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Abstract—We consider zero-sum stochastic games with perfect
information and finitely many states and actions. The payoff is
computed by a payoff function which associates to each infinite
sequence of states and actions a real number. We prove that if the
the payoff function is both shift-invariant and submixing, then
the game is half-positional, i.e. the first player has an optimal
strategy which is both deterministic and stationary. This result
relies on the existence of ǫ-subgame-perfect equilibria in shift-
invariant games, a second contribution of the paper.

Index Terms—Stochastic Games

I. INTRODUCTION.

We consider zero-sum stochastic games with finitely many

states S and actions A, perfect information and infinite dura-

tion. Each state is controlled by either Player 1 or Player 2. A

play of the game is an infinite sequence of steps: at each step

the game is in some state s ∈ S and the player who controls

this state chooses an action, which determines a lottery that

is used to randomly choose the next state. Players have full

knowledge about the rules of the game (the states and actions

sets, who controls which state and the lotteries associated to

pairs of states and actions) and when they choose an action

they have full knowledge of the actions played and the states

visited so far.

Each player wants to maximize his expected payoff, and

the game is zero-sum. The payoff of player 1 (which is

exactly the loss of Player 2) associated with an infinite

play s0a1s1 · · · ∈ (SA)ω is computed by a measurable and

bounded payoff function f : (SA)ω → R.

Well-known examples of payoff functions are the discounted

payoff function, the mean-payoff function, the limsup payoff

function and the parity payoff function. These four classes

of games share a common property: in these games both

players have optimal strategies and moreover these strategies

can be chosen to be both deterministic and stationary: such

strategies guarantee a maximal expected payoff and choose

actions deterministically and this choice only depends on the

current state.

When deterministic and stationary optimal strategies exist

for player 1 in any game equipped with f , we say f is half-

positional, and we say f is positional if such strategies exist

for both players.

There has been numerous papers about the existence of

deterministic and stationary optimal strategies in games with

different payoff functions. Shapley proved that stochastic

games with discounted payoff function are positional using

an operator approach [1]. Derman showed the positionality of

one-player games with expected mean-payoff reward, using

an Abelian theorem and a reduction to discounted games [2].

His results was later on extended to two-player games by

Bierth [3], see also [4] for a modern proof. Gilette extended

Derman result to two-players games [5] but his proof was

found wrong and corrected by Ligget and Lippman [6]. Note

that the authors of the present paper are not convinced by the

proof of Liggett and Lippman, we discuss this in Section VI-A.

The positionality of one-player parity games was addressed

in [7] and later on extended to two-player games in [8], [9].

Counter games were extensively studied in [10] and several

examples of positional counter games are given. There are

also several examples of one-player and two-player positional

games in [11], [12]. A whole zoology of half-positional games

is presented in [13] and another example is given by mean-

payoff co-Büchi games [14]. The proofs of these various

results are mostly ad-hoc and very heterogeneous.

Some research has been made to find a common property of

these games which explains why they are positional or half-

positional. It appears that shift-invariant and submixing payoff

functions play a central role. For one-player games it was

proved by the first author that every one-player game equipped

with such a payoff function is positional [11]. This result was

successfully used in [10] to prove positionality of counter

games. A weaker form of this condition was presented in [15]

to prove positionality of deterministic games (i.e. games where

transition probabilities are equal to 0 or 1). Kopczynski proved

that two-player deterministic games equipped with a shift-

invariant and submixing which takes only two values is half-

positional [16].

The present paper provides two contributions.

First, in games whose payoff function is shift-invariant, both

players have ǫ-subgame-perfect strategies, i.e. strategies that

are ǫ-optimal not only when the game starts but also whatever

finite play has already been played (Theorem IV.1).

Second, every two-player game equipped with a shift-

invariant and submixing payoff function is half-positional., i.e.

Player 1 has an optimal strategy which is both deterministic

and stationary (Theorem IV.1).
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The paper starts with preliminaries then in Section III we

provide several examples of payoff functions, in Section IV we

state and prove the existence of ǫ-subgame-perfect strategies

in shift-invariant games, in Section V we state and prove

that games with shift-invariant and submixing payoff functions

are half-positional and finally in Section VI we present some

applications. Proofs that are not provided in the paper can be

found in the appendix.

II. STOCHASTIC GAMES WITH PERFECT INFORMATION.

In this section, we present the notion of stochastic games

with perfect information, of the value of such games and

of determinacy of a game as well as several results about

martingales that are used in the next section.

A. Games

A game is specified by the arena and the payoff function.

While the arena determines how the game is played, the payoff

function specifies what for the players play.

We use the following notations throughout the paper. Let S

be a finite set. The set of finite (resp. infinite) sequences on S

is denoted S
∗ (resp. Sω) and S

∞ = S
∗∪Sω . If S is an infinite

set then S
ω denotes the set of infinite sequences u ∈ S

N such

that u ∈ S
N
0 for some finite subset S0 ⊆ S.

A probability distribution on S is a function δ : S → R

such that ∀s ∈ S, 0 ≤ δ(s) ≤ 1 and
∑

s∈S
δ(s) = 1. The set

of probability distributions on S is denoted ∆(S).

Definition II.1 (Arenas). A stochastic arena with perfect

information A = (S,S1,S2,A, (A(s))s∈S, p) is made of:

• a set of states S partitioned in two sets (S1,S2),
• a set of actions A,

• for each state s ∈ S, a non-empty set A(s) ⊆ A of

actions available in s,

• and transition probabilities p : S×A → ∆(S) .

In the sequel, stochastic arenas with perfect information are

simply called arenas and we only consider arenas with finitely

many states and actions.

An infinite play in an arena A is an infinite sequence p =
s0a1s1a2 · · · ∈ (SA)ω such that for every n ∈ N, an+1 ∈
A(sn). A finite play in A is a finite sequence in S(AS)∗

which is the prefix of an infinite play. The first state of a play

is called its source, the last state of a finite play is called its

target.

With each infinite play is associated a payoff computed by

a payoff function. Player 1 prefers strategies that maximize

the expected payoff while Player 2 has the exact opposite

preference.

Formally, a payoff function for the arena A is a bounded and

Borel-measurable function f : (SA)ω → R which associates

with each infinite play h a payoff f(h). In the next section,

we will present several examples of such functions.

Definition II.2 (Stochastic game with perfect information). A

stochastic game with perfect information is a pair G = (A, f)
where A is an arena and f a payoff function for the arena A.

B. Strategies

A strategy in an arena A for Player 1 is a function σ :
(SA)∗S1 → ∆(A) such that for any finite play s0a1 · · · sn,

and every action a ∈ A, (σ(s0a1 · · · sn)(a) > 0) =⇒ (a ∈
A(sn)). Strategies for player 2 are defined similarly and are

often denoted τ .

We are especially interested in a very simple class of

strategies: deterministic and stationary strategies.

Definition II.3 (Deterministic and stationary strategies). A

strategy σ for Player 1 is deterministic if for every finite play

h ∈ (SA)∗S1 and action a ∈ A,

(σ(h)(a) > 0) ⇐⇒ (σ(h)(a) = 1) .

A strategy σ is stationary if σ(h) only depends on the target

of h. In other words σ is stationary if for every state t ∈ S1

and for every finite play h with target t,

σ(h) = σ(t) .

In the definition of a stationary strategy, remark that t ∈ S

denotes at the same time the target of the finite play h as well

as the finite play t of length 1.

Given an initial state s ∈ S and strategies σ and τ for

players 1 and 2 respectively, the set of infinite plays with

source s is naturally equipped with a sigma-field and a

probability measure denoted P
σ,τ
s that are defined as follows.

Given a finite play h and an action a, the set of infinite plays

h(AS)ω and ha(SA)ω are cylinders that we abusively denote

h and ha. The sigma-field is the one generated by cylinders

and P
σ,τ
s is the unique probability measure on the set of infinite

plays with source s such that for every finite play h with target

t, for every action a ∈ A and for every state r ∈ S,

P
σ,τ
s (ha | h) =

{

σ(h)(a) if t ∈ S1,

τ(h)(a) if t ∈ S2,
(1)

P
σ,τ
s (har | ha) = p(r|t, a) . (2)

For n ∈ N, we denote Sn and An the random variables defined

by Sn(s0a1s1 · · · ) = sn and An(s0a1s1 · · · ) = an.

C. Values and optimal strategies

Let G be a game with a bounded measurable payoff

function f : (SA)ω → R. The expected payoff associated with

an initial state s and two strategies σ and τ is the expected

value of f under Pσ,τ
s , denoted E

σ,τ
s [f ].

The maxmin and minmax values of a state s ∈ S in the

game G are:

maxmin(G)(s) = sup
σ

inf
τ
E
σ,τ
s [f ] ,

minmax(G)(s) = inf
τ
sup
σ

E
σ,τ
s [f ] .

By definition of maxmin and minmax, for every state

s ∈ S, maxmin(G)(s) ≤ minmax(G)(s). As a corollary of

the second Martins’s determinacy theorem [17], the converse

inequality holds as well:

2



Theorem II.4 (Martin second determinacy theorem). Let G

be a game with a Borel-measurable payoff function f . Then

for every state s ∈ S:

maxmin(G)(s) = minmax(G)(s) .

This common value is called the value of state s in the game

G and denoted val(G)(s).

the existence of a value guarantees the existence of ǫ-

optimal strategies for both players and every ǫ > 0.

Definition II.5 (optimal and ǫ-optimal strategies). Let G be a

game, ǫ > 0 and σ a strategy for player 1. Then σ is ǫ-optimal

if for every strategy τ and every state s ∈ S,

E
σ♯,τ
s [f ] ≥ minmax(G)(s) − ǫ .

The definition for player 2 is symmetric. A 0-optimal strategy

is simply called optimal.

The following proposition provides a link between the

notion of optimal strategies and the notion of value.

Proposition II.6. Let G be a game and suppose that Player

1 has an optimal strategy σ♯. Then G has a value and for

every state s ∈ S:

val(G)(s) = inf
τ
E
σ♯,τ
s [f ] . (3)

An even stronger class of strategy are ǫ-subgame-perfect

strategies, i.e. strategies that are not only ǫ-optimal from the

initial state s but stays also ǫ-optimal whatever the beginning

of the play is.

Definition II.7 (ǫ-subgame-perfect strategies). Let G be a

game equipped with a payoff function f and σ a strategy for

player 1. For every finite play p = s0 · · · sn we denote σ[p]
the shift of strategy σ by p as the strategy defined by

σ[p](t0a1t1 · · · amtm) =

{

σ(pa1t1 · · · amtm) if sn = t0,

σ(t0a1t1 · · ·amtm) otherwise.

Then σ is said to be ǫ-subgame-perfect if for every finite play

p the strategy σ[p] is ǫ-optimal.

D. Martingales

In the proofs of Section IV we use the following classical

results about martingales.

Definition II.8 (Martingale). A sequence of real-valued ran-

dom variables X0, X1, . . . is called a martingale if for every

time n the following are satisfied:

E[|Xn|] < ∞

E[Xn+1 | X1, . . . , Xn] = Xn.

In case of having ≤, or ≥ instead of the equality, then

the process is called a supermartingale or submartingale

respectively.

Martingales do converge almost-surely.

Lemma II.9 (Doob’s convergence theorem for martin-

gales). Let X0, X1, . . . be a (sub)(super)martingale such

that (E[|Xn|])n∈N is bounded. Then almost surely the limit

X = limn→∞ Xn exists and is finite.

We use stopping times as well.

Definition II.10. A stopping time V with respect to a sequence

of random variables S0, S1, . . . is a random variable that

takes values from N ∪ {∞} such that the event V = n is

(S0, . . . , Sn)-measurable. A stopping time V is called almost

surely finite, if P(V < ∞) = 1.

The following theorem is a variant of Doob’s optional

stopping theorem.

Theorem II.11. Let T be a stopping time with respect to

a sequence of random variables S0, S1, . . . . Let (Xn)n∈N a

martingale such that for every n ∈ N, Xn is (S0, . . . , Sn)-
measurable. Assume there exists K > 0 such that ∀n ∈
N,P(|Xn| ≤ K) = 1. Let XT be the random variable defined

by:

XT =

{

Xn if T is finite equal to n,

limn∈NXn if T = ∞.

Then:

E[XT ] = E[X0] .

Similarly if the process is a submartingale or a supermartin-

gale, and the same conditions hold we have E[XT ] ≤ E[X0]
and E[XT ] ≥ E[X0] respectively.

Note that the definition of XT makes sense thanks to

Lemma II.9.

III. COMPUTING PAYOFFS

In this section, we present several examples of payoff

functions and generalize the definition of a payoff function

to cover these examples.

A. Examples

Among the most well-known examples of payoff functions,

are the mean-payoff and the discounted payoff functions, used

in economics, as well as the parity condition, used in logics

and computer science, and the limsup payoff function, used in

game theory.

The mean-payoff function has been introduced by

Gilette [5]. Intuitively, it measures average performances. Each

state s ∈ S is labeled with an immediate reward r(s) ∈ R.

With an infinite play s0a1s1 · · · is associated an infinite

sequence of rewards r0 = r(s0), r1 = r(s1), . . . and the payoff

is:

fmean(r0r1 · · · ) = lim sup
n∈N

1

n+ 1

n
∑

i=0

ri . (4)

The discounted payoff has been introduced by Shapley [1].

Intuitively, it measures long-term performances with an infla-

tion rate: immediate rewards are discounted. Each state s is

labeled not only with an immediate reward r(s) ∈ R but also
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with a discount factor 0 ≤ λ(s) < 1. With an infinite play h

labeled with the sequence (r0, λ0)(r1, λ1) · · · ∈ (R× [0, 1[)ω

of daily payoffs and discount factors is associated the payoff:

fdisc((r0, λ0)(r1, λ1) · · · ) = r0 + λ0r1 + λ0λ1r2 + · · · . (5)

The parity condition is used in automata theory and log-

ics [18]. Each state s is labeled with some priority c(s) ∈
{0, . . . , d}. The payoff 1 if the highest priority seen infinitely

often is odd, and 0 otherwise. For c0c1 · · · ∈ {0, . . . , d}ω,

fpar(c0c1 · · · ) =

{

0 if lim supn cn is even,

1 otherwise.
(6)

The limsup payoff function has been used in the theory

of gambling games [19]. States are labeled with immediate

rewards and the payoff is the supremum limit of the rewards:

flsup(r0r1 · · · ) = lim supn rn.

One-counter stochastic games have been introduced in [10],

in these games each state s ∈ S is labeled by a relative

integer from c(s) ∈ Z. Three different winning conditions

were defined and studied in [10]:

lim sup
n

∑

0≤i≤n

ci = +∞ (7)

lim sup
n

∑

0≤i≤n

ci = −∞ (8)

fmean(c0c1 . . .) > 0 (9)

Generalized mean payoff games were introduced in [20].

Each state is labeled by a fixed number of immediate rewards
(

r(1), . . . , r(k)
)

, which define as many mean payoff conditions
(

f1
mean, . . . , f

k
mean

)

. The winning condition is:

∀1 ≤ i ≤ k, f i
mean

(

r
(i)
0 r

(i)
1 . . .

)

> 0 . (10)

B. Payoff functions

In the four examples above, the way payoffs are computed

is actually independent from the arena which is considered.

To be able to consider a payoff function independently of the

arenas equipped with this payoff function, we generalize the

definition of payoff functions.

Definition III.1 (Payoff functions). A payoff function is any

bounded and measurable function f : Cω → R where C is a

finite set called the set of colours. We say a game G = (A, g)
is equipped with f if there exists a mapping r : S×A → C

such that for every infinite play s0a1s1a2 · · · in the arena A,

g(s0, a1, s1, a2, . . .) = f(r(s0, a1), r(s1, a2), . . .) .

In the case of the mean payoff and the limsup payoff

functions, colours are real numbers and C ⊆ R, whereas in the

case of the discounted payoff colours are pairs C ⊆ R× [0, 1[
and for the parity game colours are integers C = {0, . . . , d}.

Throughout this paper, we focuse on shift-invariant payoff

functions.

Definition III.2 (Shift-invariant). A payoff function f : Cω →
R is said to be a shift-invariant payoff function if:

∀c ∈ C, ∀u ∈ C
ω, f(cu) = f(u) . (11)

Note that shift-invariance is a strictly stronger property than

tail-measurability. Tail-measurability means that for every n ∈
N, the value of f(c0c1 · · · ) is independent of the coordinates

c0, . . . , cn. For example the function

f(c0c1 · · · ) =

{

1 if ∃n ∈ N, ∀k, k′ ≥ n, c2∗k = c2∗k′

0 otherwise,

is tail-measurable but not prefix-independent [21]. It seems to

the authors of the present paper that the results of [22] hold for

shift-invariant winning objectives but no proof is given under

the weaker assumption of tail-measurability. Actually, tail-

measurability and shift-invariance are presented as equivalent

in the preliminaries ( [22, l. 28 p. 184]) and the shift-invariance

hypothesis is used in the core of the proof ( [22, l. -1 p.190]).

IV. ON THE EXISTENCE OF ǫ-SUBGAME-PERFECT

STRATEGIES

The following theorem is one of the two contributions of the

paper, and is a cornerstone for the result of the next section.

Theorem IV.1. Let G be a game equipped with a payoff

function f . Assume f is shift-invariant. Then both players have

ǫ-subgame-perfect strategies in G.

The remainder of this section is devoted into proving this

theorem. The proof is done from the point of view of Player

1, but it holds symmetrically for Player 2.

A. Weaknesses

For the remainder of Section IV fix ǫ > 0.

In order to talk about unwanted behavior in the quest of

proving that there exists a strategy that is ǫ-subgame-perfect,

we need the notion of a weakness.

Definition IV.2 (Weakness). Given a strategy σ for Player

1, a finite play p ∈ S(AS)∗ is a σ-weakness if σ[p] is not

2ǫ-optimal.

When playing with strategy σ we say that a weakness occurs

in an infinite play if some finite prefix of it is a σ-weakness.

Remark that a strategy is 2ǫ-subgame-perfect if and only if no

σ-weakness can occur when playing with σ.

Every infinite play q ∈ S(AS)ω can be factorized uniquely

as a finite or infinite sequence of plays p0, p1, p2, . . . such that

q = p0p1p2 . . . , and for every pn,

1) if pn is finite then pn is a σ-weakness,

2) if pn is finite then no strict prefix of pn is a σ-weakness,

3) if pn is infinite then q = p0p1 · · · pn and no prefix of pn
is a σ-weakness,

Having this factorization in mind helps understand better the

results of this section. In the proofs we will rely upon the

function δ, defined as follows.
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Definition IV.3. Let σ be a strategy for Player 1, and

s0 . . . sn ∈ S(AS)∗ define inductively on n

δσ(s0 . . . sn) =

{

n if p is a σ-weakness,

δσ(s0 . . . sn−1) otherwise

where p = sδσ(s0...sn−1) . . . sn, and δσ(s0) = 0. For n > 0,

we say that a weakness occurs at date n if δσ(s0 . . . sn) = n.

The function δ give the cutting dates of the factorization

described before the lemma.

B. The reset strategy

Using the notion of a weakness above we define a strategy

called the reset strategy, that resets the memory whenever a

weakness occurs, and the sequel is devoted to proving that this

strategy is subgame perfect.

Definition IV.4 (The reset strategy). Let σ be an ǫ-optimal

strategy. We define the reset strategy σ̂ based on σ as the

strategy that resets the memory whenever a weakness occurs,

that is

σ̂(s0 . . . sn) = σ(sδσ(s0...sn) . . . sn).

The construction of the reset strategy is an extension of

the construction of the switching strategy in the proof of [22,

Theorem 1]; while at most one memory reset is performed by

the switching strategy, the reset strategy may reset its memory

infinitely often.

The reset strategy has been used in [23] to prove the exis-

tence of optimal strategies in games with perfect information

and two-valued payoff functions. Note that this property does

not hold in the general case, for example there are in general

no optimal strategies in games colored by {0, 1} and equipped

with the payoff function

f(c0c1 · · · ) =

{

0 if ∀n ∈ N, cn = 0

1− 2−min{n|cn=1} otherwise.

C. Consistent ǫ-optimal strategies

We devote this subsection to proving that for every ǫ > 0
there are ǫ-optimal strategies that play consistently, that is they

never play a suboptimal action.

1) Consistent strategies:

Definition IV.5. The action a ∈ A(s) is optimal in state s ∈ S

if and only if val(s) =
∑

s′∈S
p(s, a, s′)val(s′). If a is not

optimal it is said to be suboptimal.

Definition IV.6. A strategy is consistent if it plays only optimal

actions.

An important property of games when both players

play only optimal actions is that the stochastic process

(val(Sn))n∈N is a martingale.

Theorem IV.7. Let σ and τ be strategies for player 1 and

2 and s ∈ S. Assume σ is consistent then (val(Sn))n∈N is

a sub-martingale for the probability measure P
σ,τ
s . If both σ

and τ are consistent then (val(Sn))n∈N is a martingale.

2) Both players play ultimately consistently: In this subsec-

tion we show that if Player 1 plays consistently then almost

surely both players eventually will play only optimal actions.

We actually prove an even stronger fact: under the same

hypothesis, both players eventually play only actions which

do not change the value of the state. First we define such

actions:

Definition IV.8 (Value-neutral actions). We call an action a ∈
A(s) value neutral if for all s′ ∈ S we have:

p(s, a, s′) > 0 =⇒ val(s) = val(s′).

Note that a value-neutral action is optimal, and a suboptimal

action is not value-neutral.

Lemma IV.9. For every consistent strategy σ, strategy τ and

s ∈ S, Pσ,τ
s (∃n ∈ N, ∀k ≥ n,An is value-neutral ) = 1.

The proof is based on Doob’s lemma (LemmaII.9), which

implies that when Player 1 plays consistently, (val(Sn))n∈N

converges almost-surely, which is possible only when all

actions played are ultimately value-neutral.

Since value-neutral actions are optimal, we get the it implies

that when Player 1 plays consistently then suboptimal actions

are played only finitely often.

Corollary IV.10. For every consistent strategy σ, strategy τ

and s ∈ S, Pσ,τ
s (∃n ∈ N, ∀k ≥ n,An is optimal ) = 1.

3) There are consistent ǫ-optimal strategies: It would sim-

plify the proofs in the sequel if we knew that for every ǫ > 0
we can choose an ǫ-optimal strategy that plays consistently.

In that way we know that Player 1 will never decrease his

chances for a larger payoff on average. That is the purpose of

the following lemma.

Lemma IV.11. In game G equipped with the payoff function

f , let ǫ′ > 0, and a ∈ A(s) a suboptimal action in state

s ∈ S1. Then there exists an ǫ′-optimal strategy for Player 1

that never plays action a.

The proof associates with every strategy using a a better

strategy that does not use a.

Corollary IV.12. In a game equipped with a shift-invariant

function, for all ǫ′ > 0 both players have ǫ′-optimal consistent

strategies.

The proof is by induction on the number of non-optimal

actions, using Lemma IV.11.

It is useful to see the first weakness after some date n as a

stopping time and to see what we can say about the process

(val(Sn))n∈N stopped at such a time, which is a consequence

of Doob’s optional stopping theorem (Theorem II.11).

Corollary IV.13. Let T be a stopping time with respect to

(Sn)n∈N. Then for all consistent strategy σ, and all strategies

τ and state s ∈ S, (val(Sn))n∈N converges almost-surely and

E
σ,τ
s [lim

n
val(Smin(n,T ))] ≥ val(s).
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In case we assume τ consistent instead of σ the converse

inequality holds.

Proof: Immediate from Theorem II.11, since in a consis-

tent game (val(Sn))n∈N forms a martingale (Theorem IV.7),

and from the hypothesis that the payoff function f is bounded,

we have that the values are also bounded.

D. Only finitely many weaknesses occur when playing σ̂

The goal of this subsection is to show that when playing

with the reset strategy σ̂ (based on some ǫ-optimal strategy σ)

the set of paths with infinitely many weaknesses have measure

0, or equivalently almost surely there exists a last weakness.

We start by proving that when Player 2 plays consistently, the

probability that no weakness occur is strictly positive.

Lemma IV.14. Let σ be an ǫ-optimal strategy, then there exists

µ > 0 such that for all strategy τ and s ∈ S, if τ is consistent,

P
σ,τ
s (∃n, S0 · · ·Sn is a σ-weakness) ≤ 1− µ.

The proof of this lemma relies on the fact that each

weakness can be exploited by player 2 and cause a loss of at

least 3
2ǫ because strategy τ is consistent. This can not happen

almost-surely since σ is both ǫ-optimal.

The next step is to prove a statement similar to Lemma

IV.14, which does assume consistency of τ .

Definition IV.15. We define the event

{there is no σ-weakness after time n}

as the event {∀m > n, δσ(S0 · · ·Sm) ≤ n}..

Notice that by definition of δσ, if there is no deviation

after date n′ then the sequence (δσ(S0 · · ·Sm))m∈N is constant

from date n′.

Corollary IV.16. Let σ be a consistent ǫ-optimal strategy, and

σ̂ the reset strategy based on it. For all strategies τ and states

s ∈ S there exists n ∈ N such that

P
σ̂,τ
s (there is a σ-weakness after date n) < 1.

Proof (Sketch): For every strategy τ and n ∈ N define

a strategy τn, which is sure to play consistently after date n.

Thanks to Lemma IV.14, the corollary holds for this strategy.

Use corollary IV.10 to prove the corollary for general τ .

Finally what is left to show is that when we are playing

with the reset strategy, the number of weaknesses is a.s finite.

Intuitively this is necessary because on the paths with infinitely

many weaknesses the strategy might not be subgame-perfect,

hence the need to show that the measure on these paths is 0.

Lemma IV.17. Let σ be an ǫ-optimal strategy, and σ̂ the reset

strategy based on it. Then for all strategies τ and states s ∈ S,

P
σ̂,τ
s (∃n, there is no σ-weakness after date n) = 1 .

E. The reset strategy is 2ǫ-subgame-perfect

The first goal is to prove that the reset strategy based on

some ǫ-optimal strategy is ǫ-optimal itself. Let us first define

the reset strategies that reset only up to some date and prove

the ǫ-optimality of them.

Let σ be some ǫ-optimal strategy, we define σ̂n as the

strategy that resets only up to time n ∈ N,

σ̂n(s0 . . . sm) = σ(sδσ(s0...sm∧n) . . . sn)

where m ∧ n = min{m,n}.

Lemma IV.18. Let σ be a consistent ǫ-optimal strategy, and σ̂

the reset strategy based on it. Then for all strategies τ , states

s ∈ S and all n ∈ N,

E
σ̂n,τ
s [f ] ≥ val(s)− ǫ.

Proof (Sketch): By induction on n, and decomposing the

expected payoff on the event of a weakness at date n+ 1.

Having shown that the strategies σ̂n are ǫ-optimal we can

proceed into proving that the reset strategy σ̂ itself is ǫ-optimal.

First we need to give a link between the strategies σ̂ and σ̂n,

in the form of the following lemma.

Lemma IV.19. Let E be an event, and σ1,σ2 two strategies

for Player 1 such that for all prefixes p of an inifinite play in

E, σ1(p) = σ2(p). Then for all τ and s ∈ S,

E
σ1,τ
s [f · 1E ] = E

σ2,τ
s [f · 1E ].

Proof: This is obvious when f is the indicator of a

cylinder, and the class of functions f with this property is

closed by linear combinations and simple limits.

Lemma IV.20. Let σ be a consistent ǫ-optimal strategy, and

σ̂ the reset strategy based on it, then σ̂ is ǫ-optimal.

Proof: Let m and M be the lower and upper

bounds of the payoff function f respectively. Let L =
limn δσ(S0S1 . . . Sn) ∈ N∪{∞}, which is well-defined since

(δσ(S0S1 . . . Sn))n∈N is pointwise increasing.

Applying Lemma IV.18 gives us

val(s)− ǫ ≤ E
σ̂n,τ
s [f · 1L≤n] + E

σ̂n,τ
s [f · 1L>n]

≤ E
σ̂n,τ
s [f · 1L≤n] +MP

σ̂n,τ
s (L > n).

From here, since σ̂ and σ̂n coincide upon all plays in {L ≤ n},

using Lemma IV.19 we get

E
σ̂,τ
s [f ]− E

σ̂,τ
s [f · 1L>n] = E

σ̂,τ
s [f · 1L≤n]

= E
σ̂n,τ
s [f · 1L≤n]

≥ val(s)− ǫ −MP
σ̂n,τ
s (L > n).

Since for any measurable function f , Lemma IV.19 holds,

applying it to the constant function that maps to 1, gives us

P
σ̂,τ
s (L ≤ n) = P

σ̂n,τ
s (L ≤ n), hence

E
σ̂,τ
s [f ] ≥ val(s)− ǫ − (M −m)Pσ̂,τ

s (L > n).

And the inequality above holds for any n, according to Lemma

IV.17, limn(M −m)Pσ̂,τ
s (L > n) = 0, hence

E
σ̂,τ
s [f ] ≥ val(s)− ǫ.
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Having shown that the reset strategy is ǫ-optimal, using

similar ideas we prove that the reset strategy is also 2ǫ-
subgame-perfect.

Theorem IV.21. Let σ be a consistent ǫ-optimal strategy, and

σ̂ the reset strategy based on it, then σ̂ is 2ǫ-subgame-perfect.

Proof (Sketch): Fix a prefix p = s0 . . . sn ∈ S(AS)∗.

If p is a σ-weakness then σ̂[p] = σ̂ and since σ̂ is ǫ-optimal

(Lemma IV.20), σ̂[p] is aa fortiori ǫ-optimal. The case where

p is not a σ-weakness relies on on Lemma IV.20 and the

consistency of σ̂.

V. GAMES WITH SHIFT-INVARIANT AND SUBMIXING

PAYOFF FUNCTIONS ARE HALF-POSITONAL

In this section, we introduce the class of shift-invariant

and submixing payoff functions and we prove that in every

game equipped with such a payoff function, Player 1 has a

deterministic and stationary strategy which is optimal.

The definition of a submixing payoff function relies on the

notion of shuffle of two words. A factorization of a sequence

u ∈ C
ω is an infinite sequence (un)n∈N ∈ (C∗)N of finite

sequences whose u is the concatenation i.e. such that u =
u0u1u2 · · · . A sequence w ∈ C

ω is said to be a shuffle of

u ∈ C
ω and v ∈ C

ω if there exists two factorizations u =
u0u1u2 · · · and v = v0v1v2 · · · of u and v such that w =
u0v0u1v1u2v2 · · · .

Definition V.1 (Submixing payoff functions). A payoff func-

tion f : C
ω → R is submixing if for every infinite words

u, v, w ∈ C
ω such that w is a shuffle of u ∈ C

ω and v ∈ C
ω,

f(w) ≤ max{f(u), f(v)} . (12)

In other words, the submixing condition states that the

payoff associated with the shuffle of two plays cannot be

strictly greater than both the payoffs of these plays.

We can now state our main result.

Theorem V.2. Let f be a payoff function and G a game

equipped with f . Suppose that f is shift-invariant and sub-

mixing. Then the game G has a value and player 1 has an

optimal strategy which is both deterministic and stationary.

The shift-invariant and submixing properties are sufficient

but not necessary to ensure the existence of a pure and

stationary optimal strategy for player 1, there are counter-

examples in Section VI. Necessary and sufficient conditions

for positionality are known for deterministic games [24].

However the shift-invariant and submixing conditions are

general enough to recover several known results of existence

of deterministic stationary optimal strategies, and to provide

several new examples of games with deterministic stationary

optimal strategies, as is shown in the two next sections.

A. Proof of Half-Positionality

We prove Theorem V.2. Let f : Cω → R be a shift-invariant

and submixing payoff function and G a game equipped with

f . For the sake of simplicity we suppose without loss of

generality that the alphabet of f is C = S×A.

We prove Theorem V.2 by induction on N(G) =
∑

s(|A1(s)| − 1). If N(G) = 0 then in every state controlled

by player 2 there is only one action available, thus player

2 has a unique strategy which is optimal, deterministic and

stationary.

Let G be a game N(G) > 0 and suppose Theorem V.2 has

been proved for every game G
′ such that N(G′) < N(G).

Since N(G) > 0 there exists a state s ∈ A1 such that A(s)
has at least two elements. Let (A0(s),A1(s)) be a partition of

A(s) in two non-empty sets. Let G0 and G1 be the two games

obtained from G by restricting actions in state s to A0(s)
and A1(s) respectively. According to the induction hypothesis,

both G0 and G1 have values, let val0(s) and val1(s) denote

the values of state s in G0 and G1.

To prove the existence of a deterministic stationary optimal

strategy in G it is enough to prove:

minmax(G)(s) ≤ max{val0(s), val1(s)} , (13)

Since every strategy of player 2 in G0 and G1 is a strategy

in G as well, then val0(s) ≤ val(s) and val1(s) ≤ val(s).
Moreover according to the induction hypothesis there exist

deterministic stationary optimal strategies σ0 and σ1 in G0 and

G1. Suppose that (13) holds, and without loss of generality

suppose minmax(G)(s) ≤ val0(s). Since the deterministic

stationary σ0 is optimal in G0, it guarantees for every τ and

s ∈ S, E
σ0,τ
s [f ] ≥ val0(s) ≥ minmax(G)(s), thus σ0 is

optimal not only in the game G0 but in the game G as well.

Thus (13) is enough to prove the inductive step.

B. The projection mapping

To prove (13), we make use of two mappings

π0 : s(AS)∞ → s(AS)∞ (14)

π1 : s(AS)∞ → s(AS)∞. (15)

First π0 and π1 are defined on finite words. The mapping π0

associates with each finite play p ∈ (SA)∗ in G with source

s a finite play π0(p) in G0.

Intuitively, play π0(p) is obtained by erasing from p some

of its subwords. Remember that (A0(s),A1(s)) is a partition

of A(s) hence every occurrence of state s in the play p is

followed by an action a which is either in A0(s) or in A1(s).
To obtain π0(p) one erases from p two types of subwords:

1) all simple cycles on s starting with an action in A1(s)
are deleted from p,

2) in case the last occurrence of s in p is followed by an

action in A1(s) then the corresponding suffix is deleted

from p.

Formally, π0 and π1 are defined as follows. Let p =
s0a0s1a1 · · · sn ∈ s(AS)∗ and i0 < i1 < . . . < ik = {0 ≤
i ≤ n | si = s} the increasing sequence of dates where the

play reaches s. For 0 ≤ l < k let pl the l-th factor of p defined
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by pl = silail · · ·ail+1−1 and pk = sikaik · · · an−1sn. Then

for j ∈ {0, 1},

πj(p) =
∏

0≤l≤k|ail
∈Aj

pl

We extend π0 and π1 to infinite words in a natural way:

for an infinite play p ∈ s(AS)ω then π0(p) is the limit of the

sequence (π0(pn))n∈N, where pn is the prefix of p of length

2n+ 1. Remark that π0(p) may be a finite play, in case play

p has an infinite suffix such that every occurrence of s is

followed by an action of A1(s).
We make use of the four following properties of π0 and π1.

For every infinite play p ∈ (SA)ω ,

(A) if π0(p) is finite then p has a suffix which is an infinite

play in G1 starting in s,

(B) if π1(p) is finite then p has a suffix which is an infinite

play in G0 starting in s,

(C) if both π0(p) and π1(p) are infinite then both π0(p) and

π1(p) reach state s infinitely often,

(D) if both π0(p) and π1(p) are infinite, then p is a shuffle

of π0(p) and π1(p).

We use the three following random variables:

Π = S0A1S1 · · · , (16)

Π0 = π0(S0A1S1 · · · ) , (17)

Π1 = π1(S0A1S1 · · · ) . (18)

C. The trigger strategy

We build a strategy τ ♯ for player 2 called the trigger strategy.

According to Theorem IV.1, there exists ǫ-subgame-perfect

strategies τ
♯
0 and τ

♯
1 in the games G0 and G1 respectively.

The strategy τ ♯ is a combination of τ
♯
0 and τ

♯
1 . Intuitively

the strategy τ ♯ switches between τ
♯
0 and τ

♯
1 depending on the

action chosen at the last visit in s. Let p be a finite play in

s(AS)∗ and last(p) ∈ A the action played after the last visit

of p to s and t the last state of p, then:

τ ♯(p) =

{

τ
♯
0(π0(p)t) if last(p) ∈ A0

τ
♯
1(π1(p)t) if last(p) ∈ A1.

We are going to prove that the trigger strategy τ ♯ is ǫ-

optimal for player 2, thanks to three following key properties.

For every strategy σ for player 1 ,

E
σ,τ♯

s [ f | Π0 is finite] ≤ val1(s) + ǫ , (19)

E
σ,τ♯

s [ f | Π1 is finite] ≤ val0(s) + ǫ , (20)

E
σ,τ♯

s [ f | Π0 and Π1 are both infinite]

≤ max{val0(s), val1(s)} + ǫ . (21)

D. Proof of inequalities (19) and (20)

To prove inequality (19), we introduce the probability

measure µ1 on plays in G1 defined as:

µ1(E) = P
σ,τ♯

s (Π1 ∈ E | Π0 is finite) ,

and the strategy σ′
1 for player 1 in G1 defined for every play

h controlled by player 1 by:

σ′
1(h)(a) = P

σ,τ♯

s (ha � Π1 | h � Π1 and Π0 is finite) ,

where � denotes the prefix relation over words of S∞:

∀u ∈ C
∗, v ∈ C

∞, u � v ⇐⇒ ∃w ∈ C
∞, v = u · w ,

and ≺ the strict prefix relation.

We abuse the notation and denote h and ha for the events

h(AS)ω and ha(SA)ω , so that

σ′
1(h)(a) = µ1(ha | h) .

The probability measure µ1 has the following key proper-

ties. For every finite play h in the game G1 whose finite state

is t,

µ1(ha | h) =

{

σ′
1(h)(a) if t ∈ S1,

τ
♯
1(h)(a) if t ∈ S2 ,

(22)

µ1(has | ha) = p(s|t, a). (23)

As a consequence of the equalities (22) and (23), and

according to the characterisation given by (1) and (2) the

probability measure µ1 coincides with the probability measure

P
σ′

1,τ
♯
1

s . Since τ
♯
1 is ǫ-optimal in the game G1, it implies (19).

The proof of (20) is symmetrical.

E. Proof of inequality (21)

The proof of (21) requires several steps.

First, we prove that for every strategy σ in G, there exists

a strategy σ0 in G0 such that for every measurable event E ⊆
(SA)ω in G0,

P
σ0,τ

♯
0

s (E) ≥ P
σ,τ♯

s (Π0 is infinite and Π0 ∈ E) . (24)

The strategy σ0 in G0 is defined for every finite play

controlled by player 1 by:

σ0(h)(a) = P
σ,τ♯

s (ha � Π0 | h ≺ Π0) ,

if Pσ,τ♯

s (h ≺ Π0) > 0 and otherwise σ0(h) is chosen arbitrar-

ily. We prove that (24) holds. Let E be the set of measurable

events E ⊆ (SA)ω in G0 such that (24) is satisfied. First,

E contains all cylinders h0(SA)ω of G0 with h0 ∈ (SA)∗

because:

P
σ0,τ

♯
0

s (h0(SA)ω) ≥ P
σ,τ♯

s (h0 � Π0)

≥ P
σ,τ♯

s (Π0 is infinite and Π0 ∈ h0(SA)ω)

where the first inequality can be proved by induction on the

size of h0, using the definition of σ0 and where the second

inequality is by definition of �. Clearly E is stable by finite

disjoint unions hence E contains all finite disjoint unions of

cylinders, which form a boolean algebra. Moreover E is clearly

a monotone class, hence according to the Monotone Class

Theorem, E contains the σ-field generated by cylinders, that

is all measurable events E in G0. This completes the proof

of (24).
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Second step to obtain (21) is to prove that for every strategy

σ0 in G0:

P
σ0,τ

♯
0

s (f ≤ val0(s) + ǫ | s is reached infinitely often) = 1 .

(25)

According to Levy’s law, (E
σ0,τ

♯
0

s [f | S0, A1, . . . , Sn])n∈N

converges in probability to f(S0A1S1 · · · ). Since f is a shift-

invariant payoff function, for every n ∈ N,

E
σ0,τ

♯
0

s [f | S0, A1, . . . , Sn]

=E
σ0,τ

♯
0

s [f(SnAn+1Sn+1 · · · ) | S0, A1, . . . , Sn]

=E
σ0[S0A1···Sn],τ

♯
0 [S0A1···Sn]

Sn
[f ]

≤ val0(Sn) + ǫ ,

because τ
♯
0 is ǫ-subgame-perfect. As a consequence

P
σ,τ♯

s (f ≤ lim infn val0(Sn) + ǫ) = 1 hence (25).

Now we come to the end of the proof of (21).

Let σ0 be a strategy in G0 such that (24) holds for

every measurable event E in G0. According to (25),

P
σ0,τ

♯

s (f > val0(s) + ǫ and s is reached infinitely often) =
0. For i ∈ {0, 1} denote Ei and Fi the events:

Ei = {Πi is infinite and reaches s infinitely often}, (26)

Fi = Ei ∧ {f(Πi) ≤ vali(s) + ǫ}. (27)

Remark that Fi is well-defined since condition Ei implies that

Πi is infinite thus f(Πi) is well-defined in (27).

According to (25) and the definition of τ ♯,

P
σ0,τ

♯
0

s (f > val0(s) + ǫ ∧ s is reached infinitely often) = 0

and together with (24),

P
σ,τ♯

s (f(Π0) > val0(s) + ǫ and E0) = 0.

Symmetrically, Pσ,τ♯

s (f(Π1) > val1(s) + ǫ and E1) = 0, and

this proves

P
σ,τ♯

s (F0 and F1 | E0 and E1) = 1.

Together with (D) and because f is submixing this implies

P
σ,τ♯

s (f ≤ max{val0(s), val1(s)}+ ǫ | E0 and E1) = 1

and according to (C) this terminates the proof of (21).

Since equations (19), (20) and (21) hold for every strat-

egy σ and every ǫ, minmax(s) ≤ max{val0(s), val1(s)}.

W.l.o.g. assume minmax(s) ≤ val0(s). Then the stationary

deterministic strategy σ0 optimal in G0 is a strategy in G

as well and σ0 ensures an expected income of val0(s) thus

minmax(s) ≤ val0(s) ≤ maxmin(s). As a consequence, the

state s has value val0(s) in the game G and σ0 is optimal in

G. This completes the proof of Theorem V.2.

Note that the proof of Theorem V.2 does not rely on

Martin’s theorem.

VI. APPLICATIONS

A. Unification of classical results

The existence of deterministic stationary optimal strategies

in Markov decision processes with parity [7], limsup, lim-

inf [19], mean-payoff [6], [4], [3], [25] or discounted payoff

functions [1] is well-known. Theorem V.2 provides a unified

proof of these five results, as a corollary of the following

proposition.

Proposition VI.1. The payoff functions flsup, flinf, fpar and

fmean are shift-invariant and submixing.

This was proved in [11], [26].

Corollary VI.2. In every two-player stochastic game equipped

with the parity, limsup, liminf, mean or discounted payoff

function, both players have a deterministic and stationary

strategy which is optimal.

Proof: Except for the discounted payoff function, this is a

direct consequence of Proposition VI.1 and Theorem V.2. The

case of the discounted payoff function can be reduced to the

case of the mean-payoff function, interpreting discount factors

as stopping probabilities as was done in the seminal paper of

Shapley [1]. Deshift-invariants follow. Every Markov decision

process G with states S equipped with a discounted payoff

function can be turned into a Markov decision process G
′

with states S∪S×{0} equipped with a mean-payoff function

such that for every strategy σ′ optimal in G
′ its restriction σ

to S is optimal in G. States of G′ are obtained by adding an

extra absorbing state (s, 0) for each state s ∈ S, the reward

in state (s, 0) is
r(s)

1−λ(s) . Whatever action is chosen in state

s there is probability 1 − λ(s) to go to the absorbing state

(s, 0) and stay there forever, whereas the original transition

probabilities in G to states s ∈ S are multiplied by λ(s).

Corollary VI.2 unifies and simplifies existing proofs of [7]

for the parity game and [19] for the limsup game.

The existence of determinstic and stationary optimal strate-

gies in mean-payoff games has attracted many attention. The

first proof was given by Gilette [5] and based on a variant of

Hardy and Littlewood theorem. Later on, Ligget and Lippman

found the variant to be wrong and proposed an alternative

proof based on the existence of Blackwell optimal strategies

plus a uniform boundedness result of Brown [6]. Actually a

careful inspection of their proof shows that it contains a flaw as

well: first, it is not clear at all how to deduce (7) from (6) and

(5) on line 20 of page 606 of [6], second there is no obvious

reason for the hypotheses of Brown’s result [27, Theorem 4.2]

to be satisfied in the context of [6]. For one-player games,

Bierth [3] gave a proof using martingales and elementary

linear algebra while [25] provided a proof based on linear

programming and a modern proof can be found in [4] based

on a reduction to discounted games and the use analytical

tools. For tw-player games, a correct proof of positionality of

two-player mean-payoff games with perfect information can

be found in [26], [28].
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B. Variants of mean-payoff games

The positive average condition defined by (9) is a variant

of mean-payoff games which may be more suitable to model

quality of service constraints or decision makers with a loss

aversion.

Albeit function fposavg is very similar to the fmean function,

maximizing the expected value of fposavg and fmean are two

distinct goals. For example, a positive average maximizer

prefers seeing the sequence 1, 1, 1, . . . for sure rather than

seeing with equal probability 1
2 the sequences 0, 0, 0, . . .

or 10, 10, 10, . . . while a mean-value maximizer prefers the

second situation to the first one.

To the best knowledge of the author, the techniques used

in [3], [4], [25] cannot be used to prove positionality of these

games.

Since the positive average condition is the composition of

the submixing function fmean with an increasing function it is

submixing as well, hence it is half-positional.

In mean-payoff co-Bchi games, a subset of the states are

called Bchi states, and the payoff of player 1 is −∞ if Bchi

states are visited infinitely often and the mean-payoff value of

the rewards otherwise. It is easy to check that such a payoff

mapping is shift-invariant and submixing. Notice that in the

present paper we do not explicitely handle payoff mappings

that take infinite values, but it is possible to approximate the

payoff function by replacing −∞ by arbitrary small values to

prove half-positionality of mean-payoff co-Bchi games.

C. New examples of positional payoff function

Although the generalized mean-payoff condition defined

by (10) is not submixing a variant is. Optimistic generalized

mean-payoff games are defined similarly except the winning

condition is

∃i, f i
mean ≥ 0.

It is a basic exercise to show that this winning condition

is submixing. More generally, if f1, . . . , fn are submixing

payoff mappings then max{f1, . . . , fn} is submixing as well.

Remark that optimistic generalized mean-payoff games are

half-positional but not positional, this is a simple exercise.

Another examples are provided in [11], [13], [26].

CONCLUSION

We would like to be able to generalize the submising con-

dition in order to cover all positional counter-games presented

in [10]. Although [12] provides a necessary and sufficient

condition for the positionality of one-player games, it seems

not obvious how this characterization can be used to prove

positionality of counter games.
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APPENDIX

PROOF OF PROPOSITION II.6

By definition of the maxmin, maxmin(G)(s) ≥ infτ E
σ♯,τ
s [f ] and by definition of an optimal strategy, infτ E

σ♯,τ
s [f ] ≥

minmax(G)(s). As a consequence, maxmin(s) ≥ minmax(s) thus s has a value and (3) holds.

PROOF OF THEOREM II.11

For every k ∈ N let Yk = Xmin(T,k). The stopped process (Yk)k∈N is also a martingale, a basic property of martingales.

Since (Xn)n∈N is bounded by K , (Yn)n∈N also is and according to LemmaII.9 it converges almost-surely. By definition of

XT the limit of (Yn)n∈N is XT . By definition of martingales, for every n ∈ N,E[Yn] = E[Y0] = E[X0] thus according to

Lebesgue dominated convergence E[XT ] = E[X0]. A similar proof applies for the case of supermartingales or submartingales.

PROOF OF THEOREM IV.7

By definition f is bounded hence for all n ∈ N and all strategies σ, τ and states s ∈ S, E
σ,τ
s [|val(Sn)|] <

∞. Finally, for consistent σ and, strategies τ and states s ∈ S, E
σ,τ
s [val(Sn+1) | val(S0), . . . , val(Sn)] is

∑

a∈A(s) σ(S0 . . . Sn)(a)
(
∑

s′∈S
p(val(Sn), a, s

′)
)

if Sn ∈ S1 and
∑

a∈A(s) τ(S0 . . . Sn)(a)
(
∑

s′∈S
p(val(Sn), a, s

′)
)

other-

wise. And we see that in both cases E
σ,τ
s [val(Sn+1) | val(S0), . . . , val(Sn)] ≥ val(Sn) by definition of a consistent strategy

σ. Clearly the same proof holds when τ is also consistent, making the inequality above an equality.

PROOF OF LEMMA IV.9

In case every action is value-neutral, we have nothing to prove. Assume that there exists an action a ∈ A(s) which is not

value neutral. Let s′ ∈ S be such that p(s, a, s′) > 0 and val(s) 6= val(s′). Denote the event “we see action a infinitely often”

by Esa, formally

Esa := {∀m ∈ N, ∃n ≥ m, Sn = s ∧ An+1 = a}.

The goal is to prove that for all consistent strategies σ, t ∈ S and τ we have P
σ,τ
t (Esa) = 0. Assume on the contrary that

for some consistent σ, t ∈ S and τ we have P
σ,τ
t (Esa) > 0. This implies that also P

σ,τ
t (Esas′ ) > 0, where Esas′ := {∀m ∈

N, ∃n ≥ m, Sn = s ∧An+1 = a∧ Sn+1 = s′}. And this in turn implies that when playing with σ, τ and starting from state

t, there is some non-zero probability that for infinitely many n ∈ N,

| val(Sn)− val(Sn+1) | ≥ val(s)− val(s′) > 0. (28)

Clearly a consequence of (28) is that there is some non-zero probability that the sequence val(S0), val(S1), . . . does not

converge. But according to Lemma II.9, the submartingale val(S0), val(S1), . . . converges almost surely, hence for all consistent

strategies σ all t ∈ S and τ we have P
σ,τ
t (Esa) = 0.

PROOF OF LEMMA IV.11

Let G
′ be the game identical to G except that a 6∈ A(s) (action a is removed). For all t ∈ S it is immediate that

val(G)(t) ≥ val(G′)(t) since Player 1 has one more action to choose from in the game G, while Player 2 has the same

number of actions to choose from. Hence our goal is to prove the following:

∀t ∈ S, val(G′)(t) ≥ val(G)(t). (29)

We split the proof of (29) in two cases, for t = s and t 6= s.

• val(G′)(s) ≥ val(G)(s)
Let d = val(G)(s)−

∑

t∈S p(s, a)(t)val(G)(t) > 0, and τ the strategy for Player 2 in G that plays according to strategy

τ ′ which is ǫ-optimal in G
′, as long as Player 1 does not choose the suboptimal action a. In case he does choose it, τ

switches definitely to the strategy τ ′′ that is d
2 -optimal in G. Let Opt be the event (∀n ∈ N, Sn = s =⇒ An+1 6= a),

that is the event that Player 1 never chooses the suboptimal action a.

When playing with the strategy τ we have the following properties, for all t and σ:

E
σ,τ
t [f | Opt] ≤ val(G′)(t) + ǫ (30)

E
σ,τ
t [f | ¬Opt] ≤ val(G)(s)− d+

d

2
(31)

To show (30), note because of the condition Opt the game is played only in G
′, hence the strategy σ even though it is

a strategy in G it behaves like the strategy σ′ in G
′ defined in the following way: for all p = s0 . . . sn ∈ S(AS)∗, and

b ∈ A(sn), σ
′(p)(b) = P

σ,τ
s0 (pb | p ∧Opt). That is E

σ,τ
t [f | Opt] = E

σ′,τ ′

t [f ], because τ never has to switch to τ ′′. Now

(30) is a direct consequence of the ǫ-optimality of τ ′.
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We get (31), because when Player 1 chooses the action a, τ switches to the τ ′′ strategy which is d
2 -optimal in G, and

the decrease by d is a consequence of the choice of the action a, and the definition of d.

Since E
σ,τ
t [f ] is a convex combination of E

σ,τ
t [f | Opt] and E

σ,τ
t [f | ¬Opt], as a consequence of (30) and (31) we have

that for all t ∈ S, ǫ > 0 and σ,

E
σ,τ
t [f ] ≤ max{val(G′)(t) + ǫ, val(G)(s)−

d

2
}.

Taking t = s and the supremum over all σ, since the inequality above holds for any ǫ > 0, we get val(G′)(s) ≥ val(G)(s).
• ∀t ∈ S, t 6= s, and val(G′)(t) ≥ val(G)(t)

Let Swσ be the event (∃n ∈ N, Sn = s∧σ(S0 . . . Sn)(a) > 0), that is the event that according to σ the suboptimal action

a is about to be played at some date n. For every strategy σ define σs as the strategy in G
′ that plays like σ as long as

the latter does not choose the action a (with nonzero probability), and when it does, σs switches to the strategy σ′ that

is ǫ-optimal in G
′. Let τ be the strategy for Player 2 which plays according to the strategy τ ′ which is ǫ-optimal in G

′

as long as Player 1 does not choose the action a, otherwise it switches to strategy τ ′′ that is ǫ-optimal in G.

Since pairs of strategies σ, τ coincide to σs, τ
′ up to the date n in the event Swσ , we write p = P

σ,τ
t (Swσ) = P

σs,τ
′

t (SWσ).
From the definition of τ , σs and the fact that val(G)(s) = val(G′)(s), shown above we have:

E
σ,τ
t [f | Swσ] ≤ val(G)(s) + ǫ = val(G′)(s) + ǫ, and

val(G′)(s) − ǫ ≤ E
σs,τ
t [f | Swσ].

Combining the two inequalities above we get

E
σ,τ
t [f | Swσ] ≤ E

σs,τ
t [f | Swσ] + 2ǫ. (32)

Keeping this in mind we proceed:

E
σ,τ
t [f ]

= pE
σ,τ
t [f | Swσ] + (1− p)Eσ,τ

t [f | ¬Swσ]

≤ p(Eσs,τ
t [f | Swσ] + 2ǫ) + (1− p)Eσs,τ

t [f | ¬Swσ]

= E
σs,τ
t [f ] + 2pǫ

= E
σs,τ

′

t [f ] + 2pǫ ≤ val(G′)(t) + ǫ(2p+ 1)

where the first equality is a basic property of expectations, the first inequality is from (32) and because on the paths of

the event ¬Swσ the strategies σ and σs coincide, the following equality is a basic property of expectations, while the

second one and the last inequality are by definition of the strategy τ . We have E
σs,τ
t [f ] = E

σs,τ
′

t [f ] because by definition

of the switch strategy the action a is never played hence τ never switches to the strategy τ ′′.

Since this holds for any ǫ > 0, taking the supremum over strategies σ we get val(G′)(t) ≥ val(G)(t) as desired.

Having proven that for all states, the values in both G and G
′ coincide, we have shown that there are ǫ-optimal strategies

for Player 1 that never play the suboptimal action a.

PROOF OF LEMMA IV.14

We define F = min{n ∈ N | S0 · · ·Sn is a σ-weakness} with the convention min ∅ = ∞, and let σ be a strategy for

Player 1, then for a given n ∈ N, m > n and prefix s0 . . . sm ∈ S(AS)∗, define weak(n, s0 . . . sm) := (δσ(s0 . . . sm) =
m) ∧ (δσ(s0 . . . sm−1) ≤ n), the boolean function characterizing the prefixes up to the first weakness after date n.

The event F < ∞ means that a ”weakness occurs”, and is equivalent to the event given in the statement of the lemma. Let

τ be a strategy for Player 2 and s ∈ S. Let M and m be upper and lower bound respectively of the payoff function f , and let

τ ′ be the strategy that plays identically to τ as long as weakness does not occur, and when a weakness occurs it switches to

a ǫ
2 -optimal response τ ′′. Since strategies τ and τ ′ coincide up to the first weakness let p = P

σ,τ ′

s (F = ∞) = P
σ,τ
s (F = ∞).

From the ǫ-optimality of σ, and a basic property of conditional expectations:

val(s)− ǫ ≤ E
σ,τ ′

s [f ]

= (1 − p) · Eσ,τ ′

s [f | F < ∞]

+ p · Eσ,τ ′

s [f | F = ∞]

≤ (1 − p) · Eσ,τ ′

s [f | F < ∞] + pM.

(33)
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As a subsequence of the strategy τ ′ namely that it resets to the strategy τ ′′ if a weakness occurs, by shifting up to the first

weakness we get:

E
σ,τ ′

s [f | F < ∞]

=
∑

s0...sn∈S(AS)∗

weak(0,s0...sn)

P
σ,τ ′

s (s0 . . . sn|F < ∞)Eσ[s0...sn],τ
′′

sn [f ]

≤
∑

s0...sn∈S(AS)∗

weak(0,s0...sn)

P
σ,τ ′

s (s0 . . . sn|F < ∞)(val(sn)− 2ǫ+
ǫ

2
)

= E
σ,τ ′

s [val(SF ) | F < ∞]−
3

2
ǫ,

the inequality is a subsequence of the strategy τ ′ that takes advantage of the weakness by definition. Plugging this inequality

on (33):

val(s)− ǫ

≤ (1 − p) · Eσ,τ ′

s [val(SF ) | F < ∞]−
3

2
ǫ(1− p) + pM

= E
σ,τ ′

s [val(SF )] + p(M − E
σ,τ ′

s [val(SF ) | F = ∞])

−
3

2
ǫ(1− p)

≤ val(s) + p(M − E
σ,τ ′

s [val(SF ) | F = ∞])−
3

2
ǫ(1− p)

≤ val(s) + p(M −m)−
3

2
ǫ(1− p)

where in the equality we have decomposed (1 − p) · Eσ,τ ′

s [val(SF ) | F < ∞] to E
σ,τ ′

s [val(SF )] − p · Eσ,τ ′

s [val(SF ) | F =
∞], and the second inequality is a consequence of the following: F is a stopping time, and (val(Sn))n∈N is a martingale

because player 2 is playing consistently, thus applying Corollary IV.13 we get Eσ,τ ′

s [val(SF )] ≤ val(s). Finally from above:
ǫ

2(M−m+3/2) ≤ p < µ, a uniform lower bound for µ, that does not depend on the choice of τ .

Definition A.1. For a state s ∈ S and a distribution D ∈ ∆(A(s)), let opt(s,D) = (∀a ∈ A(s), D(a) > 0 =⇒ a is optimal

in s). Denote by U the uniform distribution on a finite set, and for a state s ∈ S denote by Op(s) the set of optimal actions

in s. Given any strategy τ and natural number n, define τn to be the following strategy:

τn(s0 . . . sm) =







τ(s0 . . . sm) if m < n

or opt(sm, τ(s0 . . . sm))
U(Op(sm)) otherwise

Lemma A.2. Let σ be a consistent ǫ-optimal strategy, and σ̂ the reset strategy based on it. Then there exists µ > 0 such that

for all τ and s ∈ S and n ∈ N there exists n′ > n such that,

P
σ̂,τn
s ( there is no σ-weakness after time n′ ) ≥ µ > 0,

where τn is the strategy defined in Definition A.1.

Proof:

For every n ∈ N, define Fn = min{m > n | δσ(S0 . . . Sm) = m} and min ∅ = ∞, the date of the first weakness strictly

after n, and F 2
n = FFn

the date of the second weakness strictly after n.

We prove that there exists µ > 0 such that for all n ∈ N, strategy τ , and state s ∈ S,

P
σ̂,τn
s (F 2

n < ∞ | Fn < ∞) ≤ 1− µ. (34)
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Let µ be given by Lemma IV.14 and weak defined like in the proof of Lemma IV.14. Then (34) is a consequence of:

P
σ̂,τn
s (F 2

n < ∞ | Fn < ∞) =
∑

p=s0...sm∈S(AS)∗

weak(n,p)

P
σ̂,τn
s (F 2

n < ∞ | p(AS)ω ∧ Fn < ∞) · Pσ̂,τn
s (p(AS)ω | Fn < ∞)

=
∑

p=s0...sm∈S(AS)∗

weak(n,p)

P
σ̂,τn
s (F 2

n < ∞ | p(AS)ω) · Pσ̂,τn
s (p(AS)ω | Fn < ∞)

=
∑

p=s0...sm∈S(AS)∗

weak(n,p)

P
σ̂,τn[p]
sm (F0 < ∞) · Pσ̂,τn

s (p(AS)ω | Fn < ∞)

=
∑

p=s0...sm∈S(AS)∗

weak(n,p)

P
σ,τn[p]
sm (F0 < ∞) · Pσ̂,τn

s (p(AS)ω | Fn < ∞)

≤ 1− µ

where the first and second equalities hold because

{Fn < ∞} =
⋃

p=s0...sm∈S(AS)∗

weak(n,p)

p(AS)ω ,

the third equality because if weak(n, p) then σ̂[p] = σ̂, the fouth equality is a consequence of Lemma IV.19 since σ and σ̂

coincide up to the first σ-weakness and the last inequality holds because according to the definition of τn, and since |p| ≥ n

then τn[p] is consistent and we can apply Lemma IV.14.

Let n′ ≥ n such that

P
σ̂,τn
s (Fn′ < ∞) ≤ P

σ̂,τn
s (F 2

n < ∞),

which exists because by definition of F 2
n ,

{F 2
n < ∞} ⊆

⋃

n′≥n

{F 2
n < ∞}.

Then

P
σ̂,τn
s (Fn′ < ∞) ≤ P

σ̂,τn
s (F 2

n < ∞)

= P
σ̂,τn
s (Fn < ∞)Pσ̂,τn

s (F 2
n < ∞ | Fn < ∞)

≤ 1− µ,

(35)

where the first inequality is by choice of n′, the equality in (35) is because P(F 2
n < ∞ | Fn = ∞) = 0, and the inequality is

from (34). This completes the proof.

PROOF OF COROLLARY IV.16

We use Definition A.1.

Let Ω be the RV taking values in N∪ {∞} that maps to the date of the last suboptimal action played, if it exists, otherwise

let it be ∞. Because τ and τn coincide on all paths where the last suboptimal action is played before n, that is on the event

{Ω < n}, then for any n ∈ N and event E:

P
σ̂,τ
s (E) = P

σ̂,τ
s (Ω < n)Pσ̂,τn

s (E | Ω < n)

+ P
σ̂,τ
s (Ω ≥ n)Pσ̂,τ

s (E | Ω ≥ n).

Since σ̂ is consistent we can apply Corollary IV.10, we have limn P
σ̂,τ
s (Ω < n) = 1, therefore

P
σ̂,τn
s (E) −−−−→

n→∞
P
σ̂,τ
s (E).

Let µ > 0 be the uniform bound in accord with Lemma A.2, and fix n ∈ N such that for all events E we have |Pσ̂,τ
s (E) −

P
σ̂,τn
s (E)| < µ. For some n′ > n take E to be the event {there is a weakness after date n′}, and apply Lemma A.2 to conclude

the proof.
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PROOF OF LEMMA IV.17

Let L = limn δσ(S0S1 . . . Sn) ∈ N ∪ {∞}, which is well-defined since (δσ(S0S1 . . . Sn))n∈N is pointwise increasing. Fix

ǫ′ > 0, and choose τ and s such that:

sup
τ ′,s′

P
σ̂,τ ′

s′ (L = ∞) ≤ P
σ̂,τ
s (L = ∞) + ǫ′. (36)

Let n ∈ N be such that according to Corollary IV.16 µ = P
σ̂,τ
s (Fn < ∞) < 1. Then we have the following:

P
σ̂,τ
s (L = ∞)

= E
σ̂,τ
s [Pσ̂,τ

s (L = ∞ | Fn, S0, . . . , SFn
)]

= E
σ̂,τ
s [1Fn<∞ · Pσ̂,τ

s (L = ∞ | Fn, S0, . . . , SFn
)]

= E
σ̂,τ
s [1Fn<∞ · P

σ̂,τ [S0...SFn ]
SFn

(L = ∞)]

≤ E
σ̂,τ
s [1Fn<∞ · (Pσ̂,τ

s (L = ∞) + ǫ′)]

= µ(Pσ̂,τ
s (L = ∞) + ǫ′)

First equality is a basic property of conditional expectations, the second one is a consequence of Pσ̂,τ
s (Fn < ∞ | L = ∞) = 1,

the third one is from the definition of the reset strategy σ̂, the inequality is because of (36). Hence, because µ < 1 we have

P
σ̂,τ
s (L = ∞) ≤ µ

1−µǫ
′. And finally for all s′′ ∈ S and τ ′′ we have

P
σ̂,τ ′′

s′′ (L = ∞) ≤ sup
τ ′,s′

P
σ̂,τ ′

s′ (L = ∞)

≤ P
σ̂,τ
s (L = ∞) + ǫ′

≤
ǫ′

1− µ
.

Since this holds for any ǫ′ > 0, we get Pσ̂,τ
s (L = ∞) = 0.

PROOF OF LEMMA IV.18

We proceed by induction on n, the base case being true by definition since σ̂0 = σ, and the induction hypothesis being that

for all τ and s ∈ S, Eσ̂n,τ
s [f ] ≥ val(s)− ǫ. We have to show that the same holds when Player 1 plays with the strategy σ̂n+1.

Fix a strategy τ and a state s. Let τ ′ be the strategy that plays like τ except if there is a weakness at date n+1 (in case of the

event δσ(S0 . . . Sn+1) = n+1) in which case it resets to the ǫ
2 -optimal response τ ′′. Let Ln = δσ(S0 . . . Sn) By decomposing

the expected values on the only event that matters, namely the event of a weakness at the date n+ 1, let R be the set of all

prefixes of length n+ 1 where a weakness occurs, that is R = {s0 . . . sn+1 ∈ S(AS)∗ | δσ,ǫ(s0 . . . sn+1) = n+ 1}.

Then:

{Ln+1 = n+ 1} =
⋃

p∈R

p(AS)ω

thus we have the two following inequalities. First,

E
σ̂n+1,τ
s [f ] = E

σ̂n+1,τ
s [1Ln+1=n+1 · f ] + E

σ̂n+1,τ
s [1Ln+1 6=n+1 · f ]

=
∑

s0...sn+1∈R

P
σ̂n+1,τ
s (s0 . . . sn+1)E

σ,τ [s0...sn+1]
sn+1

[f ] + E
σ̂n+1,τ
s [1Ln+1 6=n+1 · f ]

≥
∑

s0...sn+1∈R

P
σ̂n+1,τ
s (s0 . . . sn+1)(val(sn+1)− ǫ) + E

σ̂n+1,τ
s [1Ln+1 6=n+1 · f ],

where the second equality holds because for every s0 · · · sn+1 ∈ R and σ̂n+1[s0 · · · sn+1] = σ. and the inequality by ǫ-optimality

of σ. Second,

E
σ̂n,τ ′

s [f ] = E
σ̂n,τ

′

s [1Ln+1=n+1 · f ] + E
σ̂n,τ ′

s [1Ln+1 6=n+1 · f ]

=
∑

s0...sn+1∈R

P
σ̂n,τ

′

s (s0 . . . sn+1)E
σ̂n[s0...sn+1],τ

′′

sn+1
[f ] + E

σ̂n,τ
′

s [1Ln+1 6=n+1 · f ]

≤
∑

s0...sn+1∈R

P
σ̂n,τ

′

s (s0 . . . sn+1)(val(sn+1)− 2ǫ+
ǫ

2
) + E

σ̂n,τ
′

s [1Ln+1 6=n+1 · f ],

where the secodn equality is by construction of τ ′ and the inequality because τ ′′ is chosen as the ǫ
2 -optimal to σ[s0 . . . sn+1],

which is not 2ǫ-optimal by definitino of R.
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We can combine the two inequalities above because both strategies σ̂n and σ̂n+1 on one hand and both strategies τ and τ ′

on the other hand coincide upon all paths of length less than n+ 1 and also upon all paths where no weakness occurs at date

n+1, therefore the second terms on the right hand side of the two inequalities above coincide and the same holds for the first

terms (without ǫ terms) and

E
σ̂n,τ

′

s [f ] < E
σ̂n+1,τ
s [f ].

According to the induction hypothesis σ̂n is ǫ-optimal thus

val(s)− ǫ ≤ E
σ̂n+1,τ
s [f ].

Since this holds for every τ , σ̂n+1 is ǫ-optimal, which completes the proof of the inductive step.

PROOF OF THEOREM IV.21

Let s0 . . . sn ∈ S(AS)∗ be some finite prefix of an infinite play, then we have to show that

inf
τ
E
σ̂[s0...sn],τ
sn [f ] ≥ val(sn)− 2ǫ.

In the case when δσ(s0 . . . sn) = n we have infτ E
σ̂[s0...sn],τ
sn [f ] = infτ E

σ̂,τ
sn [f ] ≥ val(sn) − ǫ from the definition of σ̂ and

Lemma IV.20. Assume that δσ(s0 . . . sn) < n, from which we get that

δσ(s0 . . . sn) = δσ(s0 . . . sn−1),

and,

inf
τ
E
σ[sδ(s0 ...sn−1)...sn],τ
sn [f ] ≥ val(sn)− 2ǫ. (37)

by definition of the function δσ, when δσ(s0 . . . sn) 6= n. Assume that there exists a strategy τ such that E
σ̂[s0...sn],τ
sn [f ] <

val(sn)− 2ǫ, then we will show that from τ we can build another strategy τ ′ such that

E
σ[sδ(s0 ...sn−1)...sn],τ ′

sn [f ] < val(sn)− 2ǫ,

a contradiction of (37). Let τ ′ be the strategy that plays like τ as long as no weakness occurs, and in case it does, it switches

to the ǫ-response strategy τ ′′. Let L = limn δσ(S0S1 . . . Sn) ∈ N ∪ {∞}, which is well-defined since (δσ(S0S1 . . . Sn))n∈N

is pointwise increasing. Define F = min{n ∈ N | S0 · · ·Sn is a σ-weakness} with the convention min ∅ = ∞. Let σ̂1 =
σ̂[s0 . . . sn] and σ2 = σ[sδ(s0...sn−1)...sn ], then we have

val(sn)− 2ǫ

> E
σ̂1,τ
sn [f · 1L=0] + E

σ̂1,τ
sn [f · 1F<∞]

= E
σ2,τ

′

sn [f · 1L=0] + E
σ̂1,τ
sn [f · 1F<∞]

= E
σ2,τ

′

sn [f ]− E
σ2,τ

′

sn [f · 1F<∞]

+ E
σ̂1,τ
sn [f · 1F<∞],

(38)

where the first inequality is by assumption on the strategy τ (and also because (L = 0) ⇐⇒ (F = ∞)), the first equality

is because both pairs of strategies σ̂1, σ2 and τ, τ ′ coincide up to the first weakness. Let weak be the boolean function

characterizing the prefixes up to first weakness after some specified date, that is weakσ(n, s0 . . . sm) := (δσ(s0 . . . sm) =
m) ∧ (δσ(s0 . . . sm−1) ≤ n). Let

R1 ={t0 . . . tm ∈ S(AS)∗ |

weakσ̂1(δσ(s0 . . . sn), s0 . . . sn−1t0 . . . tm)

∧ sn = t0},

R2 ={t0 . . . tm ∈ S(AS)∗ |

weakσ2(δσ(s0 . . . sn), s0 . . . sn−1t0 . . . tm)

∧ sn = t0},
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sets of finite continuations of s0 . . . sn with a weakness, for both strategies σ̂1 and σ2 respectively. Then for the last two terms

we have:

E
σ̂1,τ
sn [f · 1F<∞]

=
∑

t0...tm∈R1

P
σ̂1,τ
sn (t0 . . . tm)E

σ̂,τ [t0...tm]
tm [f ]

≥
∑

t0...tm∈R1

P
σ̂1,τ
sn (t0 . . . tm)(val(tm)− ǫ),

this is by the definition of σ̂ and Lemma IV.20, while for the other term

E
σ2,τ

′

sn [f · 1F<∞]

=
∑

t0...tm∈R2

P
σ2,τ

′

sn (t0 . . . tm)E
σ2 [t0...tm],τ ′

tm [f ]

≤
∑

t0...tm∈R2

P
σ2,τ

′

sn (t0 . . . tm)(val(tm)− 2ǫ+ ǫ)

in the probabilities of the cylinders t0 . . . tm we can freely interchange the pairs of strategies σ̂1, σ2 and τ, τ ′, since they

coincide up to the first weakness. Therefore we get that

E
σ̂1,τ
sn [f · 1F<∞] ≥ E

σ2,τ
′

sn [f · 1F<∞],

which is the promised contradiction of (37) when plugging into (38)
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