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Deformable Porous Media With Double
Porosity III: Acoustics

LL AURIAULT
Sols Solides Structures, IMG, URA 1511, Université Joseph Fourier, Institut National Polytechnique de
Grenoble, CNRS, BP 53 X, 38041 Grenoble Cedex, France

and

C.BOUTIN
Ecole Nationale des Travaux Publics de I'Evat, Laboratoire Géomatérioux, rue M. Audin, 69518 Vaulx en
Velin Cedex, France

Abstract. We investigate the acoustics of saturated porous media with a double porosity constituted by
pores and fractures. This work is the direct extension of earlier papers by Auriault and Boutin, where the
quasi-static behaviour was studied. The different macroscopic descriptions of the acoustics are shown to
be the quasi-static ones, completed by classical inertial terms and with a generalized secpage law for the
fractures. Therefore, when the three scales, i.e. the pore, the fracture and the macroscopic scales are equally
separated, the medium exhibits memory effects. Finally, we investigate the interpretation of laboratory
experiments on single porosity medium under an acoustic excitation. It is shown that the viscoelastic
effects which are observed when the frequency is about a few kHz have their origins in the same
phenomencn. But the macroscopic deseription now depends on the size and the shape of the sample, and
therefore it is nonspecific for the porous medium.

Key words. Double porosity, acoustics.

0. Nomenclature

a clastic tensor of the skeleton material N normal unit veclor
[ effective elastic tensors of the skeleton Per Pr pressures in the pores and the
D rate of deformation tensor fractures, respectively
e deformation tensor P subscript for the pores
f subscript for the fractures Q dimensionless number
kg Ky particular solutions for the velocity Q. quality factor
field v in the pores and the fractures, 5 subscript for the solid
respectively Tn T characteristic times for the pore and
K K, filtration tensors of the pores and the fracture flows, respectively
fractures, respectively u,, u, 0, solid, pore and fracture fluid displace-
I unit tensor ments, respectively
L characteristic lengths of the pore ¥, ¥, ¥, solid, pore and fracture fluid veloci-
scale, the fracture scale and the ties, respectively
macroscopic medium, respectively %, %, %" space variables for the pore, frac-
n, pore porosity and fracture porosity, ture and macroscopic scales, respect-

respectively ively



Greek
o, 0", y,y coupling effective tensors entering the
behavior relations of the porous

medium

B, B coupling effective scalars entering the
behavior relations of the porous
medium

T boundaries of the pores and the
fractures, respectively

A Laplace operator

A% gradient operator

& small parameter of the homogeniza-
tion process

n particular solutions for the displace-
ment field

Vv particular solutions for the pressure
field

w pulsation

Oss PF density of the solid and the fluid,
respectively

7 viscosity

& particular solutions for the displace-
ment field

1. Introduction

6,,0,,0; solid, pore and fracture fluid stress
tensors, respectively

T particular solutions for the pressure
field
Q,Q periods at the pore and fracture

scales, respectively
Q,,Q,,Q,,, solid, pore and fracture fluid stress
tensors, respectively

4 particular solutions for the pressure
field
QQ periods at the pore and fracture

scales, respectively

Q,,Q,,Q;,, Q) parts of the periods occupied by
the solid, the pores, the solid plus
the pores and the fractures, respect-
ively

Particular Symbols

{(D)q, (DD, KDDqo volume averages of the
quantity ® on Q, Q', and Q plus Q’,
respectively.

As in papers I and 11 (Auriault and Boutin, 1992, 1993), we consider porous saturated
media of double porosity, ie. where the porosity system is composed of two
connected subsystems, pores and fractures, with very different characteristic lengths.
Denoting [ and I these two lengths, respectively, the porous media exhibits a small

dimensionless parameter //I' <€ 1.

The geometry of the medium is recalled in Figures 1 and 2. For simplicity the two
porosity subsystems are assumed as periodic. As pointed out in Auriault (1991a), the
simplification is of no consequence for the structure of the macroscopic description.
A random medium and a periodic one exhibit an identical macroscopic behaviour

1
Fig. 1. Periodic cell of the microporous medium.



Fig. 2. Periodic cell of the fractured medium.

when the medium and the excitation are homogenizable, i.e. when such an equivalent
continuous macroscopic description exists.

On another hand, we are interested in deriving a continuous macroscopic model,
equivalent to the finely heterogeneous porous media. This is only possible (Auriault,
1991a) under the condition that the macroscopic sample and the excitation acting on
it are characterized by a length [” very much larger than [ and I'. This introduces a
second small dimensionless parameter I'/l” < 1.

In papers I and II, the quasi-static behaviour of such double porosity media with
deformable matrices was investigated. The study was restricted to situations where
the macroscopic description is a two-phase one. It was shown that depending on the
relative value of the above small parameters, different macroscopic descriptions are
obtained: classical single porosity Biot-like description, nonclassical description with
a broken symmetry, non classical description with a broken symmetry and memory
effects.

In this paper we aim at discovering the acoustic behaviour of double porosity
saturated deformable media. Therefore, the characteristic length [” of the excitation
can be identified with the wavelength A. By extending the results concerning the
acoustics of single porosity media (Levy, 1979; Auriault, 1980, 1991b, 1992) we show
that the two separations of scales introduced above impose that the behaviour of the
pore fluid is necessarily quasi-static. Therefore, the first steps of the homogenization
processes carried out in the papers I and H are still valid. The dynamics for the
fracture fluid and the matrix has to be introduced at the end of the processes only. As
a consequence, the results are a direct extension of the quasi-static ones and show the
three different behaviours recalied above, but with additional dynamical terms and a
generalized fracture seepage law.

The results of the papers I and II are recalled in Section 2, together with the main
conclusions concerning the acoustics of a single porosity medium. Then Section 3 is
devoted to the homogenization of the behaviour of a double porosity medium
submitted to a dynamical excitation. A particular porous medium with a very simple
geometry is investigated in Section 4. The medium is constituted of parallel slabs of
an isotropic microporous media, separated by plane fractures. The simplicity of the



geometry enables us to obtain analytical results for the effective coefficients. Finally,
some remarks are given in Section 5 concerning the interpretation of acoustical
laboratory experiments.

2. Quasi-static Behaviour of a Double Porosity Medium and the
Acoustics of Single Porosity Media

We recall here the results of papers I and II for the quasi-static behaviour and the
macroscopic description obtained by Levy (1979) and Auriault (1980), for the
acoustics of a single porosity saturated and deformable medium. They will be useful
in the next part for the analysis of the acoustics of the double porosity medium. In
what follows the material constituting the matrix is assumed as elastic with small
deformations and the fluid is viscous Newtonian and incompressible. The pores and
the fractures are saturated. Let us recall firstly the single porosity description as
introduced by Biot (1941) from a phenomenological approach:

V(ce(u,) — ap) =0, | (1)

o(e(uy)) op
a Far

V(KVp) = « 2

This system relates the pore pressure p and the displacement ug of the matrix. ¢,
and f are elastic tensors. K is the permeabilty and e is the deformation. This system
exhibits a symmetry: the same tensor « appears in the two equations.

2.1. QUASI-STATICS OF A DOUBLE POROSITY MEDIUM

As pointed out above the macroscopic description depends on the relative value of
the two parameters I/’ and I'/l”. The different possibilities are shown in the Figure 3.

log(1'N1") A

non homogenizable

>

-5 '4f =200 ey

Fig. 3. Quasi-statics of a double porosity medium: homogenizable (case 1, 2 or 3) and nonhomogeniz-
able situations, with respect to the two separations of scale.




The homogenizability, i.e. the existence of a macroscopic description requires a small
value of I'/l”. Tt is generally considered that 0.1 represents the limit for the application
of the homogenization process. This value is adopted in Figure 3. The description at
the micro-scale is given by the following set of equations where the subscripts s, p
and f stands for the solid, the fluid in the pores and the fluid in the fractures,
respectively.

— In the solid matrix the equations are the quasi-static momentum balance:
Vo, =0, ' 3)
and the constitutive law (infinitesimal elasticity):
o, = ae(u,), 4)
where the stress o is related to the small deformation
e(uy) = 3(V + 'V)u,

by the elastic tensor a.
- In the fluid we have the quasi-static momentum balance:

uAv, — Vp, =0, 0, = —pud + 2uD, (5)

where u is the viscosity, v the velocity, p the pressure and D the rate of
deformation: D = e(v). The subscript « takes the values p and f'in the pores and
the fractures, respectively.

The incompressibility is written:

W.=0, a=p,f. (6)

— The boundary conditions on I" are the continuity of the normal stresses and the
velocities:

osN=0¢,N onT, 7

where N is the unit normal to I" and:
vi=v, onl. 8)

— The boundary conditions on I'" are the continuity of the normal stresses, the
fluid pressure and the relative flux to the solid matrix.

The Equation (5) introduces the dimensionless numbers Q,:

_HAv.
Qaz—‘vpaa X p5f

In our problem the driving force is a macroscopic pressure gradient:

Vp, = 0(%).



At the same time the velocity varies in the pores and the fractures, which gives for
the viscous terms:

v v
pAv, = 0<ul—§>, pAv = O(,ul,—fz)

And from Equation (5) the viscous terms balance the pressure gradient:

v A\
reoloit)=olek) ’

Now, due to the very different sizes, the flow through the pores and the fractures
introduces two characteristic times T, and T, respectively. We define them by:

p us
Y, = — Vy = —
p m o I )
lp Tf

where u, = u;, is a reference displacement and where we assume u, = u; = O(u,).
Then, from Equation (9) we obtain:

T; 12

—=0|-—]|.

Tp (l/2> (10)
Two cases exhibit nonclassical descriptions: case 1 where I'/l” = 0(1?/I'?) and case

2 where I'/l"” = O(l/l'). The other cases, 3, 3*, 1* show classical descriptions.

{(a) In case 1, the above dimensionless numbers are, when using !” as the characteris-
tic length of normalization:

pAv, pu,l*T, I*T, o
Q "= = 0< " u = 0 " = 0(8 )9
" Vp, 1" I"*T,

_pAve fpeel” N
Q= Ve = O(l”Tﬂ))_O(g )

T, (I , I
i_0<ﬁ)_0(8 ), S—F.

At the first order of approximation, the corresponding macroscopic description is
similar to the one given by M. A. Biot

V'(c"e"(u,) — a"p°) =0, (1)

ap°
ot

. 0e"(uy)

Vﬂ(KfV/IPO) =7y at

+ B 12)

but with a broken symmetry.

yl! 7& a/l;



c”,a",y" and B” are here elastic coefficients. The macroscopic permeability K, is
related to the fractures, only.

(b) In case 2, the dimensionless numbers are

LAY, pu,l” I*T, 5
=0 n) = =0 =0 =0
Qo @) Vp, (l”2Tfp> (l”sz &%),

T, 12 s 1
F—O('ﬁ)—O(S ), 8—;.

p

When considering harmonic excitations of pulsation o, the macroscopic description
is given by the Equations (13) and (14) which seem to be similar to the Equations (11)
and (12)

V'(e'e"wl) — ') =0, (13)
V(K VDY) = y'iwe" @) + Biop, Ky = Ko (14

where K, is again the permeability tensor of the fractures. But ¢”, «”,y” and " are
now complex valued and o dependent. As in case 1, the symmetry is broken, y” # a”.
Under transient excitations the medium will show memory effects. Concerning the
pressures, the macroscopic description comprises the fracture pressure field only. But
in opposition to case 1, the pore pressure is here different from the pressure in the
fractures.

(c) Case 1* is defined by

r I

In case 1*, g = 3, we recover a classical, symmetrical BIOT’s description, even if, due
to the separation of scales I/’ < 1, the macroscopic permeability is still the fracture
permeability. If g is increasing, the pore and fracture scales become nonseparated
and the medium transforms to a single porous medium.

{d) Cases 3 and 3* are characterized by

1 l
—=0[-),g=2
l//q (l/>5q 2

The macroscopic behaviour is also modelled by classical symmetrical BIOT’s
description. The fracture pressure field is required only. But in opposition to case 1,
and as in case 2, the pore pressure is different from the pressure in the fractures. At
the first-order approximation there is no relative movement of the pore fluid with
respect to the matrix. The macroscopic behaviour of the matrix plus the pore fluid is
that of a monophasic elastic medium. And the pore fluid does not contribute to the
seepage.



2.2, ACOUSTICS OF A SINGLE POROSITY MEDIUM

We recall the macroscopic two-phase behaviour of a saturated deformable medium.
With a view to avoid confusion with the double porosity medium, the characteristic
length of the pores is denoted here /*. This [* will correspond to ! or I’ of the double
porosity medium, respectively. Again [” is the characteristic macroscopic length. It
can be identified to the wavelength. The solid and the fluid parts of the period are Q
are Qp respectively. I'* is the interface.

The description at the pore level is given by the Navier equations in the solid part
and the Navier—Stokes equation in the fluid part. Classically the interface conditions
are the continuity of the displacement and the normal stress:

d%u
Vo, = ps_a‘ﬁs (15)
o, = ae(u,) inQ,, (16)
0
VUF=pF<§ + (VFV)VF>a an
agr = 2uD — pl, (18)
V=0 inQf (19)
[6]N =0, onT* (20)
[u] =0; onTI* 1)

We admit that the macroscopic stresses, the densities and the displacements are of
the same order of magnitude

os=0(ofr), us=O0(@yr), ps=O0(pF).
To be homogenizable the dynamical description of the solid requires

0%u,
ps'at—z

P, =
! Vo,

= 0(1),

where, as above, the index [” shows the characteristic length used to calculate the
dimensionless number P.

Due to the small amplitude of the vibration, the Reynolds number is negligible
and from now we disregard the convective inertial term of the Navier—Stokes
equation,

Since we focus on the two-phase macroscopic description, the number Q has the
same order of magnitude as Q:

_ pAvg

v = 0(?).

0.



The acoustics of the fluid imposes a ratio of the inertial term to the pressure term
being of the order of magnitude 1 at the macroscopic level:

p@vF
A
ot
T = = 0(1).
=, =00

These values of the dimensionless numbers imply the following order of magnitude
of the transient Reynolds number

ovp
Py

Rt =
: pAVE

=0(?)

that corresponds to a local transient Reynolds number in the form
Rtl* = 0(1)
Higher values of R, lead to nonhomogenizable situations.
The macroscopic description at a constant pulsation « comprises two balance
equations. The first one is a volume balance coupled with a generalized seepage law:
V{vr)y — niouy) = — ioae(us) — iofp,
{vpy — niouy = — K(Vp — 0’ppuy). (22)
The second one is a momentum balance for the bulk medium
V<JT> = - <ps>w2us + ippwv,
(oT) = ce(u,) — ap. (23)
Here, o7 is the total stress defined by
ol = {Gs m 2, .
or 1n Qp

This description can be shown (Auriault, 1981) to be equivalent to the one of Biot
(1956). The tensor K is a generalized permeability tensor which is w depending and
complex valued. The tensors ¢, o an f are the quasi-static elastic tensors, already
introduced. We note the symmetry introduced by the same tensor o appearing in
Equations (22) and (23).

3. Acoustics of a Double Porosity Medium

The local description is the same as in the quasi-statics case, with additional inertial
terms:

0%u,
Vo's = psgtT, (24)



os = ae(y;), inQ, (25)

0v,
Vo, = p(a—vt + (vaV)va), a=pf (26)
O-a_; = Z#D(Va) - pal’ (27)
Vv,=0, a=p f, inQ, (28)

The boundary conditions on T" are the continuity of the normal stresses and the
velocities:

o;N=0¢,N, onT, (29)
where N is the unit normal to I and:
v,=v, onl. (30

The boundary conditions on I'" are the continuity of the normal stress, the fluid
pressure and the flux relative to the solid matrix.
Firstly, we focus on the acoustics corresponding to case 2. Therefore, the dimension-
less numbers Q,, a« = p, f, and the ratio of the two characteristic times take the
following values, already introduced in the quasi-static case:

2
0w =00 =202 =06, T =0(13) =0

P

On the other hand, homogenizable dynamics of the solid part implies (Auriault,
1991):

R
ot?
Vo,

ps
Py =

=0(1),

and homogenizable dynamics of the fluid part imposes the local transient Reynolds
numbers to be equal or less than O(1). Since they take the value

pwl? pwl?
Rtpl =, Rtfl’ = s
p H
the ratio between the two is given by
R, [I?
— = — = 0(e?).
Rtfl’ 1/2 ( )

Therefore, the only possibility for a dynamical behaviour to occur is
Rtpl = 0(82)9 Rtfl’ = 0(1)5
which corresponds to

Ripiw = Ripr = 0(™?).



With the above estimations, the dimensionless form of the local description takes
the following form:

Vo, = o, o, (1)
o, = ae(u,), in Q,, (32)
Vo= prt, a=p.J, 3
0o = 2ue’D(v,) — p.l, (34)
Vv.=0, a=p,f inQq, (35)
oN=0,N, (36)
u,=u, onl, (37)
Py = P> (38)
(Koa + {0p00)N' = a;N’ (39)
and
v, — o= {VDa onT". (40)

The homogenization process is carried out in the same way as in paper 1I. The
three characteristic lengths introduce three space variables x, x’ and x”, correspond-
ing respectively to the pore, the fracture and the macroscopic scales. They are related
to each other by the powers of ¢:

X = ¢ 2x", x =g x”.

In the same way, the two characteristic times T, and T, for the flows through the
pores and the fractures, respectively, introduce two time variables ¢t and T, with
T = &%t.

As a consequence, by following the procedure precised in paper I, each unknown
® will be looked for in the form:

®=0x,x,x",t,T) + e®'(x,x,x", 1, T) + -+, (41)
where
x=¢72x", x'=¢x, T=¢%,

with @ Q and Q' periodic. The expression (41) means that x” and ¢ were chosen as
driving space and time variable, respectively. It is coherent with our choice of I” and
T, to make the local description dimensionless. The homogenization process consists
in introducing such asymptotic developments into the dimensionless local descrip-
tion and in collecting like powers of ¢. When comparing with the quasi-static case,
Annexe A of paper 11, it is clear that the new inertial terms intervene in the equations



at the zero order of magnitude only. Therefore, the process carried out in paper II
is valid until this order. It is easy to check that the bulk momentum balance at
constant pulsation in Equation (13) is modified by simply adding the bulk inertial
term:

V'(c"e"@d) — a'p}) = — (1 — n)p, + npp)l — n')o%ud +
+iopr(ve). “2)

Concerning the fluid part, the modification concerns the set of equations giving the
local velocity field in the fractures:

Vio}+ V') =iwppv},  of= —pH + 2ue'(v)),
Vo =v]

on I'". Therefore, we have
VP —ve = — k(X' )V'p} — 0?ppul),

where k, is now w depending and complex valued. The Darcy law is replaced by a
generalized seepage law of the same type as in Section 2.2:

v — v = — Ky(V'p} — 0?ppu)), Ky = ke (43)
The volume balance rests unchanged:
V'Kv}y — n'ioul) = — y"iwe"(wd) — B"iwp9. (44)

Equations (42)—(44) represent the macroscopic description of the acoustics of the
double porosity medium. The effective tensors ¢”, a”, y”, and " are those of the
quasi-static behaviour. They are @ depending and complex valued and show
viscoelastic-like memory effects. The acoustics description is obtained from the
quasi-static description by adding inertial terms and replacing the classical permea-
bility tensor by the generalized permeability tensor which is also « depending and
complex valued.

The investigation of case 1 leads to the same conclusion for the acoustics. The
description is shown to be (42)-(44), but where the effective tensors ¢”, «”,y” and "
are now elastic tensors (i.e. real and w independent tensors).

4. Double Porosity Medium: an Example

We investigate the macroscopic behaviour of a particular double porosity medium
composed of parallel micro-porous slabs separated from each others by flat
fractures (see Figure 4 for the notations). The space variables x”, y”, z" are for the
macroscopic description, whereas x’, y’ and z’ stands for the space variables at
the fracture level. The slabs and the fractures are parallel to the x"z" (or
the x'z’) plane and they are perpendicular to the y” (or the y’) axis. The medium

is periodic with a period I’ in the y’ direction. Obviously, the periodicity is



y' A

I'(1+n")/2 r
I'n' Q'
f 1'(1-n')/2 T
Q' I
I'(1-n') s+p >
X
F'

Fig. 4. Layered microporous fractured medium.

arbitrary in the x’ and z’ directions. The behaviour of the micro-porous is supposed
to be known and we aim at discovering the effective coefficients for plane dilational
waves propagating in the parallel direction to the slabs and fractures, i.e. in the x”
direction.

The first local problem to be solved is given by the set (A.21b, A.23, A.24, A.15¢,
A.14a) of paper II:

V'(<k,p)aV'pp) = o'io(e’(us) + e"(wg)) + B'iwpy, (45)
V'(Kad>e —npyl) =0, (46)
(o2>a — npyl = c'(e'(u}) + e"(ug)) — a'pp (47)

in the micro-porous medium and:

(Ko2>q — npp)N’' = — pIN’,
pd=p¥x"), onT"

This set represents a boundary-value problem for ul and p) under harmonic
excitation. They where shown to be linear functions of €”(u?) and p% which depend
on the variable x”, only:

ul = £(x)e" ) — n'(x)p§ + i(x", 1, T),
pg = v(x')e(u?) + T (x')pS-

It is important to notice again that the tensors &', %', v and the scalar 7’ are here
complex valued and o dependent.

For the sake of simplicity we limit ourselves to an isotropic and homogeneous
micro-porous medium with a matrix made of an incompressible elastic material.
Therefore, o’ =1, ' =0 and <k,>o = K,I and we note A’ and y’ the Lamé coeffi-
cients of the matrix.

On the other hand, due to the arbitrary periodicity in the x” and y’ directions, the
unknowns are x’ and y’ independent. Denoting u?, v!, and w' the components of u’,
the corresponding deformation is given by



0 = 0
2 dy’
e’(u1 — dl d_vl _1_d_vv1
s/ dy/ dy/ 2 y/
o law
2 dy’

”

Since we limit ourselves to plane dilatational waves propagating in the x
direction, we have u? = (u°,0,0) and

au®
dxll

e'@)=| 0 0 0

00

0 00

With all this simplifications we are left with the following set of differential equations

d?p9 dy! du® d [/ du!

— = e _— V= 0
KP dyzz lw(dy’ + dx” ’ dy/ u dy/ s
d [, (dv* du° ot
ay (*(aﬁa)“” Ey"'_p">'°’

A (a
dyr H dy/ - ¥

with on I'":
du' dot  du® do*
[l . Dt 2 r=7 a0 = _ 0
2 dy/ 0’ A‘ (dy/ + dx//) + U dy/ pl’ pf’
avt

The solution is easy to obtain. For p9 it becomes
du®
0 l 7,0
=vV-—+1
pP dxr/ pf

with 7' = 1 and

) —iw 1/2
, COoSs y Kp(j’/ + 2“/) _1

V= o (Fa=m) [ —iw
2 \K,@ +24)




To determine the displacement we need only the spatial derivatives

du! do! 1 du® dw!
PR W (I L Ny
dy dy A+ 2y dx dy
The total macroscopic stress is given by:

[dvt  du® ,du® .

«ot11 e = </1 <d—y’ + 537) +2pu dx’ PS>Q’ —n'p}
0
=ciq—airy
with o] =1 and:
I'l—n') —iw 172
tan ;
¢l =dpd—n)|1— 244 2 KW+ 2)
L=k (1 —m)'(V + 24) EPEANTE
K (A" + 2u')

fdvt du® ,dv! ,

K922 a0 = <}» <d—y’ + a;) +2u & p3>ﬂ/ —n'py = —pj

dv'  du® ,du®
KoF33Daq = <l/(d—y’ + W) - Pg> —n'py = Cs@ —a3p9
o

with a3 =1 and

Fl-n) ([ o\
tan -

ci=2u(1—n)|1- 4 2 K (A +2u')

T 1—=n Y +2u) —iw 172 >

Kyl + 2p')
0 ,dul o
Kor12 000 = 1 & =0, K913 Daa =0,
o
dw!

KO3 V00 = <’uld—y'>n, =0.

Finally the bulk momentum balance of interest, in the x” direction, is given by
(4]
el 0

a g TPI=

— (1 — m)py + npp)(l — n')*u® + iwppvd (48)



Decomposing the viscoelastic coefficient ¢ into real and imaginary parts
¢ =¢, +ic/,

we introduce the quality factor Q, of the saturated microporous medium in the
form

The inverse of the quality factor Q, is shown on Figure 5 with respect to the
dimensionless pulsation m,

wl/Z(l - n/)2 l/ 2
Ws =5 =0\ 7
2K, (4 + 2y) Ap,
where Ap, is the wavelength of the P, wave of the saturated microporous medium at

low frequency. The micro-porous matrix has the following characteristic correspond-
ing to a Berea sandstone:

4 +2)
l,t’

= 2.86.
The second problem to be solved concerns the flow in the fractures. It is given by
the set
Vol + V'(pl) = iwppvy, of = — pil + 2ue’(v}),
vo=v] onI".

For flat fractures the solution is well known (see, for example, Borne, 1983). One
obtains a generalized seepage law in the x” direction:

d 4]
vy —ion'u® = — Kf< Pr_ wzpFu‘)) (49)

dxll

-1 0 1 2
W,

Fig. 5. Quality factor of the microporous subspace of the layered microporous fractured medium.



with the acoustic permeability tensor:

’ 1/2 : 1/2
K = - " 1- —1— - a tanh i I'n"]|.
iwpr I'n'\iwpg U

The volume balance becomes:

4 (Ko% — niou’) = — ”iw%E Biwp? 50
dx” f - Y dx” wpy. ( )
with f” = 0 and:
MU—n) ([ —iw \
tan ;
ey W > \K =20
PTG 2 i 2 '
K2+ 2p")

We note again the broken symmetry:
,y// # ai/ — 1

Finally, the macroscopic description of dilatational plane wave propagating in the
x" direction is given by the Equations (48)—(50).

5. Concluding Remarks

The macroscopic behaviour of the double porosity medium shows two characteristic
pulsations. The first one corresponds to the quasi-static viscous fluid flow through
the micro-porous medium and is obtained from the Equations (45)—(47):

<koyal

The second one is the characteristic pulsation of the dynamical fluid flow in the
fractures. It is obtained from the value of the local transient Reynolds of the
fractures:

u
W =0 —=5].
Sfd <pFl/2>

It is easy to check that for the most part of porous media:
Cl)fd < (l)pv

The attenuation of double porosity effects will present two very well separated
peaks at these two characteristic frequencies. The first one, at low frequency, is
the dissipation peak of the fracture flow. The second one, at higher frequency, is the
dissipative peak corresponding to the resonance of the diffusive P, wave of



the saturated microporous medium excitated by the fracture flow. On the other hand
we see that the pore fluid cannot be dynamically excitated if we restrict ourselves to
homogenizable situations. The characteristic pulsation for such a nonhomogenizable
acoustics is given by:

ol *
Ppa = 0<,0F12)

and we have:
Wgq < Dpy < CUpd.

The above analysis, which concerns double porosity media, can be used to
interpret acoustical laboratory experiments on porous media where viscoelastic-like
behaviours have been recorded (Murphy, 1982; Winkler and Nur, 1982; Jones and
Nur, 1983). Many different explanations have been proposed to understand such
behaviours but none of them is satisfying. A good review of them can be found in the
book by Bourbié et al. (1986). In fact it is possible to show that a single porosity
sample behaves like a slab of the micro-porous medium described in Section 4, when
it is submitted to a pulsation w,,.

We consider a cylindrical sample of a single porous medium with its axis in the
x” direction, saturated by and immersed in a viscous fluid. Different boundary
conditions would lead to similar effects. For the sake of simplicity we adopt the
above notations of the double porosity medium: the prime characterizes the porous
medium and the double prime is for the macroscopic level. The sample is subjected
to an acoustic excitation in the x” direction, with a wavelength !”. The characteris-
tic transverse size of the sample is denoted I. For most of the porous medium we
have:

% =e< 1.

Let us assume the pulsation of the excitation to be of the order of w,,. Therefore, the
behaviour of the pore fluid is quasi-static and K, = (k,)q is the classical noncom-
plex permeability. The dynamics appears in the bulk momentum balance, only. At
the sample scale, because of the very long wavelength, the pressure in the external
fluid does not depend on the local space variables y’ = y”/e and z' = z"/e; it is noted
ps(x"). The description of the porous medium submitted to a constant pulsation
excitation is given by:

V(K Ap) = «'iwe(u,) + B'iwp,
V(cle(“s) - (X/p) = - wZ(l - n)psus + ia)vap
in the porous medium and:

(c’e(n) —a'p)N' = —p N, p=p,;(x)



on the lateral boundary of the sample. Taking into account the order of magnitude
of the pulsation, the above set is made dimensionless by using [” as the characteristic
lenght:

V(K,Vp) = ¢~ *o'iwe(u,) + ¢~ 2B'iwp,

V(c,e(“s) _ “,p) = wz(l - n)psus + iprVp
in the porous medium and:

(c’e(us) —a'p)N" = — pN’, p = p,(x”

on the lateral boundary of the sample. Introducing in this set the asymptotic
developments in the form:

u, = u’(x’, y,z, x") + eul(x’, y, 2/, x") + -+,

vp — vO(x/, y,,Z,, x//) + Evl(x/, y/, Z’, x//) 4o

p=p°0x, ¥, 2, x") + ep'(x, ¥, 2, x") oo
with x" = x"/e, y = y"/e,z’ = z"/¢, it is easy to check that we obtain successive
boundary value problems similar to those of Section 4. Therefore, the acoustics of
the sample is given by the Equations (48)—(50). It shows the viscoelastic-like

behaviour which is observed during laboratory experiments. Consider, for example, a
sample of Berea sandstone with the following characteristics:

¢’ =357 x10"°Pa, K,=5x10"""m?*Pa~'s™!, o' =1

Laboratory experiments show a characteristic frequency about 3 kHz (Winkler
and Nur, 1982). From the above evaluation it is found that it corresponds to a quite
plausible order of magnitude of the sample size I’ ~ 3 cm: the samples investigated
by Winkler and Nur had rectangular cross-sections 2.54 x 2.54 cm?.,

On the contrary to the double porosity medium, the acoustics of a single porosity
medium is generally homogenizable when excitated by a pulsation w,,. Therefore, the
inverse of the attenuation in the single porosity sample will present two very well
separated peaks at the two characteristic frequencies w,, and ®,,. Remark that
changing the transverse size or the shape of the sample results in a change of the values
of the coefficients in Equations (48)—(50). In the case of a single porosity medium, this
macroscopic description is specific to a particular sample and it is not intrinsic to the
porous material. The phenomenon is not homogenizable (Auriault, 1991a).
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