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Deformable Porous Media with Double Porosity.
Quasi-Statics. I: Coupling Effects

I L. AURIAULT

Institut de Méchanique de Gremable, UMR 100, Université Joseph Fourier,
Institur National Polytechnigue de Grenoble, CNRS, BP 33 X,

F-38041 Grenoble Cedex, France

and

C. BOUTIN
Ereole National des Travauwx Publics de UErat, Labortoire Géometériaux, rue M. Audin,
F-69518 Vaulx en Velin Cedex, Framee

Abstract. We investigate the macroscopic quasi-static description of a deformable porous medium with
4 double porosity constituted by pores and fractures. For this purpose, we use an homogenization
techmigque which gives the macroscopic modelling from the description at the pore and fracture levels, Tt
appears that the macroscopic description is sensitive to the ratios between the different scales, {/° and
T, where [, I, 1" are characteristic lengths of the pores, the fractures and the macroscopic medium,
respectively. In the first paper we investigate the case 101" = (1), which exhibits a coupling between the
flows through the pores and the fractures. The macroscopic description is shown to depend on a single
pressure field and exhibits a broken symmetry, Other situations will be examined in a subscquent paper.
Large zpectra of pore and [racture sizes are also evoked.
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(. Nomenclature

Roman Letters

clastic tensor of the skeleton material,

effective elastic tensors of the skeleton,

D rate of deformation tensor,

e deformation tensor,

I subscript for the fractures,

k.. k, particular solutions for the velocity field v in the pores and the
fractures, respectively,

K, K, filtration tensors of the pores and the fractures, respectively,

| unit tensor,

Le characteristic lengths of the pore scale, the fracture scale and the
macroscopic medium, respectively,

Hon pore porosity and fracture porosity, respectively,

N normal unit vector,



Dps Pr pressures in the pores and the fractures, respectively,

¥4 subscript for the pores,

D. capillary pressure,

0 dimensionless number,

s subscript for the solid,

u,u,,u, solid, pore and fracture fluid displacements, respectively,

Vo, ¥y, Vr solid, pore and fracture fluid velocities, respectively,

X, X, x” space variables for the pore, fracture and macroscopic scales,

Greek Letters
OC/, d”, a*, ,y/’ ,y//

respectively,

coupling effective tensors entering the behavior relations of the
porous medium,

B, B coupling effective scalars entering the behavior relations of the
porous medium,

I, I boundaries of the pores and the fractures, respectively,

A Laplace operator,

\% gradient operator,

£ small parameter of the homogenization process,

my particular solutions for the displacement ficld u,

v’ particular solutions for the displacement field u,

i viscosity,

E &, Ex particular solutions for the displacement ficld u,

Gy, 0, O solid, pore and fracture fluid stress tensors, respectively,

T particular solutions for the pressure,

Q, periods at the pore and fracture scales, respectively,

Q,Q,. 9, Q

sp >

parts of the periods occupied by the solid, the pores, the solid
plus the pores and the fractures respectively.

Particular Symbols

{@Dq, {Da; KPDaor

volume averages of the quantity @ on Q, Q’, and Q plus Q’,
respectively.

1. Introduction

We consider a deformable porous medium made up of two porosity systems
undergoing a quasi-static excitation. One of the porosity systems is concerned with
the pores between the grains of the matrix and the second with the fractures. This
is the case with fractured reservoir rocks {Van Golf-Racht, 1982). Double porosity
means that the permeabilities K, and K, of the pores and the fractures, respectively,
are very different: K> Kp.

This means in turn that there are two characteristic lengths / and /" for the pores
and the fractures, respectively, with //l'=¢ < 1.



At the same time the porosity of the fractures n” is smaller than that of pore n:
n’ <mn.

We consider a reservoir of dimension O (I”), " > I’ and we look for a macro-
scopic description of this reservoir, i.e., a description which is valid at the scale /”.
In other words, we wish to obtain a macroscopic continuous equivalent medium to
the actual finely heterogeneous one.

A large number of papers have been devoted to the seepage of fluids through
rigid porous media with double or heterogeneous porosity. For recent works the
reader will refer to Quintard and Whitaker (1987, 1988), Saez ef al. (1989) and
Levy (1990). But a few ones are devoted to such media with deformable matrix.
Among them, let us recall the works by Barenblatt et al. (1960), Warren and Root
(1963) and Wilson and Aifantis (1982). These approaches are conducted at the
macroscopic scale, using phenomenological approach. A common characteristic is
the assumption that the macroscopic description introduces two different pressure
fields, i.e., the pressures in the pores and the fractures, respectively. It is also
assumed in Barenblatt er al. (1960) and Warren and Root (1963) that the
deformability of the solid only intervenes through the isotropic part of the solid
stress, i.e., through the two pressure fields. A good review of the first two
approaches and the corresponding solutions can be found in Van Golf-Racht
(1982).

For the sake of simplicity we limit ourselves to elastic matrices with small
deformations and the liquid filling the pores and the fractures will be considered as
Newtonian and incompressible. In the same way the demonstrations of the exis-
tence and uniqueness of the solution of the boundary value problems to be solved
at each step will be avoided. They are very often similar to those introduced for
studying single porosity media and most of them can be found in Auriault (1991)
or Levy and Sanchez-Palencia (1975). They all make use of variational formula-
tions which are very useful for finding effective coefficient properties.

We usc an homogenization technique to obtain the macroscopic description from
the description at the pore and fracture scales. In Auriault (1991) it is shown both
that the asymptotic developments method was the most powerful and that random
and periodic media behave macroscopically in the same way, if we limit ourselves
to determining macroscopic description structure. In the following pages, we
therefore adopt the homogenization process for periodic structures where the results
are the most rigourous and precise. The reader will refer to Auriault (1991) for the
methodology.

It appears that the result, i.e. the macroscopic description, is quite sensitive to the
ratio between the different scales ///” and [’/l”. In other words, there exist different
macroscopic descriptions depending on the double-porosity medium under consid-
eration. This is a new important point which was not mentioned before in the
literature. We limit ourselves in this paper to the case I’/I” = (I/I')?, which exhibits
a coupling between the flows through the pores and the fractures. Other cases will
be examined in a subsequent Paper II.



In a real reservoir a rather wide spectrum of sizes of pores and fractures can exist.
It is in general not embarrassing since the different cases are separated by powers
of ¢. With ¢ small, say 103, this gives for each case a wide range of possible values
of land I’. [ and I’ do not need to be well defined. Let us nevertheless suppose very
large spectra. The question is how to choose between all the possible modellings: all
cases are in some sense present. It will be seen in Paper II that one of the modellings
refered as Case 2 is the richest one. Since it includes all other modellings, Case 2
will appear as the good choice for such very large spectrum media, even if the
separation of scales between the pores and the fractures is poor (///” not small). But
it must be noted that the Case 2 is the more intricated one!

We first present in Section 2 estimations concerning spacial and time scales and
evaluate the dimensionless numbers entering the equations at the micro-level.

Then, in Section 3 the homogenization process is performed, which leads to the
macroscopic description. The matrix material is assumed to be elastic and the fluid
is viscous Newtonian. The main result is that there is only one macroscopic pressure
field at the first order (and not two as in models available in literature) and that the
macroscopic description has a similar structure to that of a classical single-porosity
medium, but with different effective parameters and a symmetry broken.

Section 4 is aimed at investigating a particular case where the material constitut-
ing the solid part is assumed to be incompressible. This permits us to point out the
difference with the classical, two-scale description (single porosity). For compari-
son, let us recall the single-porosity description as introduced by Biot (1941) from
a phenomenological approach and in Auriault and Sanchez-Palencia (1977) by
using the homogenization process for periodic structures. It can be written in the
form:

V(ce(u,) —ap) =0, ()
5 5
V(KVp)=—a(%tu‘))—ﬁ5—€. )

This system relates the pore pressure p and the displacement u, of the matrix. K is
the permeability and e the deformation. The system exhibits a symmetry: the same
tensor « intervenes in the two equations.

2. Estimations

We consider a porous medium with double porosity, exhibiting a double spacial
periodicity. At the pore scale, the period Q has a characteristic length /, the solid
occupies the domain Q, and the pores the domain Q,, respectively. The boundary
between the two is denoted I', see Figure 1. At the fracture scale, the period is Q’
with a characteristic length /. The solid plus the pores occupies the domain
Q;, and the fractures the domain Q). The boundary between the two is T, see
Figure 2. It should be recalled that the fractured reservoir has a characteristic
length [”.



X
1

Fig. 1. Periodic cell of the micro-porous medium.

1 e

Fig. 2. Periodic cell of the fractured medium.

2.1. THE THREE SPACIAL SCALES

We investigate the three spacial scales and evaluate the ratio ////” with respect to
I =e.

Let us consider, as an example, a particular reservoir [6] for which typical values
can be roughly estimated as follows:

— pore size & 10~* m. Let us take / =107 m, i.c. a thousand pores in the cell;

— the porosities #’ and n of the fractures and the pores, respectively, verify
n’ =5x 10721, n =0.2, and the fracture thickness is about 2 x 10~ m. If we admit
that a period Q' contains one flat fracture

’

2x107? r n =10"2

127
We deduce

I/~2x%x10"'m and l.l/: =5x10"3,



Let us consider a reservoir with /” = 10* m. Therefore, we have

%= 2 x 1073 = o(e?).

In the following, we investigate the case where I’//” = (I/I’)2. Tt should be noted
that the ratio [’/I" is quite sensitive to the considered data. As an example, an other
value of 77, say I” = 10° m, would lead to I’/I” = O(l/l). And, as it will be seen from
the following analysis, the resulting macroscopic description would be different. We
shall postpone such other similar cases to a later Paper IL

The three characteristic lengths [, /” and [” introduce three dimensionless space
variables and each unknown of a given boundary value problem a priori appears as
a function of these three dimensionless space variables, among others, for example
the time. We will rather use physical space variables, i.e., x, X" and x”, with
x=¢3x", and x’ = ¢ ~?x". Therefore, an unknown @ appears as

O=0(x,x,x",...), x=¢g %" and x =¢ =" €)

And the spacial periodicities of the porous medium induces the Q and Q' periodic-
ities of ® with respect to x and X', respectively. See Auriault (1991) for the
equivalence of the existence of separated scales with (3), ® Q and Q" periodic. The
next step is to look for each unknown using a perturbation method, i.e. looking for
® in the form of an asymptotic development with respect to the powers of e:

O =0%x, x,x",...) +e®@(x,x,X",...)+" ", (4
@’ Q and Q' periodic.

2.2. THE TWO TIME SCALES

We focus on the descriptions at the micro-scales which show two characteristic
times. It is given by the following set where the subscripts s, p and f stands for the
solid, the fluid in the pores and the fluid in the fractures, respectively.

— In the solid matrix the equations are the quasi-static momentum balance

Vo, =10, (5
and the constitutive law (infinitesimal elasticity)

o, =ae(u,), (6)
where the stress o, is related to the small deformation

e(u,) =1/2(V+'V)u,

by the elastic tensor a.
— In the fluid we have the quasi-static momentum balance

‘LLAV“ - Vpoz = O: 0y = ‘pal + 2”"D> (7)



where yu is the viscosity, v the velocity, p the pressure and D the rate of deformation:
D = e(v). The subscript « takes the values p and f in the pores and the fractures,
respectively.

The incompressibility is written

W, =0, a=p,f €))

— The boundary conditions on I" are the continuity of the normal stresses and
the velocities

o,;N=0,N onT, &)
where N is the unit normal to I" and

v.=v, onl. (10)

§

— The boundary conditions on I'V will be evoked below.

Consider Equation (7), which introduces the dimensionless numbers
Av,
vp,’

Q. =u a=p,f.

The driving force in our problem is a macroscopic pressure gradient Vp, = O(p/I").
In the same time the velocity varies in the pores and the fractures, which gives for

the viscous terms

pAv, = O(u %—’), UAvV, = 0<,u11’2:)

And from Equation (7) the viscous terms balance the pressure gradient

A\ v
%:O<H7£>=O<ﬂl—§>' (11)

Now, due to the very different sizes, the flow through the pores and the fractures
introduces two characteristic times 7, and T, respectively. We define them by

v,=u,/T, ve=uy/T;,

where u, =u, is a reference displacement and where we assume u, =u, = O(u,).
Then from (11) we obtain

Tf _ E _ 2

14

In the same way as above for the different spacial scales, these two separated time
scales introduce two dimensionless times and each unknown appears as a function
of these two. We prefer to use physical time variables, i.e. f and T with T =¢%¢. ¢
and T are well suited to describe the flows in the fractures and the pores,
respectively. Finally, taking into account this new feature, an unknown @ will be



looked for in the form:

® =D, x', X, 1, T) + @Y, X', X", t, T) +- - -, (13)

Xx=¢ X', X =g %x", T =¢g%, @, Q and Q periodic. The writing (13)

induces the choices of x” and ¢ as driving space and time variable, respectively.
Therefore, equations are to be normalized by using /” and T, as the characteristic
length and time, respectively.

2.3. NORMALIZATION

The set introduced above for the micro-description exhibits dimensionless numbers
and it is clear that these numbers must be estimated, using the powers of ¢ as a
measure, before introducing developments as (13) into the equations. The estima-
tions are directly related to the problem under consideration. We now investigate
such dimensionless numbers.

Firstly, we assume the macroscopic stresses in the solid part, the pores and the
fractures to be of the same order of magnitude. Therefore, (9) is correctly
normalized since the macroscopic point of view (13) has been adopted: x” is the
driving space variable and [” is then the right length to normalize.

Secondly, consider Equation (7) and the dimensionless number Q,, « = p, f. By
using [” and T, to normalize as indicated by (13), we obtain

uAv, pu,l”
Q = — = 0( p .
? Vp, I"*Tp

and with (11) and (12)

pu,l’T, I’T, 4
= = = 0 .
QP O<l"2Tf,uup 0 11121} (8 )

Using the same approach for the fractures leads to

0,=52 - 0(““” ) = 0(e").

-~ Vp, I"Tp
Therefore, Equation (7) is formally normalized by
e*ulv, —Vp, =0, a=p,f,
and the corresponding constitutive laws are
o, = —p,1+2:°uD.

Thirdly, we investigate the boundary conditions on I', between the domains €2,
and €. Due to the separation of scales, //I’ =¢ < 1, Q;, appears, at least at the first
order as a porous medium immersed in a fluid ;. We can therefore use the results
of Levy and Sanchez-Palencia (1975), which simply show the continuity of the



pressure, the total normal stress and the relative fluxes to the solid matrix
Po=0p (K000 +K0, 0N =0, N, v, =<V pa=(V,)q onl’,

where N’ is a unit normal to I'” and (o, >q, {V;>q and (v, >, are volume averages

on Q, which are equal to surface averages and then are fluxes. { - » = [, - dQ, where

the quantity to be integrated is taken as zero-valued outside its domain of definition.
In conclusion the normalized set is written in the form

Vo, =0 (14)
o, =ae(u;) in Q, (15)
e*uAv, —Vp, =0, (16)
o, = —p, |+ 2&e*uD, (17)
Vv,=0 inQ,, (18)
o, N=o0,N, (19)
u=u, onl, (20)
Py =Py (2D
(0,30 + <0, 20N = o,N, (22)
V=LV 00 =(V,0q onlI" (23)

The unknowns are looked for in the form of asymptotic developments like (13),
taking into account the fact that in € the solution is x-independent, except in
possible boundary layers along I'", where velocities and pressures in the pores and
in the fractures are matched

w=u(x, x,x", 5, T) +eul(x,x, X", , T)+...,
u, =u)(x, x,x", 1, T) +emy(x, x,x", 1, T) +...,
P, =po(X, X, X", 1, T) +ep (X, x, X", , T) + - -,
= (x,x",, T)+ 2w (x,x", ,T) +- -,
pr=p) (X, X", 6, T) +&’p (X', X", t, T) +- - -,

=3 ’ —2

x =g 3", X =& %", T =¢%t,

u, u,, p, Q and Q periodic and u}, p} Q periodic. Due to the fact that u, and p,
are x-independent their asymptotic developments are taken with respect to the
powers of &

3. Macroscopic Description

Introducing the above developments in the set (14)—(23), we obtain successive
boundary value problems to be solved on the periodic cell and concerning the



different terms of the expansions. They are investigated in the Appendix and lead
to the macroscopic equivalent description. This one is composed of a macroscopic
bulk momentum balance and a macroscopic mass balance.

The macroscopic bulk momentum balance is (A.28)

V'(c’e"(ud) —a"p°%) = 0. 24)

As expected, the space variable is x”. It relates the two unknowns u®(x”, ¢, T) and
p%x”, t, T), which represent the macroscopic displacement and the macroscopic
fluid pressure. The structure of (24) is quite similar to the classical corresponding
Biot Equation (1) for a single-pore system medium.

The macroscopic mass balance is (A.33)

0

) '

17 0 — /0 —_
V(e —n¥) = =y 2 o (29)
and from (A.29)
VYo —n'v) = =K V"p°, (26)

where (v} ) is the average of the fluid velocity in the fractures and K, is the
permeability tensor of the fractures.

Here again the structure of the result looks similar to that obtained by Biot for
a single-pore system medium, see (2). The set (24) —(26) represents the macroscopic
description of the investigated double-porosity medium. The variables are u®, p?,
and (¥} ). Despite the similarity with the classical consolidation for a single-pore
system media, where a” =9” (Auriault and Sanchez-Palencia, 1977), it can be
expected that, due to the coupling between the pores and the fractures, the effective
coefficients are dissimilar. In fact, a more fundamental fact occurs: the symmetry
a” =9" is broken and we have now in general y” # «”. This is shown in the next
part for a particular case.

4. Incompressible Elastic Material

With a view to underlining the difference with the description of a single-porosity
medium, let us consider a porous matrix made of incompressible elastic material. It
is a classical assumption in soil mechanics. In this case the single-porosity medium
gives a” = y” (Auriault and Sanchez-Palencia, 1977).

Now, the behaviour law for the matric becomes

G, = —psl + ae(us)7

and we have to add the incompressibility condition Vu, = 0.
Let us rapidly resume the approach adopted in Section 3, after having introduced
the appropriate asymptotic development for the new unknown p,.



The reader will easily verify that the results of Section 3 and the Appendix are
always valid until (A.24) included
W=x"1,T), uw=ux,:T), wvV=uX,x"tT),
Ju?

szl’jg:PO(X”, Z T), P11;=P,1;(X/a Xﬂ) Z T)) V2=V_?= S5t (Xﬂz t: T)

— The cell problem for u? is changed and includes now the new unknown p?:
Vo? =0, o= —pll+a(eu) +e(u) +e'(u)),
Vil +Vul + V'l =0, ¢?N=—-pIN onT.
It is straightforward to obtain for u?, instead of (A.23),
w = ¢(x)(e(w)) +e(w)) + i (x, x", 1, T).
And we have
pl=pp,=p%x",1,T).
—~ The results of section A.4 are always valid:
py=0 and vi=vi, p;=pi(x,x't,T).
— The average over Q of o9 (Section A.6) simplifies to
(080 =c'(e'(w]) +e"(u))) — (1 —n)p°l,

ie. with o’ =(1 —n)l.
And due to the fact that p°® is x- and x’-independent, the cell problem for u? is
now

V(c'(e'(w}) +e'(u))) =0,

c(e(u2) +e’ ()N =0 on T,
from which we deduce new expressions of (A.26) and (A.27) for u} and u,
respectively:

u; = '(x)e"(w) + i (x", 4, T),

v = E*(x, x)e"(wd) + & (x, x", 1, T).

Finally, the bulk momentum balance (A.28) is changed into:

V'(c’e’(u?) —p°l) =0, 27
which is (24) with o” = 1. We recover the structure of the classical bulk momentum
balance for a single-porosity medium made of incompressible material.

— The macroscopic mass balance is also easy to obtain, following section A.7.

We have always (A.30):

1
RV + V(¥ g + a J VvIN, dS =0. (28)
r



But now a similar relation stands for the solid part:
1
(1 =)V + (1 —n)V'¥? +l—9‘j v:N, dS =0.
r

Adding these two last relations member to member, together with the continuity of
v3, on I, gives

V(¥ a4+ (1 —n)vi) + Vv =0.
Relation (A.31) now becomes
V(¥ g —nvi) = =V'V) — Vvl

Since we have again
f ViN;dS = — j (V'V2 + V(v )) dOy,
I Q'sp

the new mass balance (25) is written in the form
V(e —n'¥g) = —(1—n(1 =n)) V'V, (29)

ie. with y"=(1—n(1—n"))l and " =0.

This equation differs from the case of single porosity, where y” =a” =1 and
p” =0, when the material constituting the porous matrix is incompressible. The
symmetry is borken: y” # «”. This result emphasizes the difference between double
and single porosity. Remark that when the pore porosity » vanishes, i.e. when the
medium becomes a single-porosity one, we recover the result y” =a” = 1. The case
n’ =0 corresponds to a nonconnected fluid, where consolidation is absent and the
theory developed has to be modified. The bulk medium behaves in this case as an
incompressible elastic medium.

5. Conclusion

We have investigated the macroscopic description of a double porosity, deformable
medium when the scale sizes are related by [’/I” = ({/I)%. The main results are:

— The macroscopic description exhibits only one pressure field.

— It looks like the single-porosity one with the pore plus matrix domain being
macroscopically equivalent to an elastic monophasic medium. But effective
coefficients are modified. In particular the y” = o” symmetry is broken. And
the elastic medium equivalent to the pore plus matrix domain does not behave
like the empty matrix itself.

— The investigated case corrsponds to a full coupling of the flows through the
pores and the fractures (see (A.32)).

— It 1s expected that other situations with different scale sizes would give
different macroscopic description. This will be the subject of the Paper II.



Appendix

Introducing the developments presented in Section 2 in the set (14) —(23), firstly we
see that the corresponding developments for the stresses are written in the form

o,=¢ 6, +e %0 +e lo; '+ +.. .,
_ 0 1 2.2
0, =0,+¢e0,+teo,+...,
0 2.2
op=0;+¢e0r 4. ... (A1)

And noticing V, V' and V”, the gradient operators with respect to x, x’and x”,
respectively, and adopting similar notations for other operators, we obtain succes-
sively by equating like powers of &:

In the solid part

0,7 = ae(uy),

o =a(e(u;) + e'(u})),

o' =a(e(u;) +e'(u)),

o} =a(e(w) + e'(u}) +e"(u))),

ol =a(e(u}) +e'(ul) +e’(ul))... (A2)

Vo3 =0, Vo724 Vo3 =0, Vo, '+ Ve 2=0,

Vel + Ve ' +V'e 3 =0, Vol + Ve +V'e2=0,

Voi+4 Vel +Vie, ' =0, Vol +Viel+Vel=0... (A3)
In the pores

0 1 2 0
_ ou, . Ou, . ou, Ou,

02> =2 = —Z... A4
Ve ot Vr ot ’ Vr ot oT (Ad)

oy =—pol,
0, =—pyl+2ue(vl),
o, =—pl+2u(e(v,) +e'(v),

o, =—pl+2u(e(v)) +e(v) ... (A.5)
Vo) =0, Vop+Voe)=0,

Vol +Vol=0, Vol+Vel+Viel=0... (A.6)
V=0, Vv, +Vv=0,

W +Vy, =0, Vv +VV:+Vv=0... (A7)



In the fractures

TR I8t 8T
oy =—p}l, o7 =—prl+2ue(v)...

Ve?=0, Voi+ V”a? =0, Ve}+Vie;=0

V’vj9 =0, V'v; + V') =
On I’

6, *N=0, 672N=0, 67IN=0,

oIN=0)N, o;N=0o,N,
02N=0)N, o;N=0g,N...

0
s

On I

v

py=p}, Ppy=0, pi=p;...

{677 )eN =0, <a;2>QN’ =0, (o, )eN =0,

({69 >a+ <05 a)N' = 6N
({o:>a+<0,50)N =0,
((629q+<02>o)N =62N' . ..
— < Da =<V as
—Vi e =¥ )a,
—(a) =g ...

(A.8)

(A.9)
(A.10)
(A.11)

(A.12)
(A.13)

(A.14)

(A.15)

(A.16)

Beginning by the lower orders, we now extract from (A.1)—(A.16) boundary value
problems defined in the solid domain, the pore domain, the fracture domain, the

solid plus pore domain or the bulk domain.

A.1. WE FIRST CONSIDER THE SOLID DOMAIN

- Equation (A.3a) with (A.2a) and (A.12a) is an homogeneous problem for u®

Q periodic, with respect to the variable x. It gives u® as x-independent:

W =u(x,x",,T) and o¢;73=0.

— Equation (A.3b) therefore simplifies in Vo 72 =

With (A.2b) and (A.12b) we obtain a linear problem for u! Q periodic, as a

function of e’(u®):

u; = (x)e’(w) + 0 (x, x", 1, T),

(A.17)



where ¢ is a third-order tensor well defined by the boundary value problem and u!
an arbitrary vector x-independent.

— Consider Equation (A.3c). Taking the volume average over Q, using the
periodicity of ¢! together with (A.12¢) leads to:

V<o, ?>a=0, (A.18)
where the averaged stress is given by

(o, De=ce' (W), ¢ =<a(l+e())a.

We know, see Auriault and Sanchez-Palencia (1977), that ¢’ is an elastic tensor.
Equation (A.18) and (A.15b) is therefore a well posed problem for u® € periodic.
Since it is homogeneous, it is straightforward to obtain w® =u®(x", ¢, T).

Therefore, u! appears as x-independent:
w=ul(x,x",1,T) and 672=0.

And (A.3c) reduces to Vo, ! =0.
Using the boundary condition (A.12¢) on I', u? appears as a linear vectorial
function of e’(u}), similar to (A.17):

W = E(x)e/(u!) + 63(x, x", 1, T). (A.19)

A.2. WE NOW TURN OUR ATTENTION TO THE PORE AND FRACTURE DOMAINS
~ Equation (A.6a) with (A.5a) gives pJ x-independent:
=p p(x x",t, T).

— The following order gives vo and p}, Q periodic, as linear functions of V'p)
through the classical boundary value problem (A.6b), (A.7a) with the adherence
condition (A.13a) on I"-v? being x-independent, we obtain (for a more detailed
explanation see Auriault (1991))

vo—ve=-k,(X)Vps, pr=tVpl+py(x,x", 1, T). (A.20)

where the tensor k, and the vector 7 are well defined by the boundary value
problem, and #, is an added x-independent arbitrary function.

— Considering (A.13b), where v} is x-independent and integrating (A.7b) on Q
leads to V/{v9 > =0.

Using now (41.a), where v? is x"-independent gives in turn

VK, VP2 =0, K,=<k, >, (A.21)

where K, is a classical permeability tensor, symmetrical and positive.
Equation (A.20a) with (A.9a) restricts the expression of the fracture pressure to
py=pp(x", 1, T).



Therefore Equation (A.21), defined in Q;, with the boundary condition (A.14a),
gives the following result, p? being x’-independent: py =p? =p°(x", 1, T).
And (A.20a) reduces to

o
vg=v2=—a;s(x ,6, 1),

which means that, at the time scale T, there is no relative movement between the
solid part and the fluid in the pore. We deduce also from (A.20b) that

Py =pp(x,x", 1, T).

A3. WE RETURN TO THE POROUS MATRIX

— Taking into account the results above, Equation (A.3d) reduces to
Vol +Va ! =0.

Using the boundary condition (A.12d) where p) is x-independent and taking the
average over Q gives

V<a; 1 Ha=0, (A.22)
where (o7 '>, with (A.2c) and the expression (A.19) of u? is written
(o7 Ya=ce'(u). (A.23)

¢’ is the elastic tensor previously introduced.

With the boundary condition (A.15c) on I, (A.22) and (A.23) form an homo-
geneous set for the unknown ul. Therefore we obtain u!=wu!(x",7 T), from
which (A.19) reduces to w?=u’(x’,x",#, T), and as a consequence we have
6, =0

— We now see that (A.3d) is restricted to Vo? =0, with ¢9 given by (A.2d) and
the boundary condition (A.12d) on I ¢?N= —poN.

As a consequence, u’ appears as a linear vectorial function of both

e'(u?) +e"(uwd) and pY:
w} = (x)(e'(w) +e"(w))) —n(x)p, + & (X, x", 1, T), (A.24)
where ¢ was defined above and # is a new, x-dependent vector. They both can be

obtained by solving the boundary value problem.

A4. WE COME BACK AGAIN TO THE PORES

— vl is given by (A.6¢c), (A.5c) where e'(vy) cancels out and the condition
(A.13b) on I'. The problem is similar to that for vJ and the solution is written:

vi—vl=-k,(x)Vpl, pi=1Vpi+pi(X,x", 1, T). (A.25)



— The mass balance (A.7¢), integrated on €, with the help of the condition
(A 13c) on I':

2=v2:a_u12’+a_ug
;T A

where the right-hand term is x-independent, gives V'<v, >, =0. Using (A.25a)

and the fact that v! is x’-independent, we obtain V'(K,V’p,) =0. This equation

together with (A.14b) on I' is an homogencous problem for p} and p, =0, and
therefore

1 _ t 2 a2 "
v, =V, 4 =p;(x,x", 1, T).

A.5. UP TO NOW THE RESULTS ARE
ug = u?(X”’ ta T)> u.sl‘ = ui (XH, ts T)a usz' = ug(x/7 X”’ t’ T)?
u} = (x)(e'(u7) + e"(u))) — n(x)p, + &i(x', x", 1, T),

py=pr=p°(x",1,T), ph=0, pr=pi(x,x",1,T),

oud dul
V2=V228—;(X,,I,T), v;:v;:a—;(x”z’T)_

A.6. WE ARE NOW IN A POSITION TO OBTAIN A BULK MOMENTUM BALANCE

— Equation (A.3e) simplifies to Vo! + V'g? =0.
Averaging over Q, with (A.12e) on I': 6!N=0g,N =0, gives V(0?2 >q=0.
This last equation can be rewritten by using the fact that p° is x’-independent

V(K3 Da —np’) =0,
where (9>, is obtained from (A.2d) and the above results (A.24) concerning u’
(0 >a=c'(e'(u)) +e"(u7)) —a'p.
With the condition (A.15d) on I
(o9 )0 —np°h)N' = —p°N/,
we obtain w? in the form of a linear vectorial function of e”(u®) and p°
w =(x)e"(u)) —n'(x)pp + B (X", £, T), (A.26)
where @2 is an arbitrary added vector. And the expression (A.24) for u? becomes
u) = C¥(x, x)e"(u)) —v'(x, x)pd + & (x, x", 1, T). (A.27)
— Now consider (A.3g) and (A.6d)
Vol + Va2 +Viel=0, Vo, + Ve, + V', =0.



Averaging on Q and Q,, respectively, and using the condition (A.12g) on I" gives
V(0% + 06250+ V(o +095q=0.

We join this equation with (A.10b): Vo7 + V’¢? =0.
Averaging these last two on €, and Qf, respectively, and using the condition
(A.15f) on T now gives

V<07 da + VKo + 0, paa =0,
where
€03 Yaa = c'(e'(w]) +e"(W)) —a’p’ > o
=c"e"(u?) —a*p°.
Finally
V'(c"e"(ul) —a"p®=0 (A.28)

which represents a macroscopic momentum balance for the bulk medium.

A.7. WE LOOK FOR A MACROSCOPIC MASS BALANCE
— The velocity v in the fractures is given by (A.10b) with (A.9b) and (A.11a):
pAY, —V'p; —V'p®=0, Vv¢ =0,

together with the boundary condition (A.16a) on I'", which reduces to v} =vJ. It is
again a classical problem for the flow through a porous medium

W =V = —k (x)V'p", (A.29)

where Kk, is a second-order tensor well defined by the boundary value problem.
— Taking into account all the above results, (A.6d) and (A.7c) becomes respec-
tively

UAVZ —Vp2 —V'p2 —V'p°=0, V¥ =0.

Since we have (A.13c), i.e. v, =v2  on I', where v; is x-independent as well as V'p?
and V“p°, the solution for v; is written in the form

v, —vi=—k,(x)(Vp:+V,0.
Taking the average on Q gives
Yo —nvi=—=K,(Vp,+ V)9, K,=<k, Q.

~ The mass balance (A.7d) Vv) + Vv, + V'v) =0, gives by integration on Q,
and (A.13d)

1
AV + V(2 Do + ial J V!N, dS =0. (A.30)
r



Now we have

3 1
, _ Oug  Oug

Y= Tar

Since u! is x-independent, the integral of du! /6T cancels out and we are left with

a 3
f v'N, dS=J %N, dS.
r r Ot
Introducing the expression (A.27) for u?, the fact that
vo =vU(x",1,T)

and

suz o ou?
72 s s — 4 S
Vvs—V<6t+5T> \% 57

Equation (A.30) can be written after some calculations in the form
,oe’(u?) op°
=g

V({vo Do —nv:) = —y p T

— Finally, (A.11Db) integrated on Q; gives

1
V”<V}) >Q/ + |Q_/ J V} N’ dS =0.
r

Using (A.16b) on I'” the last integral becomes
f viN:dS = J (v + (v D)N;, dS
- -

= —f (V2 4+ V(v2)) dO.
@y,

And with the help of (A.31) we have

RGN

V(e =) = =y S o
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