
HAL Id: hal-00936332
https://hal.science/hal-00936332v1

Preprint submitted on 30 Jan 2014 (v1), last revised 28 Aug 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vortex penalization method for bluff body flows
Federico Gallizio, Chloé Mimeau, Georges-Henri Cottet, Iraj Mortazavi

To cite this version:
Federico Gallizio, Chloé Mimeau, Georges-Henri Cottet, Iraj Mortazavi. Vortex penalization method
for bluff body flows. 2014. �hal-00936332v1�

https://hal.science/hal-00936332v1
https://hal.archives-ouvertes.fr


Vortex penalization method for bluff body flows

F. Gallizio, C. Mimeau, G.-H. Cottet, I. Mortazavi

In this work a penalization method is discussed in the context of vortex methods for incom-
pressible flows around complex geometries. We in particular illustrate the method in two cases :
the flow around a rotating blade for Reynolds Numbers 1000 and 10000 and the flow past a
semi-circular body consisting of a porous layer surrounding a rigid body at Reynolds numbers
550 and 3000. In the latter example, the results are interpreted in terms of control strategy.

1 Introduction

Vorticity is an important characteristic of flows in many applications. It is a signature of
wakes in bluff body flows and, as such, is related to aerodynamic performance of moving or
fixed obstacles [39]. The vorticity formulation of the Navier-Stokes equations is therefore a na-
tural framework to address questions related to flow control. In these equations, for moderate
and high Reynolds number the vorticity advection is predominant, which motivates the use of
Lagrangian or semi Lagrangian schemes to discretize these equations. Particle methods belong
to this category. They have long been used for the simulation of vortex flows, and in particular
for bluff body flows, since the pioneering simulation of flows past a 2D cylinder in [24]. Three
dimensional simulations followed this work [30, 17, 31]. In all these works the no-slip condition
at the body surface is imposed through vorticity fluxes. This method relies on an analysis of
the relationship between vorticity fluxes and velocity boundary conditions [16, 17]. Vorticity
fluxes are implemented in vortex methods by means of integral equations [25]. This method is
physically appealing but relies on a delicate tuning of several parameters and remains delicate
to implement. Immersed boundary conditions have been proposed in [29, 17] to simplify the
treatment of complex geometry and the computation of velocity from vorticity. Later on, fol-
lowing the work of [1, 23], a penalization method coupled to the vorticity formulation of the
Navier-Stokes equation was proposed and extended to the two-way interaction of a rigid body
and a three-dimensional incompressible fluid in [15]. The method was validated in three dimen-
sional flows at low Reynolds numbers. The work in [33] provides additional 2D validations of
the method and illustrates its efficiency in the context of GPU computing.

The purpose of this paper is to further illustrate the flexibility of this method by focusing
on the case of two bi-dimensional complex flows : the flow around a vertical axis turbine (VAT),
on the one hand, and the flow past a semi-circular obstacle made of a porous layer surrounding
a rigid core, on the second hand. In the first case, we discuss the different flow patterns and
frequencies corresponding to moderate and high Reynolds numbers. In the second case we study
the influence of the porous layer on the wake strength and on the drag value.

This paper is organized as follows. In section 2 we describe the vortex penalization model
and its implementation in a vortex particle method. In particular, we indicate how the body
forces are computed in such a model. In section 3 we first validate the method on the benchmark
test of the flow past a 2D circular cylinder at various Reynolds numbers, and then apply the
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method to the case of a rotating turbine blade. Section 4 is devoted to the analysis of the
flow around a semi-circular cylinder with a porous coating. The characteristics of the flows are
analyzed from the point of view of flow control. Finally section 5 summarizes our results and
draws some conclusions.

2 Numerical algorithm

2.1 Vorticity formulation and remeshed particle method

The dynamics of an incompressible flow is governed by the incompressible Navier-Stokes
equations :

∇ · u = 0 in D (1)

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∆u in D, (2)

where D is the computational domain and Re is the Reynolds number.
Taking the curl of equation (2) and using equation (1), we get the Helmholtz or the Vorticity

Transport Equation (VTE) for the vorticity ω =∇× u :

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω in D, (3)

This equation has to be coupled to the system giving the velocity in terms of the vorticity. It
is convenient to use the Helmholtz decomposition :

u =∇×ψ +∇ϕ. (4)

The stream function ψ and potential ϕ satisfy the following systems in D :

−∆ψ = ω, ∇ ·ψ = 0, ∆ϕ = 0, (5)

complemented with appropriate boundary conditions. The VTE does not explicitly contain
the pressure term but the pressure can be recovered from the velocity field by integrating the
following Poisson equation :

∆p =∇ · (u ·∇)u, in D, (6)

which is derived as the divergence of equation (2).
The previous equations are approximated using a vortex particle method [13], [16]. In this

approach, the vorticity is carried by particles. Particles follow the trajectories associated to
the velocity field. Simultaneously the vorticity carried by the particles is updated to account
for vortex stretching and diffusion. In the present work we use particle remeshing to overcome
accuracy loss due to local distortion of the flow map. In that case, particles are remeshed
through interpolation on a regular mesh at each time step. This grid is used to compute the
velocity through a Poisson solver. Details of the algorithm are given in the sequel.

In incompressible flows, the unique sources of the vorticity are boundaries. It is therefore
important to capture in an accurate way vorticity boundary conditions. In classical implemen-
tations of vortex methods, the no-slip boundary condition is satisfied through the creation of
vortex elements [13, 14, 19] or by updating particle strength to account for vorticity fluxes at
the boundary [25, 17]. The no-through flow boundary conditions is implemented together with
the Poisson equation to determine stream functions and potential in (5).

These methods involve several parameters to enforce the no-slip conditions at the bounda-
ries : a more straightforward alternative to these techniques can be derived from the penalization
method.
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2.2 Vortex penalization method

2.2.1 Penalization in velocity formulation

In this section we show how the penalization method can be used successfully to model the
flow of an incompressible fluid around an obstacle. In the penalization technique the system
is considered as a single flow, subject to the Navier-Stokes equation with a penalization term
that enforces continuity at the solid-fluid interface and rigid motion inside the solid. The main
advantage of this method is that it needs neither the mesh to fit the boundaries nor to specify
no-slip boundary conditions. In addition it allows to compute the pressure as a continuous field
on the whole domain including the solids, and the lift and drag coefficients by integrating the
penalization term inside the solid bodies [11].
In a porous medium the velocity u is given by the Darcy law :

u = − k

µΦ
∇p, (7)

where p is the pressure, k is the intrinsic permeability, µ is the dynamic viscosity of the fluid
and Φ is the porosity of the medium. Assuming that the Boussinesq hypothesis is satisfied for
the fluid saturating the porous medium, we get from Brinkman’s equation that is valid only for
high porosities close to one

∇p = − µ

k
Φu + µ̃Φ∆u (8)

by adding the inertial terms with the Dupuit-Forchheimer relationship [27], the Forchheimer-
Navier-Stokes equations

ρ ∂tu + ρ (u ·∇) u +∇p = − µ

k
Φu + µ̃Φ∆u, (9)

where ρ is the density of the fluid and µ̃ is Brinkman’s effective viscosity. As Φ is close to 1 we
can approximate µ̃ ≈ µ

Φ [38] and get the equation :

ρ ∂tu + ρ (u ·∇) u +∇p = − µ

k
Φu + µ∆u. (10)

Then a non-dimensionalization using the usual substitutions including the mean velocity of the
fluid u and the size if the body H

u = u′ u ; x = x′ H ; t = t′
H

u
; p = p′ρ|u|2 (11)

yields the penalized non dimensional Navier-Stokes equations or Brinkman-Navier-Stokes equa-
tions for the unknowns (u′, p′) denoted (u, p) for the sake of simplicity :

∂tu + (u ·∇)u− 1

Re
∆u +

u

K
+∇p = 0 in DT = D × (0, T ) (12)

div u = 0 in DT , (13)

where K = ρku
µHΦ is the non dimensional coefficient of permeability of the medium, Re = ρuH

µ
is the Reynolds number based on H the height of the body and D the full domain including
the solid body. This model is able to represent the two media as follows. The zone variation is
realized changing the penalization coefficient that defines the permeability of each region. In the
fluid the permeability coefficient goes to infinity, the penalization term vanishes and we solve
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the non dimensional Navier-Stokes equations. In the solid body the permeability coefficient goes
to zero and it has been shown in [1] that solving these equations corresponds to solve Darcy’s
law in the solid and that the velocity is proportional to K. One can thus write K = 1

λχS where
χS denotes the characteristic function of S and λ is a penalization parameter satisfying λ� 1.
For numerical simulations we typically set λ ≥ 108. If the full domain including the solid body
is defined as D = F ∪ S, one finally obtains the following penalized Navier-Stokes equations :

∂tu + (u ·∇)u− 1

Re
∆u + λχSu +∇p = 0 in D (14)

div u = 0 in D. (15)

In addition as the pressure is computed inside the solid body, it is shown in [11] that one
can compute the drag and lift forces by integrating the penalization term on the volume of the
body :

F = − 1

Re

∫
S

∆u dx +

∫
S
∇p dx ≈

∫
D
λχS u dx, (16)

where the body includes the porous layers.

2.2.2 Penalization in vorticity formulation and implementation with a vortex me-
thod

We first show how to extend the penalization method to the vorticity formulation of the
Navier-Stokes equations.

By differentiation of the velocity based penalization equation (14), we obtain the following
non dimensional [23, 15] vorticity-penalization equation :

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω +∇× [λ χS(us − u)]. (17)

In the above equation we have generalized the boundary value problem to allow for a rigid body
motion of the obstacle S with velocity us, where us is the rigid body velocity and χS is the
characteristic function of the solid. This system has to be complemented by the usual system
giving the velocity in terms of the vorticity :

∇ · u = 0 in D; ∇×u = ω in D (18)

and appropriate boundary conditions on the walls ΓD.
We describe here how the vorticity equation (17) is discretized in a vortex method. For

simplicity we assume that the computational domain, including the solid body, is covered by a
uniform Cartesian grid with mesh-size h.

The equation (17) is split in two sub-steps. At each time step, one successively solves the
following equations :

∂ω

∂t
=∇× (λ χS(us − u)) (19)

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω. (20)
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We set tn = n∆t, where ∆t is the time-step. If un,ωn denote velocity and vorticity values
on the grid at time tn, following [15] the resolution of equation (19) is performed using an Euler
implicit scheme, which yields :

ω̃n+1 =∇×
[
un + λ∆tχSuns

1 + λ∆tχS

]
. (21)

The right hand side above is evaluated by centered finite differences on the grid.
To solve the advection-stretching-diffusion equation (20), we proceed as follows. Particles

are initialized on grid points where vorticity value is above a given threshold (typically 10−5).
If xnp ,ω

n
p denote the locations (grid points) and vorticity of particles (ωnp = ω̃n+1(xp)), the

equation (20) is firstly handled by solving the following system of ODEs [16] :

dxp/dt = up , dωp/dt = [∇up]ωp. (22)

This system is typically solved using a second order Runge-Kutta time-stepping. Let us denote
by xn+1

p , ω̃n+1
p the locations and strengths of the particle at the end of the time step. Particles

are then remeshed on the original grid points by interpolation, with the formula :

ωn+1
p =

∑
p

ω̃n+1
p Λ

(
xnp − xn+1

p

h

)
. (23)

The function Λ in the above formula is obtained by tensor product from the following piecewise
cubic third order interpolation kernel [16] :

Λ(x) =


0 if |x| > 2
1
2(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2

1− 5x2

2 + 3|x|3
2 if |x| ≤ 1

(24)

The same kernel is used to interpolate grid velocity values onto particles in the RK2 time-
stepping scheme to solve (22).

After remeshing, vorticity values are known on the grid and the remaining diffusion equation
is implicitly solved either with a grid-based Poisson solver or with a Fourier method. Grid
values for the vorticity are now available for time tn+1. Velocity values are in turn obtained
from vorticity grid values by solving the system (4,5) with a classical grid-based Poisson solver
or using a Fourier method, and a new cycle of iterations can start.

One of the main feature of particle methods is that they do not have a CFL restriction on
the time step ∆t. It is indeed shown in [18] that a remeshed particle method for a transport
equation with velocity u is stable under the condition

∆t ≤ C

‖∇u‖∞
, (25)

where C is a constant that only needs to be smaller than 1.

2.3 Force calculation

Assume a flow in RN around a bounded body S with velocity and vorticity vanishing
at infinity and having a prescribed value ub on the body. The force evaluation given in the
formula (16) assumes that the velocity is of the order of K inside the body. This is verified if
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the penalization method is used in a velocity-pressure formulation. In a vorticity formulation
however, there is no direct control of the velocity in the body. In practice one observes that the
velocity in the body is small but larger than K. This can be seen in figure 2(left). In that case,
one must go back to force evaluations in terms of vorticity distributions around the body.

The force F exerted by this flow on the body is given by the following formula :

F = − d

dt

∫
S′

u dx, (26)

where S′ denotes the domain outside S. Integration by parts allows to express this force in
terms of the vorticity, with N denoting the space dimension :

F = − 1

N − 1

d

dt

∫
S′

x× ω dx− 1

N − 1

d

dt

∮
∂S

x× (n× u)ds, (27)

where the first integral is the linear hydrodynamical impulse and the second integral is the bound
vorticity (see [36]). For an impulsively started obstacle at early times, the vorticity remains
essentially attached to the body, and this formula can be used by taking a computational
domain large enough to contain the vorticity support. When vorticity shedding occurs, this is
no longer possible. Alternatively, one may use the Navier-Stokes equations and the expression
(26) to obtain :

F = −ν
∫
∂S
ω × n ds +

∫
∂S
p · ω ds. (28)

In the case of a 2D circular cylinder of radius R, this yields the following formula [24] :

F = νR

(∫ 2π

0
ω−→eθ dθ −

∫ 2π

0

∂ω

∂n
−→eθ dθ

)
. (29)

This expression assumes that vorticity vanishes at infinity, which in practice is always the case,
and allows to distinguish friction (in the first integral) and pressure drag (in the second integral).

For a detached bluff body flow this formula can be used as long as vorticity and its normal
derivatives are accurately captured at the boundary. However, the penalization method just
described is derived from a method which is only first order for the velocity. It therefore does
not capture vorticity values and fluxes at the boundary with enough accuracy to give reliable
force evaluation through (29) with reasonable grid sizes. It is therefore necessary to use a third
technique which combines time derivatives, volumes integral of the vorticity momentum - like
in formula (27) - and vorticity boundary values as well as fluxes on a surface away from the
body, where these quantities are accurately computed. We follow the approach proposed in [28],
and rewrite the force according to the momentum equation as follows :

F = − d

dt

∫
V

u dx +

∫
Σ

n · γ dx, (30)

where V is a domain containing S, Σ denotes its boundary and

γ = (31)

1

2
|u|2I − 1

N − 1
u · (x× ω) +

1

N − 1
ω · (x× u)

− 1

N − 1

[(
x · ∂u

∂t

)
I− x · ∂u

∂t

]
+

1

N − 1
[x · (∇ · T )I− x(∇ · T )] + T .

6



In the above equation T denotes the stress tensor :

T = µ(∇u +∇ut), (32)

where µ is the viscosity. For a sake of simplicity we develop this formula in the two-dimensional
case where the computational box D and the volume control V are two nested rectangles. We
use the notations given in figure 1. We denote the velocity by u = (u, v)t. The streamwise and

x

y

F x

F y

V

n

O

A 1 A 2

A 3A 4

u∞

D

Γ D

S

Σ

Figure 1 – Computational domain D and control volume V .

vertical components of the force can then be written computed as :

Fx = − d

dt

∫
V
u(1− χS) dxdy

+

∫ A2

A1

[
uv + vωy − y∂u

∂t
+

1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
y − 1

Re

(
∂u

∂y
+
∂v

∂x

)]
dx

+

∫ A3

A2

[
1

2
(v2 − u2)− uωy − y∂v

∂t
+

1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
y +

2

Re

(
∂u

∂x

)]
dy

+

∫ A4

A3

[
−uv − vωy + y

∂u

∂t
− 1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
y +

1

Re

(
∂u

∂y
+
∂v

∂x

)]
dx

+

∫ A1

A4

[
−1

2
(v2 − u2) + uωy + y

∂v

∂t
− 1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
y − 2

Re

(
∂u

∂x

)]
dy,

and
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Fy = − d

dt

∫
V
v(1− χS) dxdy

+

∫ A2

A1

[
1

2
(v2 − u2)− vωx+ x

∂u

∂t
− 1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
x− 2

Re

(
∂v

∂y

)]
dx

+

∫ A3

A2

[
−uv + uωx+ x

∂v

∂t
− 1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
x+

1

Re

(
∂v

∂x
+
∂u

∂y

)]
dy

+

∫ A4

A3

[
−1

2
(v2 − u2) + vωx− x∂u

∂t
+

1

Re

(
2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)
x+

2

Re

(
∂v

∂y

)]
dx

+

∫ A1

A4

[
uv − uωx− x∂v

∂t
+

1

Re

(
2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)
x− 1

Re

(
∂v

∂x
+
∂u

∂y

)]
dy.

For a two dimensional viscous flow past a circular obstacle of diameter d with free stream
velocity u∞, drag and lift coefficients are expressed by the following formulas :

CD =
2Fx
ρu2
∞d

, CL =
2Fy
ρu2
∞d

. (33)

3 Validation and numerical results

The vortex penalization has been validated in 2D and 3D fluid structure interaction problems
at low Reynolds numbers [15], in the context of multi-resolution [32] and in GPU implemen-
tations for 2D cases [33]. In this section, our goal is to take advantage of the flexibility of the
vortex penalization method to handle moving or complex bodies. To evaluate the accuracy of
the method, in particular with respect to the value of the penalization parameter, we start with
validations on the classical benchmark of the flow around a two-dimensional circular cylinder
for a wide range of Reynolds numbers. We then apply the method to a two-dimensional vertical
axis turbine and to flows in mixed fluid-solid-porous media.

3.1 Flow past a 2D circular cylinder

There is an important literature about the classical benchmark of the 2D circular cylinder.
This benchmark is covered by an important literature. A thorough survey of this subject can
be found in Williamson (1996) [39].

Vortex methods using vorticity flux boundary conditions have allowed to obtain reference
results for a wide range of Reynolds numbers [24]. Recently, the penalization-vortex method has
been implemented on GPU processor. The accuracy and performance of this implementation
against traditional CPU implementations has been tested on this benchmark in an explicit
formulation of the penalization. We use here the same benchmark to illustrate the efficiency of
the implicit formulation (equation (21)).

The computational domain and the geometrical setup are shown in figure 1, where D is
a rectangle delimited by its boundaries ΓD. The non dimensional diameter d of the circular
cylinder and the free stream inlet velocity u∞ are equal to 1. The whole computational domain
is covered by a uniform Cartesian grid.

In this section, periodic boundary conditions on the box boundary ΓD were prescribed for
the system (18). A correction of the velocity field was performed at each time step in order to
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h=0.04
h=0.02
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h=0.005
h=0.0025

 0

 0.005
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 0.02
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-0.6 -0.4 -0.2  0  0.2  0.4  0.6

| U
 |

y

λ=1/Δt
λ=10e3
λ=10e6
λ=10e9

Figure 2 – Left picture : mean velocity magnitude profiles in a section across the center of
the cylinder obtained with implicit penalization (λ = 103, 106, 109) and explicit penalization
(λ = 1/∆t). Right picture : Grid refinement study for the axial velocity at T = 3 on a cross-
section at x = 1.5 behind the cylinder.

satisfy free stream velocity u∞ = (u∞, 0) = (1, 0) imposed at the inlet. In all cases the size of
the computational box was chosen large enough so that the effect of these boundary conditions
was found to be negligible.

First, we consider the case of an impulsively started cylinder flow with Re = 550 and study
the convergence of the method with respect to the penalization parameter and the grid-size.
The left picture of figure 2 shows the mean velocity profiles inside the cylinder, averaged over
the time window [0, 3]. The results corresponding to the implicit penalization scheme for three
values of λ are compared to the profile obtained with the explicit formulation for a mesh size
h = 0.005. The explicit formulation of (19) requires a maximum value of λ = 1/∆t to guarantee
stability. One can see from this experiment that, to obtain small values of the velocity inside
the body, it is necessary to use larger value of λ, and therefore to implement the implicit scheme
(21). One can also notice that velocity values inside the body remain in all cases much larger
than 1/λ, which implies that the formula (16) is not appropriate to evaluate the forces. The
picture on the right side is a refinement study for a section located in the wake at x = 1.5
and a penalization parameter λ = 1010 in the implicit formulation. It depicts the instantaneous
velocity magnitude at time T = 3 for different grid sizes.

The first part of the study is related to the low Reynolds number analysis where the viscous
effects are predominant. Following [29] the adimensional time-step ∆t is determined by the
condition ∆t/(h2 Re) ∼ O(1).

Various tests have been carried out by increasing the blockage ratio 1/Ly, where Ly denotes
the heigth of the computational box. The size of the computational domain was chosen such
that the effects of the boundaries on the shedding frequencies were negligible. The subsequent
simulations have been performed in a computational box with dimensions [−7.5, 25]×[−7.5, 7.5]
with 3250 × 1500 grid points. This corresponds to a mesh size h = 0.01. The penalization
was introduced using the implicit formulation (21) and the penalization parameter was set to
λ = 1010. Here, the flow regime is laminar, the solution is steady and stable for Re < Recrit = 49
(see [39]). In figure 3, the streamlines for the steady solution at Re = 13.05 are shown. On the
left-hand side, a picture of an experimental visualization is reported (see [37]) and the equivalent
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Figure 3 – Streamlines of flow past a circular cylinder at Re = 13.05. Experimental result
obtained by M. van Dyke [37] (left). Numerical solution given by the present method (right).

Figure 4 – Amplification factor Aω curve (left). Strouhal-Reynolds curve (right).

frame computed by the present method is shown on the right-hand side. The figure shows a
good qualitative agreement in the shape and size of the steady recirculation areas.

For larger Reynolds numbers, the flow regime is still laminar but the steady solution becomes
unstable (Re > Recrit). On the left-hand side picture of the figure 4, the amplitude Aω of the
fluctuation of the vorticity on a monitoring point P = (2.5, 0.5) is plotted for various Reynolds
numbers. For a flow regime close to the bifurcation point Recrit (Re < 60) the wake instabilities
grow very slowly, so the oscillation study is started at Re = 60. Nevertheless, the exact critical
Reynolds number is obtained with a linear extrapolation of the amplification factor curve.
The right-hand side picture of the figure 4 shows the Strouhal number (given by the shedding
frequency) as a function of the Reynolds number, obtained in our calculations and in the
exprimental work ([39]). An estimation of the average relative error ε between the two curves
yields ε ≈ 0.6%.

The evaluation of forces has been carried out using the momentum equation (30). The mean
values and the amplitudes of the fluctuations of drag and lift coefficients for flows at Re = 100
and Re = 200 are computed and given in Table 1. These results are very close to experimental
and numerical data collected by Russell & Jane Wang [35] and Braza et al. [4].

To address a transitional case we focus now on an impulsively started flow at Re = 550 and
compare our results to those of Ploumhans & Winckelmans [29] and Koumoutsakos & Leonard
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Re=100 Re=200

Authors c̄D c̄L St c̄D c̄L St
Braza et al. [4] 1.36 ± 0.015 0 ± 0.25 0.160 1.40 ± 0.050 0 ± 0.75 0.190
Russel and Wang [35] 1.43 ± 0.009 0 ± 0.322 0.172 1.45 ± 0.036 0 ± 0.63 0.201
Present method 1.40 ± 0.010 0 ± 0.32 0.165 1.44 ± 0.05 0 ± 0.75 0.200

Table 1 – Comparison of drag coefficient, lift coefficient, and Strouhal number for flow past a
cylinder at Re = 100 and Re = 200.

Re=1000

Authors c̄D c̄L St
Apte et al. [2] 1.50 0 ± 1.36 0.238
Mittal et al. [26] 1.48 ± 0.21 0 ± 1.65 0.250
Present method 1.51 ± 0.23 0 ± 1.54 0.245

Table 2 – Comparison of drag coefficient, lift coefficient, and Strouhal number for flow past a
cylinder at Re = 1000.

[24]. The time evolution of the drag coefficient is reported in figure 5(a). In our computations the
the grid convergence in a computational domain [−4, 8]× [−5, 5] is achieved with parameters
h = 0.005, ∆t = 0.005 and λ = 108. The various results are in excellent agreement. Figure
6(a) depicts the vorticity isocontours which are very similar to the vorticity field presented by
Ploumhans & Winckelmans [29] where h = 6.03× 10−3.

The next simulation was performed at Re = 1000. At this regime, advection effects become
predominant in the flow field. The boundary layer thickness decreases, requiring a finer grid.
The mesh size is consequently set to h = 0.0025 in a computational domain [−4, 8]×[−5, 5] and
the time step is set to ∆t = 0.003. The non-dimensional time evolution of the drag coefficient
is given in figure 5(b) and compared to the result in[24]. Table 2 shows the comparison of mean
drag coefficient, amplitude fluctuation of lift coefficient and Strouhal number with other studies
[2, 26] for long time simulations. All these comparisons confirm an excellent agreement between
our results and the reference results in the literature.

For Re = 3000 the flow is unstable and the shedding generates complex vortex pairings
(see [39]). In this case, grid convergence was obtained in our method for λ = 108, h = 0.0025
and ∆t = 0.0025. Figure 5(c) shows again a very good agreement in the drag history between
our results and those in [29] and [24]. In [29] h is about 0.002. Vortex contours in Figure 6(b)
confirms this agreement.

The last simulation addresses the flow around the impulsively started cylinder at Re = 9500.
In order to capture small spatial structures and the thin boundary layer, the grid size was
reduced to the value h = 0.00125 in the same computational domain as the one used in the
previous cases. The time step was set to 0.002 and λ = 108. The comparison of our results to
those obtained by Rasmussen et al. [32] as well as Koumoutsakos & Leonard [24] is reported
in figure 5(d). In [32] a multilevel vortex method was used with a minimal grid resolution
corresponding to hmin = 1/1024. The discrepancy observed on Figure 5(d) at early times of
the drag history indicates that the penalization method has difficulties to establish the strong
initial vortex sheet on the body of the cylinder. For later times our results are in excellent
agreement with [24, 32].

This validation study just performed for the 2D circular cylinder benchmark enables us to
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Figure 5 – Drag evolution for Re = 550 (a), Re = 1000 (b), Re = 3000 (c) and Re = 9500 (d).
Comparisons of present method (solid red line) with Koumoutsakos & Leonard [24] (dashed
line). Solid black line are results from Ploumhans & Winckelmans [29] in (a), (b), (c) and from
Rasmussen et al. [32] in (d).

determine the appropriate grid resolutions and time steps needed to obtain accurate results in
the more challenging cases that will be considered next.
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(a) Re = 550 (b) Re = 3000

Figure 6 – Comparison of vorticity isocontours for the impulsively started cylinder between
present method (left columns) and Ploumhans & Winckelmans [29] (right columns) at (a) T = 1,
3, 5 at Re = 550 and (b) T = 1, 2, 3 at Re = 3000.
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3.2 Flow past a moving two-dimensional vertical axis turbine

In this section, we apply the vortex penalization method to the two dimensional flow past
a Vertical Axis Turbine (VAT). The VAT is rotating at a given velocity Ω and is immersed in a
stream with a uniform far field velocity u∞. The blade radius and the airfoil chord are denoted
by R and c, respectively (Figure 7(a)).

(a) (b)

Figure 7 – a) Geometrical setup of VAT. b) Distance function φ iso-contours ; the dashed
rectangle Σφ is the support of φ.

The motion of a solid obstacle can be described with the vortex-penalization method as
follows [15]. S = S(t) is a moving multi-connected solid region. If one denotes by φ a level-set
function which is negative inside S and positive outside, the characteristic function of S is
defined by χ = H(φ), where H(·) is a suitable step function. Moreover, in a rigid body motion,
the level-set function has to satisfy

∂φ

∂t
+ (us · ∇)φ = 0. (34)

The above equation enables to evaluate the body trajectory. The equation (34) can be inter-
preted as a material derivative Dφ/Dt = 0, and the movement of the blade can be integrated
using a Lagrangian method. The Figure 7(b), shows some levels of the function φ defining the
airfoil on a grid 25 times larger than the one used for the simulation.

The blade section used in this vertical axis turbine is a symmetrical Kármán-Trefftz airfoil
with a slightly smoothed trailing edge. The frame of reference is set on the rotation axis of the
turbine and the computational domain is D = [−6, 6]× [−3.5, 3.5] with 3001×1751 grid points
(corresponding to h = 0.004) and the penalization parameter λ = 1010. The Poisson equation
is solved using a finite differences-based solver with the following boundary conditions on the
stream function ψ : on the upstream/downstream boundaries a Neumann condition is imposed,
and on the horizontal boundaries a Dirichlet condition enforces the flow mass rate through the
domain. The Reynolds number for a VAT can be defined choosing the blade section chord c
as reference length and the maximum relative velocity umaxrel as reference velocity, where this
velocity is given by umaxrel = |u∞|+ |ΩR|. For a realistic simulation of a medium/small wind or
water turbine it is located in the range of 104 − 106. The flow is transitional and is dominated
by convective phenomena. In this section two values of the Reynolds numbers, Re = 1000 and
Re = 10000, are considered. This bench study mainly aims to highlight the great capability of
the present method to supply realistic results for moving bodies with unfitted boundaries and

14



the grid resolution handled here is convenient to confirm the qualitative physical behaviour of
computations.

For the Reynolds number Re = 1000, a wind turbine with a blade section chord c = 0.2 m,
radius R = 0.3 m, rotating speed Ω = 0.185 rad/s and immersed in a stream with u∞ = 0.025
m/s is considered (where νair = 1.6 10−5 m2/s at 20 Celsius degrees). For this Reynolds number,
which corresponds to a low transitional flow with viscous effects, the time step is taken as
∆t = 0.001. A higher Reynolds number for a wind turbine operating at low-wind speed is
studied by considering this VAT geometry with the working conditions Ω = 1.85 rad/s and
u∞ = 0.25 m/s. The corresponding Reynolds number is Re = 10000 and the integration time
step is chosen to be ∆t = 0.0002. On Figures 8(a) and 8(b) instantaneous vorticity isolines for
different rotating times of the blades at Re = 1000 and Re = 10000 are respectively plotted.
The varying incidence of the velocity occurring at each blade generates separation and vortex
shedding ; as the figures show, the flow is highly unsteady and the blade strongly interacts with
the wake. The flow for Re = 1000 generates an almost regular Von-Kármán-like wake with
large structures. By contrast, the vortex shedding for the Re = 10000 becomes very quickly
unsteady where small high frequency vortical structures interact with each other before being
transported downstream.

A complementary description of the flow around the turbine is given by the time averaged
streamlines shown on Figures 9(a) and 9(b), for a fully developed wake at Re = 1000 and
Re = 10000. Here, the frame of reference is centered on the axis of the turbine and rotates
together with the blades. For the lower Reynolds number Re = 1000 the average is computed
for a simulation time of ≈ 650s, which corresponds to ≈ 19 loops of the blade. As the Figure 9(a)
shows, for this flow the recirculation zones (one for each blade) are concentrated between the
rotation axis and the inner surface of the blade. For the higher Reynolds number Re = 10000,
the mean flow is computed for a simulation time of ≈ 65s, which still corresponds to ≈ 19 cycles.
In this case, for each blade three recirculating areas can be identified, as in Figure 9(b) : two
zones are close to the airfoil (outer and inner surfaces) and the third region is the average in time
of the wake generated from the trailing edge of each blade due to complex vortex interactions.

Finally, we study the time evolution of the enstrophy ε and the number of vortex particles in
order to better analyze the properties of these two flow regimes. The enstrophy is a quantity that
measures the dissipation of energy in terms of kinetic energy. In a 2D flow field the enstrophy
is given by Z =

∫
D|ω|2dσ, where D is the computational domain. In figures 10(a) and 10(b)

the comparison between the time history of the enstrophy and the number of particles is shown
for Re = 1000 and Re = 10000 respectively. As the figure 10(a) shows, the amplitude of
the oscillations remains quite small compared to the Re = 10000 regime (Fig. 10(b)), where
the frequency of the shedding appears through large oscillations. The figures show the high
correlation between the time evolution of the enstrophy and the number of particles.

In the present cases the flow regime is characterized by unsteady separations generated
by the periodical interaction of the wake with the blades. For Re = 1000, we notice that the
principal vortex shedding frequency roughly corresponds to 2Ω, that is twice the angular velocity
of the two-bladed VAT. For Re = 10000, different shedding frequencies can be distinguished
from the rotational frequency of the blade. The investigation on the shedding frequencies is
meaningful because it allows to relate the interaction of the vortex wake with the structure of
the turbine. If some vortex shedding frequencies match the proper frequencies of the turbine,
the structure can resonate with a self-sustained motion and the turbine is liable to aeroelastic
phenomena. To evaluate the principal frequencies of vortex shedding we performed a discrete
Fourier analysis of the enstrophy signal. In figures 11(a) and 11(b) the spectra of the enstrophy

15



versus the frequency of the signal are presented, where Aenstrophy is the amplitude of the
enstrophy and ωi/Ω is the nondimensional discrete frequency of the signal. The spectra does
not report the mean value corresponding to the first coefficient i = 0 of the Fourier series. To
avoid the effect of the initial transient stage, the Fourier analysis was applied on the signals
after the first three cycles of the turbine.

In figure 11(a) the shedding principal harmonic at 2 times the angular velocity of the
turbine is confirmed : the wake interacts with a blade two times for each cycle of the turbine.
Further couplings with the principal frequency can be identified at 4, 6, 8. Some high energy
contributions are visible at frequencies lower than 2. A reason may be that the flow is not fully
developed and did not achieve a statistical steady state yet.

In figure 11(b) the spectrum exhibits shedding frequencies at 2 and 4 times the angular
velocity. Since at this regime the flow is turbulent, the enstrophy signal is noisy and is cha-
racterized by random peaks at low frequency (Fig. 10(b)). Higher couplings with the principal
rotational frequency are not visible by the spectrum, because the energy is transferred from
the large geometrical scale to the smaller Kolmogorov scale. The large energetic contribution
occurring at frequencies lower than 2 probably means that the flow is not yet fully developed.
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Figure 8 – Iso-vorticity lines of the wake past the VAT at Re = 1000 (a) and at Re = 10000
(b). Snapshots respectively at times T = 3.8s, 11.4s, 18.9s, 26.5s and T = 0.38s, 1.14s, 1.89s,
2.65s.
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(a) (b)

Figure 9 – Averaged-in-time streamlines for the VAT at Re = 1000 (a) and at Re = 10000
(b). The iso-lines are represented in the relative frame of reference.

(a) (b)

Figure 10 – Time history of the dimensionless enstrophy Z (blue) and the number of vortex
particles (red) for Re = 1000 (a) and Re = 10000 (b). The axis of the abscissas represents the
number of the cycles performed by the turbine.
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(a) (b)

Figure 11 – Frequency spectrum of the enstrophy signal computed for Re = 1000 (a) and
Re = 10000 (b). The horizontal axis reports the discrete frequency ωi divided by the angular
velocity Ω of the turbine.
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4 Applications to solid-porous-fluid media and flow control

This section is devoted to the study of flows in solid-porous-fluid media. It illustrates the
efficiency of the vortex penalization method to solve such problems.

4.1 Modeling and numerical setup

Following [10], we consider a solid body surrounded by a porous layer and immersed in an
incompressible fluid. In such a system, on can identify five different flow regimes corresponding
to different regions in the fluid. A first region is the boundary layer inside the porous medium,
close to the solid wall. This region is very thin compared to the second region which is characte-
rized by the homogeneous porous flow with Darcy velocity (regions numbered 1 and 2 in figure
12(left)). In the vicinity of the porous-fluid interface, two transient layers can be recognized
(numbered 3 and 4 in figure 12(left)). The first one corresponds to the porous layer velocity
increasing to reach a value ui at the interface, and the second one to the fluid boundary layer
leading to the free external flow. The fluid boundary layer size is then determined by u0 − ui
where u0 denotes the velocity of the main fluid flow (numbered 5 in figure 12(left)). The goal
is thus to compute the flow simultaneously in the porous medium, the fluid region and at the
interface between the two media. Several approaches have already been proposed to handle
this problem. The first one, which is mainly used to model flows past a solid with permeable
walls [20, 22], avoids to solve the porous flow by enforcing appropriate porous-fluid boundary
conditions [3]. This method neglects the porous medium physics and does not permit to have an
overall view of the problem. A second approach considers that the porous flow has to be accura-
tely computed, and solves the governing equations in each region coupling the Darcy equations
and the Navier-Stokes equations with an appropriate condition at the interface [5, 21]. This
approach is very difficult to handle especially because of the requirement of this appropriate
boundary condition. The method presented here, based on the vortex-penalization technique,
considerably simplifies the task since a unique equation is used for the whole domain and en-
ables to accurately model each of the different regions by varying the value of the dimensionless
penalization factor λ. In 2 dimensions, the penalized vorticity equation reads :

∂ω

∂t
+ (u.∇)ω =

1

Re
∆ω +∇× [λ χS(us − u)]. (35)

We recall that λ essentially depends, in the inverse proportion, on the physical intrinsic
permeability of the medium k which directly derives from the Darcy law (equation (7)). Varying
the λ value thus directly characterizes the different media.

Modeling the physics of three different regions enables one to deal with engineering problems
involving porous media. In the following, this approach is validated for a simple but informative
passive flow control problem. It was already used in [9, 8] with finite-difference methods for
pipe or square geometries. Here, the solid-porous-fluid configuration is applied to cover a semi-
circular cylinder geometry with a porous coating. The porous coating is applied on the obstacle
external surface in order to modify the vorticity generation of the boundary layer and the
vortex shedding. The presence of a porous medium at the solid-fluid interface indeed imposes
a kind of mixed boundary condition intermediate between the no-slip and the slip one on
the solid boundary [12]. As a result, the shear forces are reduced and the flow dynamics is
smoothed [8, 9, 10, 7]. This control technique, which allows to keep the obstacle geometry
unchanged, is expected to reduce drag forces and vortex induced vibrations, thereby improving
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Figure 12 – Velocity profile in the vicinity of a porous medium (left). Computational domain
for flow control past semi-circular cylinder (right)

the aerodynamic properties of the obstacle. The semi-circular cylinder can be considered as a
simplified section of an outside rear-view mirror of a vehicle. The mirrors, due to their spanwise
location, indeed generate a non-negligible wake which interferes with the flow past vehicle
sides. This provides a good motivation to perform flow control past such obstacles. As it was
shown in [34, 6], a flow past a square back obstacle is not dominated by longitudinal vortical
structures, therefore a preliminary two-dimensional study can be useful to supply information
on general trends for a control. However, the flow is three-dimensional and this 2D study will
be complemented by 3D computations.

In the following, the semi-circular cylinder has a total dimensionless diameter of d = 1
including a porous layer of thickness τ = 0.1 The backward face of the obstacle is centered
at the point (0, 0) (see Figure 12(right)). We first perform a convergence study of the method
applied to flow past a solid semi-circular cylinder, then present a λ-parametric study allowing
to determine the most efficient permeabilities in terms of flow control. We will consider flows
both at transitional (Re = 550) and highly transitional (Re = 3000) regimes.

4.2 Grid convergence

We consider in this section the vortex-penalization method for flow past a solid semi-circular
cylinder at Re = 550 and Re = 3000. Grid convergence is studied on three grid levels. For
Re = 550 the three consecutive mesh sizes are : h = 0.01, h = 0.005 and h = 0.0025 in the
computational domain D = [−4, 8]× [−4, 4]. For Re = 3000 as the boundary layer is thiner, we
perform the convergence study with three finer mesh sizes, respectively h = 0.005, h = 0.0025
and h = 0.00125. The simulations are carried out in a smaller domain D = [−2.5, 5]× [−3, 3]
in order to reduce the computational cost induced by the finest grid. Mean drag and enstrophy
values are reported in Table 3. At Re = 550, on the basis of these results, one can consider that
the grid convergence is achieved for h = 0.005 with ∆t = 0.025. At Re = 3000 grid convergence
is achieved with h = 0.0025 and h = 0.00125, which leads us to choose h = 0.0025 and
∆t = 0.002 for the coming simulations. Let us emphasize the interest of the vortex methods
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which enables here to handle a highly transitional regime using a relatively large time step
compared to classical Eulerian methods.

Re = 550 Re = 3000

Grid CD Z CD Z

h = 0.01 1.49 122 - -
h = 0.005 1.91 158 1.89 313
h = 0.0025 1.98 161 1.94 292
h = 0.00125 - - 1.96 280

Table 3 – Mean values of drag coefficient CD and enstrophy Z for flow past a semi-circular
cylinder at Re = 550 and Re = 3000.
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4.3 Parametric study with respect to the penalization parameter λ

In this section we study the influence of the porous layer permeability on the flow behavior
and the efficiency of such a passive control. This parametric study is performed at Re = 550
and Re = 3000 with four different values of the porous permeability inside the layer, namely
λ = 1 (high permeability), 10, 102, 103 (low permeability). Results are compared the results
corresponding to the solid (λ = 108) and fluid (λ = 0) cases. In all cases, the thickness of
the coating is set to ten percent of the diameter : τ = 0.1 (see Figure 13). According to
the grid convergence performed in the previous section (Table 3), the numerical simulations
are performed on a 2400 × 2000 grid (corresponding to h = 0.005) for Re = 550 and on a
4800 × 4000 grid (corresponding to h = 0.0025) for Re = 3000 in a computational domain
D = [−4, 8]× [−5, 5] (see Figure 12( right)).

In order to analyze the effects of our control approach we compare global flow quantities like
the drag force (Fx), computed according to the momentum equation (30) and the enstrophy
(Z) allowing to measure the dissipation effects in the flow as well as the delay of transition to
turbulence. Note that in this study we consider drag forces instead of drag coefficients since the
CD formula (33) involves the diameter d of the obstacle which is not clearly defined because of
the porous coating.

d

τ

d d

τ τ

λ = 10 8 λ = 01 ≤ λ ≤ 103

Figure 13 – (left) Solid/uncontrolled case, (center) Porous case, (right) Fluid case.

As can be seen in figure 14, which represents the time history of the global flow quantities
at Re = 550, the value λ = 1 inside the layer clearly appears to provide the best solution
in terms of flow regularization. Indeed, the mean value of the drag force reaches for λ = 1 a
minimum value, close to that of the fluid case, with a drag reduction of about 30% compared to
uncontrolled case (Table 4). For all the other values of porous λ, the drag reduction effects are
small or even negative (Table 4). The enstrophy evolution (Figure 14(b)) shows a progressive
reduction of the dissipation effects and the delay of transition to turbulence as the value of λ
decreases. Furthermore, we note that the result obtained with λ = 1 is even better than the
one of fluid case and represents an improvement of nearly 40% compared to uncontrolled case
(Table 4). The benefits induced by the presence of a highly porous layer are also highlighted in
figures 16 and 18 respectively depicting the mean velocity and mean vorticity fields. As already
emphasized in the literature [6, 7], the main source of drag forces for bluff bodies with square
back is the low pressure recirculation zone in the near wake of the vertical wall. With λ = 1, the
near wake structures are smaller and the back recirculation zone is drastically reduced (Figure
18). Moreover, the vortices swirl with a low velocity (Figure 16) and the structure of the global
and near wake resembles the one of the fluid case. This feature explains the important drag
reduction observed in figure 14(a). On the contrary, the flow behavior obtained with λ = 10
looks very similar to the one of the uncontrolled case with an important transversal extent of
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Re = 550 Re = 3000

Cases F̄x Z̄ F̄x Z̄

uncontrolled case 0.957 158.4 0.926 334.2
porous case λ = 1000 0.957 (-0%) 154.0 (-3%) 0.936 (-1%) 325.8 (-2%)
porous case λ = 100 0.968 (+1.1%) 143.3 (-10%) 0.873 (-6%) 270.0 (-19%)
porous case λ = 10 0.970 (+1.4%) 114.4 (-28%) 1.054 (+14%) 248.8 (-26%)
porous case λ = 1 0.695 (-29%) 97.5 (-38%) 0.870 (-6%) 236.7 (-29%)
fluid case 0.640 110.9 0.880 319.3

Table 4 – Reduction effects in terms of mean drag force and mean enstrophy brought by the
different layer permeabilities in comparison to the uncontrolled case at Re = 550 and Re = 3000.

the wake (Figure 18) and high velocities in the flow compared to the uncontrolled case. This
confirms the results given in Table 4 and leads us to conclude that this value of λ is not suitable
at this regime for our control approach.

At Re = 3000 the best solution for global flow regularization is also achieved setting the
λ parameter to 1 inside the porous coating. This configuration leads to a drag and enstrophy
reduction of 6% and about 30%, respectively, compared to the uncontrolled case (Figure 15
and Table 4). It leads to a significant regularization of the global flow field characterized by
a symmetric, thin and regular wake, and to smaller velocity gradients and vorticity values in
the vicinity of the detachment points and the recirculation zone (Figure 17 and 19). Moreover
this study emphasizes a phenomenon which already starts to emerge at Re = 550 and which
concerns the flow behavior observed when λ = 10 inside the layer. In this case, the flow field
experiences a high resistance inside the intermediate permeable medium, increasing the mean
drag force by 14% compared to the uncontrolled case (Table 4). Figure 17 also confirms the
negative effects of this layer permeability at such a regime, showing a chaotic wake with high
velocity gradients. In conclusion, all these results indicate that at Re = 3000 the control should
also be implemented with the high permeability coefficient λ = 1.
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Figure 14 – Effects of various layer permeabilities on the global flow quantities related to flow
past a semi-circular cylinder at Re = 550 with τ = 0.1.
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Figure 15 – Effects of various layer permeabilities on the global flow quantities related to flow
past a semi-circular cylinder at Re = 3000 with τ = 0.1.
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Figure 16 – Fields and isolines of mean velocity magnitude for the flow past a semi-circular
cylinder at Re = 550.
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Figure 17 – Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at
Re = 3000.
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Figure 18 – Zoom of the mean vorticity fields and isolines for the flow past a semi-circular
cylinder at Re = 550.
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Figure 19 – Zoom of the mean vorticity fields and isolines for the flow past a semi-circular
cylinder at Re = 3000.
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5 Conclusion

In this paper a method combining penalization, vorticity formulation and particle discretiza-
tion was described and applied to complex fluid-solid configurations. The penalization approach
greatly simplifies the implementation of vortex particle methods to handle accurately the no-
slip boundary conditions. Moreover, the penalization method enables to consider the governing
equations in the whole computational domain allowing the use of simple cartesian grids and
fast Poisson solvers to compute velocity fields. After a detailed validation on the circular cylin-
der benchmark, a the first application to moderate and high Reynolds flows around a moving
vertical axis turbine was presented. The results showed the efficiency of this hybrid vortex
immersed boundary method to realistically model flows past moving obstacles. The second
application illustrated the capability of the method to handle solid-fluid-porous media. The
distinction between the three different media is indeed performed by varying the value of the
penalization parameter without prescribing a boundary condition at the solid boundary or at
the porous-fluid interface. An application to passive flow control past a semi-circular cylinder
was performed at transitional and highly transitional regimes, consisting in adding a porous
sheath on the obstacle surface in order to smooth the flow dynamics. The presence of a porous
layer at the solid-fluid interface is responsible for a decrease of the shear forces and the vorticity
generation of the boundary layer, leading to significant wake stabilization and drag reduction.
This paper thus confirms the versatility of the method for complex flow problems.
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