequently there are e-optimal strategies in (A, f) that have finite
memory and are locally optimal. According to Lemmal4.5] the strategy & is 2e-subgame-
perfect, and Proposition[7.3]implies that it has finite memory. 0

Lemma 7.2. Let (G1,G2) be a split of a game G on a pivot state 3. Let 7} and 7 two
strategies for Player 2 in Gy and Gg, respectively. If both t} and tj have finite-memory
then t* has finite memory as well.

Proof. The strategies 7} and 7} with finite memory are given by the transducers:
(M, inity, up;, outy) and (Ma, inity, up,, outy),

for Player 2 in G and G respectively.
The strategy 7 obtained by merging 7} and 7} is also a finite-memory strategy,
whose memory is

ME{1,2} x My x Ma.

The initial memory state in state s is (1, init;(s), initz(s)). The updates on the compo-
nents M and M, are performed with up; and up, respectively. The first component
is updated only when the play leaves the pivot state $; it is switched to 1 or 2 depending
whether Player 1 chooses an action in A or Ay. The choice of action, or the output,
depends on the first component: in memory state (b, my, mz) the action played by r*
is outy(myp). O

The finite-memory property is preserved when passing from o to ¢ that is if the
strategy o has finite memory to begin with, so will the strategy ¢. First we define
precisely what we mean by finite memory strategy.

A strategy o is said to have finite memory if it is given using a transducer, namely
it is a tuple:

M, init : S— M, up : MxAxS— M, out : M — A(A).
N | —— N
a finite set memory initialiser update function output function

The map init and up are used to initialise the memory and update it, as the game unfolds:
after the finite play spag - s, has unfolded, the transducer reaches the memory state
my € M which is defined inductively as:

mo £ init(so), and
def
my = up(my, Ag1s Sk+1)-
The output function is used to choose the action that the strategy plays, i.e.
o(sg -+ sp) = out(my).

Proposition 7.3. If o is a finite memory strategy, so is G.
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Proof. The reset strategy is constructed with respect to ¢ and some € > 0, since it
depends on (¢, 0)-drops to reset the memory. We prove the proposition for any € such
that o is e-optimal.

Let o be a finite memory strategy, that is given by the tuple

(M, init, up, out),

and let € be such that o is e-optimal, which fixes a reset strategy 6.

Without loss of generality we can assume that the strategy is such that its memory
state identifies the current state in the game, in other words assume that M can be
partitioned into:

M =+ M,

s€S

such that for any finite play sg --- sp, if my, ..., my is the sequence of memory states of
the transducer of ¢ during this play, then

mp € Ms,.

We gather the subset of memory states where drops occur as follows. For s € §
and m € M, denote by oy, the strategy that is the same as ¢ except that the initial
memory state for s is m instead of init(s). Define the subset of memory states where
drops occur D ¢ M as

D= {meM; : seSand oy, is not 2e-optimal from state s}.

Construct the finite memory strategy o’ that avoids the memory states in D as follows.
For any s € S and m € M n D, since o is e-optimal, m # init(s). In the strategy
o’ modify the function up in such a way that all the transitions that lead to m are
redirected to the state init(s) instead (the memory is reset). Do this simultaneously for
any pair (s, m) as above. Comparing the definition of & and ¢’ we conclude that they
coincide. O

On the size of the memory. How large is the memory Mg needed by Player 2 to
play optimally in some G = (A, f)? Every deterministic and stationary strategy o for
Player 1 in G induces a game G that is controlled by Player 2. Let 2t be the maximal
memory size required by Player 2 to play optimally in the games G,. According to the
proof of the theorem above, the memory Mg needed by Player 2 to play optimally in
G is of size 2 - [ Mg, | - [Mg,|. By induction we derive the following bound:
M| = (29)?)225 AG1

When 901 = 1, i.e. when Player 2 has deterministic and stationary strategies in games
he controls, then in [GZ03] it is shown that the same holds for two player games as
well, hence the upper-bound can be downsized to 1. In the general case where 1 = 2,
we do not have examples where the memory size required by Player 2 to play optimally
has the same order of magnitude as the upper bound above.
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