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Deformable Porous Media with Double Porosity.
Quasi-Statics. II: Memory Effects

J. L. AURTAULT
Institut de Mécanigue de Grenoble, UMR 104, Université Joseph Fourier,
Institur National Polytechnigue de Grenoble, CNRS, BP 53 X, 38041 Grenoble Cedex, France

and

C. BOUTIN
Feole Narionale des Traveux Publics de U Erar, Laboratoire Géomarériaux, rue M. Audin,
68518 Vawlx en Velin Cedex, France

Abstract. As in our previous paper, we investigale the macroscopic quasi-static description of a porous
medium with a double porosity constituted by pores and fractures. For this purpose, we use a
homogenization technique. As expected, the macroscopic description is sensitive 1o the ratios between
the different scales, /1" and 1" where f, I", I are characteristic lengths of the pores, the fractures, and
the macroscopic medium, respectively. In the first paper, we investigated the case /" = (F7%) < 1
{case 1) which exhibits a coupling between the flows through the pores and the fractures. In the present
paper, we deal with the other homogenizable cases, The case 3 where 1" = NI?N™) <€ 1 gives a
macroscopic description similar to that of a single porosity medium. The main result, however, is the
case 2, where /" = O(f"/1") < 1, which exhibits memory effects. These are due to the seepage through the
MiCTopOres.
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0. Nomenclature

Roman Letters

elastic tensor of the skeleton material

effective elastic tensors of the skeleton

D rate of deformation tensor

e deformation tensor

I subscript for the fractures

k. k; particular solutions for the velocity field v in the pores and the
fractures, respectively

K., K, filtration tensors of the pores and the fractures, respectively

| unit tensor

L characteristic lengths of the pore scale, the fracture scale and the

macroscopic medium, respectively
Hon pore porosity and fracture porosity, respectively
N normal unit vector



Dps Pr pressures in the pores and the fractures, respectively

P subscript for the pores

0] dimensionless number

K} subscript for the solid

T, T, characteristic times for the pore and fracture flows, respectively

u,u,,u solid, pore and fracture fluid displacements, respectively

Ve, V,, ¥ solid, pore and fracture fluid velocities, respectively

x, X', X" space variables for the pore, fracture and macroscopic scales,
respectively

Greek Letters
a,a’, v coupling effective tensors entering the behavior relations of the
porous medium

coupling effective scalars entering the behavior relations of the
porous medium

particular solution for the pressure field

| ¢ boundaries of the pores and the fractures, respectively

0

T

A Laplace operator
v

£

=

7 ﬁ”
b

gradient operator

small parameter of the homogenization process

particular solutions for the displacement field u

v particular solutions for the displacement field u
pulsation :
density of the fluid

I
u viscosity
E & particular solutions for the displacement field u

«

solid, pore and fracture fluid stress tensors, respectively
particular solutions for the pressure
periods at the pore and fracture scales, respectively

Do o
o)

Q,,Q,Q

> parts of the periods occupied by the solid, the pores, the solid plus

the pores and the fractures, respectively

Particular Symbols

(D)0, {PDas KPDaor

respectively

volume averages of the quantity ® on Q, ', and Q plus Q,

1. Introduction

As in our previous paper (Auriault and Boutin, 1991 — paper 1), we considered a
deformable porous medium made of two porosity systems undergoing a quasi-static
excitation. /, /" and [” are characteristic lengths of the pores, the fractures, and the
macroscopic medium, respectively. In paper I, the case where /" = O(?/I'%) <1
was investigated and the macroscopic description was obtained from the descrip-
tions at the pore and fracture levels by using an homogenization technique. For



such a situation, referred to as case 1, a coupling exists between the flows through
the porous and fractured media. The macroscopic description was shown to be
similar to the one given by M. A. Biot:

V”(C”e”(ug) _ a//pO) — O,

0 0
, 9e’ (u)

ot

op

V(<D =¥ = = =

D
but with a broken symmetry
yl/ # a//.

Here ¢”, o”, y” and f” are here elastic coefficients. As expected, the macroscopic
permeability is that of only the fractures.

This paper is devoted to the investigation of other situations of interest, cases 2
and 3. For case 2, //I’=0(I'/]") < 1, and the macroscopic equivalent description
will again be shown to be similar to Biot’s description but, for harmonic quasi-static
excitations, with complex and frequency dependent effective coefficients. The
porous medium therefore displays memory effects. The symmetry is broken as in
case 1.

Case 3 is related to //I’ = O(I"*/l"?) < 1. The macroscopic description will appear
as the classical Biot one where the matrix plus the pores behave like a monophasic
elastic medium.

The three cases are shown in the following logarithmic diagram where the relative
position of the three scales is shown in each case:

case 1: log! . logl” . . . log!”
case 2: log! . . logrl . . logl”
case 3: log/ . . . logi . logl”

It should be remarked that the permeabilities K, and K of the pores and the
fractures, respectively, make it possible to estimate the ratio ///” which is a measure
of the separation between the pore and fracture scales. We have the following rough
approximations

& &
o-0(5) k-o(Z)

Therefore, the separation of the two scales is given by

olx)



Contrary to this, the ratio /’/l” cannot be obtained from the properties of the
medium, since /” characterizes either the excitation or the size of an appropriate
macroscopic sample.

As recalled above, the excitations are assumed to be quasistatic: the inertial
effects are neglected. This corresponds to small velocities, so that the inertial
convective terms are small. For the transient inertial effects, this implies that the
transient Reynolds number is small at the lower scale pw!*/u < 1.

The notations are those of paper I and the reader will refer to this paper and to
Auriault, (1991) for the methodology to be used in what follows. The geometry of
the medium is recalled in Figures 1 and 2.

Sections 2 and 3 are devoted to cases 2 and 3, respectively. After this, a
recapitulation is presented in Section 4.

In order to avoid cumbersome developments, as in paper I we simplify the
medium to an elastic porous matrix filled by an incompressible and viscous
Newtonian fluid. All demonstrations of the existence and uniqueness for the
boundary-value problems are also disregarded.

1

Fig. 1. Periodic cell of the microporous medivm.

Fig. 2. Periodic cell of the fractured medium.



2. Case 2

We consider a double porosity medium where the scales with characteristic lengths
[, I’, and [” are identically separated:

The three characteristic lengths introduce three space variables x, x” and x” related
between them by powers of ¢:

X = 872xr/’ X =¢ 71x//'

As in paper I, it is also possible to introduce two characteristic times 7, and T, for
the flows through the pores and the fractures, respectively. Here again, they are
related by

T, ? )
}——O<l~5>—0(8)

4

As a consequence, by following the procedure defined in paper I, each unknown
® will be looked for in the form
O=0x,x,x", 1, T) +e®(x,x,x", , T) +--", (D
2 ’ — 17

x=¢ X", X =g X", T =¢t,

@' Q and  periodic. Equations (1) induce the choice of x” and ¢ as the driving
space and time variable, respectively. Therefore, equations are to be normalized by
using /" and T as the characteristic length and time, respectively.

2.1. NORMALIZATION

We recall the descriptions at the microscales, as given by Equations {3)—(8) of
paper I
In the solid matrix, the equations are the quasi-static momentum balance:

Vo, =0 (2)
and the constitutive law (infinitesimal elasticity)

o, = ae(u,), (3)
where the stress o, is related to the small deformation

e(us) =3(V + Vyug

by the elastic tensor a.
In the fluid, we have the quasi-static momentum balance

:uAvac ~szz =O7 Oy = _potl+2lu‘D7 (4)



where p is the viscosity, v the velocity, p the pressure, and D the rate of
deformation: D = e(v). The subscript « takes the values p and fin the pores and the
fractures, respectively.

The incompressibility is written

Vv, =0, a=p,f (5)

The boundary conditions on I' are the continuity of the normal stresses and the
velocities

g, N=g,N on I, (6)
where N is a unit normal to I" and

v.=v, onl. (7

s P

The dimensionless numbers Q, and Q, are defined as the ratios of the viscous
term to the pressure term of the Stokes equations for the pores and the fractures,
respectively. And we have now, when using /” and T, to normalize

uAv, pu,l” I°T, )
=0(0,) = -0 =0 (=2 )= 0.
Qp (Qf) Vpd <l//2Tfp> <1"2Tf (8 )

As a consequence, Equation (4) will be now normalized by

e*uAv, —Vp, =0, o=p,f
and the corresponding constitutive laws are
6, = —p, | +2e2uD.

In conclusion, the normalized set is written in the form

Vo, =0. (8)
o, =ae(u,) in Q. 9
e?u Av, —Vp, =0, (10)
o, = —pl+2:*uD, Qan
Vv, =0 inQ,,a=p,f (12)
o,N=0,N, (13)
u,=u, onl, (14)
Py =Dp (15)
({0520 +<0, 20N = 0,N, (16)

and

v — (Y dq =<V, onT". (17



The reader should refer to paper I for the justification of the boundary conditions
(16) and (17) on I".

The unknowns are looked for in the form of asymptotic developments like (1),
taking into account the fact that in Q; the solution is x independent, except in
possible boundary layers along I'” where velocities and pressures in the pores and
in the fractures are matched. For the case under consideration, the unknowns are
in the form

w=u'(x, x,x", t, T)+eul(x,x',x", 6, T) +---,
u,=w(x,x,x", 1, T) +eu(x,x,x", t, T) + -,
P, =po(X, X, X", , T) +epy(x, X, X", 1, T) + - -,
w=uw(x,x", ,T) +eu; (X, x", , T) +- -,
pr=pi (X, X", T) +ep; (X, X", , T+,

—2 " 4 — I

X =¢ %", x =g X", T =&t

u, u, and p) Q and Q' periodic and uy, p; Q' periodic.

2.2. MACROSCOPIC DESCRIPTION

Introducing the above developments in the set (8)—(17), we obtain successive
boundary-value cell problems for the different terms of the expansions. These
problems are investigated in the Appendix and lead to the macroscopic equivalent
description. This one is composed of two parts, i.e. 2 momentum balance and a
mass balance.

The momentum balance concerns the bulk medium. When considering harmonic
excitations of pulsation w, it is given by (A.26):

Vi(c'e"(u)) —a"py) =0, (18)

where the tensors ¢” and a” are complex valued and w dependent.
The mass balance is (A.27):

V(K V'p?) = —y"iwe"(w) — p"iwp?, K,= kg, (19)

where K, is the permeability tensor of the fractures. y” and f” are complex valued
and o dependent.

In conclusion, the macroscopic description of the double porosity medium of case
2, where

/ I

is given by (18) and (19). It exhibits a similar structure to Biot’s. But, as in the case
1, the symmetry is broken, y” s «”. This can be shown by using the same route as



" "

in case 1 (paper I). Moreover, the effective coefficients ¢”, «”, and f” are here
complex valued and « dependent. Under transient excitations, the medium will
show memory effects. The macroscopic description needs only the fracture pressure
field. But in opposition to case 1, the pore pressure is here different from the
pressure in the fractures.

3. Case 3

We now investigate case 3 where the scales are related by

[ ?
fz 82= 0 <l"2) < 1

The three space variables x, x"-and X" to be considered are therefore linked by

—3 ’ e

x=¢g X", X' =g 'X

The two characteristic times 7, and T for the flows through the pores and the
fractures, respectively, are now such that

T, ? .

r

As a consequence, by following the procedure defined in paper I, each unknown
® will be looked for in the form

O=0%x,x',x", 1, T) +e®'(x, x',x", , )+, (20

R ’ e

x =g %", x =g Ix", T =g,

@', Q and ' periodic. Again, the formulation (1) induces the choices of x” and
¢t as driving space and time variable, respectively. Therefore equations are to be
normalized by using /” and T as the characteristic length and time, respectively.

3.1. NORMALIZATION

The descriptions at the microscales are given by Equations (2) (7). The dimension-
less numbers Q, and Q, are again defined by the following relations, when using /"
and T, to normalize

_ _pAv, pu,l” N Hﬁ _ 5
Qp - O(Qf) - Vpa =0 <l//2Tfp> =0 <1"2Tf - 0(8 )

As a consequence, Equation (4) will be normalized, as in Section 2, by
g2 Av, —Vp,=0, a=p,f,
and the corresponding constitutive laws are

¢, = —p, N +2e%uD.



The normalized local description is therefore that of Section 2, i.e. Equations
(8)—(17). But the unknowns are now looked for in the form

u, =wl(x, x, x", , T) +eul (x,x,x", 1, T) +- -,

w, =ul(x,x,x", ¢, T) +euy(x, X', x", 0, T) + - -,

P =00, X, X", t, T) + epp(X, X, X", £, T) + - -,

we=up(x,x", 1, Ty +eu (X, x", 6, )+,

pr=pp (X, X", 6, T) +ep;(x,x", 6, T) + -,
—aun p “n

X =g X", X =¢ X7, T =e¢*t,

ul, w,, p; Q and Q periodic and u}, p; Q' periodic.

3.2. MACROSCOPIC DESCRIPTION

The way to be followed is similar to the one described in the Section 2.2. The
macroscopic description is obtained by inserting the above expansions in the set
(8)—(17) and by solving the successive boundary-value cell problems. The details of
the calculus have not been provided in the paper because of the lack of space, but
they can be obtained directly from the authors.

The macroscopic description is again composed of a momentum balance and a
mass balance.

The momentum balance is

V'(c’e"(u)) —a"py) =0, (21)
where the tensors ¢” and «” are now real valued.
The mass balance is
" 6e”(ug)
ot

a 0
prEL K, = (Kdas (22)

V//( Kfv//pjg ) — _,y at ,

where K, is the permeability tensor of the fractures and y” and B” are real tensors.
In conclusion, the macroscopic description of the double porosity medium of case
3, where

! [
— .2
}; =e*=0 <ﬁ) <1
is given by (21) and (22). It exhibits a similar structure to Biot’s. The macroscopic
description needs only the fracture pressure field. But in opposition to case 1, and
as in the case 2, the pore pressure is different from the pressure in the fractures. At
the first order, there is no relative movement of the pore fluid to the matrix. The

macroscopic behaviour of the matrix plus the fluid filled pores is that of a
monophasic elastic medium. And the pore fluid does not participate in the seepage.



Therefore, we recover, at the first order, a classical single porosity medium and the
symmetry y” =a” is verified. The fine pore porosity is ignored.

4. Concluding Remarks

The three cases investigated in papers I and II are the only situations where the
double porosity plays an important part. It is easy to check that for /'/I” = O(/®/
I’*) < 1, case 1*, we recover a classical, symmetrical Biot description, even if, due to
the separation of scales I/l” < 1, the macroscopic permeability is always the fracture
permeability. Going further, the pore and fracture scales become nonseparated and
the medium goes to a single porous medium.

In opposition to case 1*, case 3* defined by I/I"* = O(l/I’) < 1, is also modelled
by the classical symmetrical Biot description where the pore plus matrix domain
behaves like an elastic equivalent medium. All cases are summarized in the
following logarithmic diagram:

case 1*: . . log! logl” . . log [”: classical

case 1: log! . log! . . . log I”: symmetry broken,
coupled flow

case 2: logl!/ . . logl!” . . log [”: symmetry broken,
memory effects

case 3:  log/ . . . logl” . log [”: classical

case 3*: . . logl . . logl” log”: classical

As was already pointed out in the Introduction, the separation between the pore
and the fracture scales can be roughly approximated by

o (%)

Therefore, it should be remarked that for a given double porosity medium for
which the permeabilities K, and K, are well defined, the macroscopic behaviour
depends on the macroscopic length /”, only. The latter characterizes the excitation
or the size of the appropriate macroscopic sample and it is generally difficult to be
determined. Nevertheless, it can be roughly evaluated from the fracture Darcy law
which is valid whatever the macroscopic description. This law is written (from
A22):

&> =ve ==K V'pp.

If v measures the Darcy relative velocity and p stands for the macroscopic pressure
drop, we have

v=0<h%>



and /" can be approximated by

Therefore, the classification of the different macroscopic descriptions can be given
in the form

Y_\/j=0<ﬁ,>.

case 1, broken symmetry, coupled flow,

p VK,
Yﬁ = 0(\/ K,): case 2, broken symmetry, memory effects,
p

VF\/—; =0(*/K,K)): case 3, classical description.
p

This classification is valid under the following conditions

l/
K,<K;, and -, =0 YR <1
" K,

Let us now consider again the example already introduced in paper I (from (7)).
For this particular reservoir, we obtained

I_ K ~5x 1073
r K,

corresponding to /~107*m and /"~ 2 x 107" m. Therefore, with respect to the
value of /”, we obtain the following macroscopic descriptions:

["~10*m: case I, broken symmetry, coupled flow,
["~40m: case 2, broken symmetry, memory effects,
" ~3m: case 3, classical description.

In conclusion, we can expect the memory effects for this reservoir in the range
20 m < /" < 1000 m.

It should be also noted that our investigations are limited to short times in
relation to the fracture time ¢. For longer times, i.e. times of order T, it is clear that
the fractures behave like perfect drains. p} is independent of x” and the flow is
described by modelling the single porous medium occupying ;. ,.

As we show, the pore plus matrix domain exhibits memory effects in case 2. But
the result is different from that recalled in Auriault (1990), where a single porous
medium saturated by a strongly viscous fluid is shown to behave at a macroscopic
level like a single-phase viscoelastic medium. For that situation, the contrast
between the elastic properties and the viscous property was of order 1: |a|T,/
i =0(1). In our case 2, |a|T,/u=0O(1) resulting in |a|T,/u = O(¢?). Here, the
memory effects are due to the seepage through the pores, as can be seen from the
set which gives u!. The modelling corresponding to case 2 appears to be the



most fruitful, since it contains all other cases by either cancelling the memory
effects or restoring the symmetry. It will therefore be a good choice when very
large spectra of the sizes of pores and fractures prevent individualizing one of the
modellings.

In case 3, the pore plus matrix domain behaves like a single phase elastic
medium and the fluid is ignored. We encounter here a situation described in
Auriault (1990).

Finally, the investigation conducted in case 2 is a demonstration of one of the
mechanisms invoked to interpret what is often referred to as the ‘viscoelastic
property’ of fluid saturated, cracked solids (O’Connell and Budiansky, 1977;
Toksdz et al., 1979; Johnson et al., 1979).

Appendix: Case 2: Homogenization

Introducing the developments presented in Section 2.1 in the set (8)—(17), we
first see that the corresponding developments for the stresses are written in the
form:

o, = % 2 +e¢ a7 +00 + ...,
_ .0 1 2.2
0,=0,+¢e0,+8&0,+ ..,
or=0)+¢%; + ... (A.D)

And noticing V, V’, and V", the gradient operators with respect to x, x” and x”,
respectively, and adopting similar notations for other operators, we obtain succes-
sively by equating like powers of &:

In the solid part
07% = ae(w),
o, ! =a(e(u;) + e'(n)),
a! = a(e(w}) + e'(u;) + e"(u))),
o; = a(e(n;) + e'(u]) +e"(w)), (A2)
Vo72=0,
Vo, ! +Va;?=0,
Vol +Vieo ' + V6 2=0,
Vol +Ve?+Vie; ! =0,

Vol 4+ Vgl +V'6?=0, (A.3)



In the pores

1 2 0
6u - ou, , Ou, ou,

Y= T a T tor
o) = —~pol+2u e(v)),

0, =—p,1+2u(e(v,) + e'(v,)),

o, = —pl+2u(e(v;) +e'(v,) +e"(vy)),
Vo) =0,

Vo, +Ve) =

Vo, + Ve, +V'a) =0,

VW) =0,

Vv, + Vv =0,

VY2 £ VYL TV =0,

In the fractures:

po 0w oW
T o T T 0 T oT
op=—psl.  op=—pil+2ue(v}),
Vo?=0, Va}+V'el=0,
V=0, Vv+VW¥=0,

On I

672N =0, 6 IN=0, cIN=g)N,
oiN=g,N, 6?N=0,N,

V)=,

Vi =V,

vi=v,

Vi =v,
On I':

Py=p}  P,=p}

(6,2)oN'=0, (a7 'HoN =
({0200 + <05 >0)N = )N’
(<Us>g+<6p>g)N'=0fN’,

VI— e =000, V=V 0a =<V, q,

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
(A.10)
(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
(A.16)



A.1 THE SOLID DOMAIN AT THE PORE LEVEL (TWO FIRST APPROXIMATIONS)

Here we obtain similar results to those in paper L
— Equation (A.3a) with (A.2a) and (A.12a) is an homogeneous problem for u?
Q periodic, with respect to the variable x. It gives u? as x independent:

wW=uw(x,x",1,T) and o¢7>=0.
— Equation (A.3b) therefore simplifies in:
Vo, !=0.

With (A.2b) and (A.12b), we obtain a linear problem for u! Q periodic, as a
function of e'(u’):

w = E(x)e'(wd) + 8L (x, X, 1, T), (A.17)

where £ is a third-order tensor well defined by the boundary-value problem and i}
an arbitrary x independent vector.

— Consider Equation (A.3c). Taking the volume average over Q and using the
periodicity of ¢° together with (A.12¢) and (A.6a), leads to

V<o Ha=0, (A.18)
where the averaged stress is given by
(o;a=ce @), c =<a(l+e))q.

As in paper I, ¢’ is an elastic tensor. Equation (A.18) with (A.15b) is therefore
a well-posed elastic problem for w? ' periodic. Since it is homogeneous, it is
straightforward to obtain:

wW=ux",1T).
Therefore, u! appears as x independent:
u =u(x,x",,T) and o,;'=0,
and (A.3c) reduces to

Vo9 =0.

A.2 THE PORE DOMAIN

The sct (A.6a, A.5a, A.7a, and A.13a) represents a boundary-value problem for v}
and p):

Vo) =0, o) = —pol+2ue(v)), Wi=0, vw=vlonT.
The solution is obvious:

vo=vi(x",,T),  pp=py(x,x",1,T).



A.3 THE SOLID DOMAIN AT THE PORE LEVEL (THIRD APPROXIMATION)
The set (A.3¢c, A.2c, A.12¢) is a boundary-value problem for u?:

Va? =0, o) =a(e(ul) +e'(ul) +e’(nd)), oIN=—-p)N.
u; appears as a linear function of e'(u;) + e”(u?) and p):

w; = ¢(x)(e'(u;) +e"(u))) —n(x)p, + & (X, x", 1, T),

where &2 is an arbitrary additive x independent vector.

A.4 THE PORE AND FRACTURE DOMAINS

The set (A.6b, A.7b, A.5b, A.13b) is a classical Darcy problem which gives the
relative velocity v, —v! as a linear function of V'pJ:

Vll, ‘_Vsl = _kp(x)vlpg:
Py =0Vpy+p,(x,x",1,T), (A.20)

where the tensor k, and the vector § are well defined by the boundary-value
problem, and p, is an added x independent arbitrary function.
— Equation (A.10a) immediately gives

pr=p; (X', 1, 7).
— Equation (A.7c) is written
Vv + Vv, + V'V =0.

Let us integrate over Q and use the periodicity of v2 with v; =0 on Q,. This gives
1
VY D+ nV + @f VN, dS =0.
r

With the help of (A.13c), (A.19), and (A.20), we obtain, after regrouping the terms

ae(w) +e') _,op
ot ot

Vi(<k, >oV'p,y) = —a (A.21a)

If we consider (slow) harmonic movement with pulsation w, it becomes
V'(<k, 2aV'pg) = —a'i(e’(ul) +e"(u?) — flicpy. (A21b)

— The set (A.10b, A.9b, and A.l16a) is again a classical Darcy problem which
gives the relative velocity v§ — v9 as a linear function of V'p?:

Vo, +V'a)=0, oj=—pil+2ue'(v}), vi=vionI"
Therefore, we have

V=0 = —k, (X)V'pY. (A.22)



A.5 THE PORE AND SOLID DOMAINS
Equation (A.3d) reduces to

Vo!+ Vel =0.
With the help of (A.12d), we obtain

6!N=g,NonT,
and by integration on €, and use of (A.6b), we arrive at

V({00 —npdl) = 0. (A23)
From (A.19) it is easy to obtain the average of ¢? on Q:

(0dda=c/(e'(w) +e"(u)) —a'py. (A.24)
On the other hand, we have on I

({09 > —npp )N = —pp N’ (A.15¢)
and

py=p7 (X", t, T). (A.143)

— The set (A.21b, A.23, A.24, A.15c, and A.14a) is a boundary-value problem
for u} and pY under harmonic excitation. These appear as linear functions of e"(u})
and p?:

ul = &'(x)e’(wd) — ' (X)pf + 8L (X", 1, T),
ph = v(x)e"(w) + (X )p}-

But it is important to notice that the tensors ¢’, n’, v/ and the scalar ©° are here
complex valued and w dependent.

A.6 THE MACROSCOPIC DESCRIPTION

The macroscopic description is composed of two relations.
— The first is obtained from the momentum balances. Let us consider Equations
(A.3e), (A.6¢c), and (A.12e):

Vol+Vie;+V'a2=0, Vo2+Vo,—V'p)=0, 6?N=02N.
Integrating the first on Q; and the second on Q,, with the third gives

V{03 D0+ V(6 )q+ V<{a)>q—nV'p) =0. (A.25)
Now consider Equations (A.10b) and (A.12d):

Vo +V'al=0, ({0;>a+<0})q)N =0}N"



Integrating the first on Q7 and (A.25) on € with the second gives

s +p2
VK0S Daa — V' <npy e —n'V'py =0,
or
V'(c’e"(u?) —a"p? ) =0. (A.26)

The tensors ¢” and «” are here complex-valued and w dependent.
— The second macroscopic relation comes from mass balances. We start with
Equations (A.11b) and (A.16b):

VY + V=0, v —(vig =<V} .

Integrating the first on Q; and, using the second, we obtain:

1
VN dS = ——
L/ A IQ/

Finally, now using the Darcy laws (A.20) and (A.22) for the pores and the fractures
leads to

V'({k > Vpp) = —y"iwe"(u]) — B"iwp}. (A.27)

V'V e = j (V5 Da + <¥, >0)N, dS.

_
&
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