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People Detection in Heavy Machines Applications

M. Bui1,2, V. Frémont1,2, D. Boukerroui1,2, P. Letort3

Abstract— In this paper we focus on improving the performance
of people detection algorithm on fish-eye images in a safety system
for heavy machines. Fish-eye images give the advantage of a very
wide angle-of-view, which is important in the context of heavy
machines. However, the distortions in fish-eye images present many
difficulties for image processing. The underlying framework of the
proposed detection system uses Histogram of Oriented Gradients
(HOG) and Support Vector Machine (SVM). By analyzing the effect
of distortions in different regions in the field-of-view and by adding
artificial distortions in the training process of the binary classifier,
we can obtain better detection results on fish-eye images.

Index Terms— Heavy machines, pedestrian detection, fish-
eye, radial distortion, histogram of oriented gradients, machine
learning, support vector machine.

I. INTRODUCTION

Construction sites are considered as a high risk working

environment. People who work near heavy machines are

constantly at risk of being struck by a machine or its com-

ponents. Accidents between machines and people represent

a significant contribution to construction health and safety

hazards. It is hard for the drivers to keep watching all around

their vehicle and fulfill their productive task at the same

time, due to the complicated shape of these machines. It is

therefore mandatory to develop an advanced driver assistance

systems (ADAS) to help the driver watching the surrounding

area and being able to raise a pertinent alarm when people are

threatened. Notwithstanding many years of progress, safety

system for people working around heavy machine is still an

unresolved issue.

Various kinds of sensors have been tested and compared,

individually or combined, but each one has some drawbacks.

Range sensors, like radar, Light Detection And Ranging

(Lidar) and ultrasonic, which have good performance in

detecting obstacles, are unable to distinguish between objects

and people. Heavy machines often work in complicated

terrains with a lot of nearby objects. Sometimes they even

need to crush these obstacles. In these situations, range

sensors will trigger a permanent alarm, which is useless

and annoying for the drivers. Radio-frequency identification

(RFID) technology is a much more popular sensor used on

heavy machines and it actually very useful [1]. The only

drawback is the management of RFID tags. Only people

with the tag are protected. It is not always the case with

open construction sites where the access is not controlled.

The obligation of keeping the tag on them can be also an

issue with the employees. The last commontly used sensor
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Fig. 1: The proposed configuration of cameras on a heavy

machine: close areas in front and at the back of the machine

are covered with fish-eye cameras.

is the camera. It offers the best option as a low-cost and

polyvalent sensor. Image processing provides the ability to

recognize various kinds of objects, including people.

To our knowledge, most existing vision systems in this

context do not integrate recognition functions. For example,

Caterpillar develops an “Integrated object detection system”

on their machines which is claimed to work on very harsh

condition. Briefly, it is an obstacle detection system by

radar with cameras assistance for visualization1. Camera-

based systems are also provided by other manufacturers like

Motec, Orlaco, Waeco. To the best of our knowledge, there

is only one product on the market that provides vision-based

assistance for obstacle and human detection on construction

machine: the Blaxtair system from Arcure SA2. It is a stereo

vision based system that detect obstacles using the depth

map. In order to reduce the complexity and computation

resource, the recognition algorithm is applied only on one

of the images and only in regions of interest (ROIs). The

ROIs correspond to the positions of the detected obstacles.

This kind of system is widely used in the automobile sector.

Recently, pedestrian detection system on automobile,

which share a lot of characteristics with the context of

heavy machines, has known important progresses [2], [3] .

Although the problematic is similar in both contexts, we can

clearly distinguish the two. In the automobile field, cars need

to stop if there is an obstacle, no matter if it’s a pedestrian or

an object. The task of recognizing people is more important

for heavy machines where the main requirement is human’s

safety. Besides, cars often operate at a higher speed. While it

is important for the system on automobile to be able to detect

people at far distances, heavy machines need a larger field of

view (FOV) to cover the nearby area. Construction machines

often have a complicated shape and large size, which can also

1http://safety.cat.com/cda/layout?m=154441&x=7&f=399105
2http://www.arcure.net/2-33976-BLAXTAIR.php

http://safety.cat.com/cda/layout?m=154441&x=7&f=399105
http://www.arcure.net/2-33976-BLAXTAIR.php


Operation Repartition of accidents (%)

Static 20

Move backward 42

Move forward 27

Not specified 11

TABLE I: Repartition of accidents cause by different heavy

machine operations.

benefit from the large FOV. One other essential difference is

that when cars run on the road, even in worse case, there will

always be a dominant plane. Hypothesis about this plane are

important to detect obstacles and region of interest (ROI) in

view frames. This hypothesis is not always true for the heavy

machinery environment. Harsh working conditions are also

a challenge but it is not covered in this work.

Based on the survey of accidents caused by heavy machine

in France for the period from 1997 to 2008 [4], the system

requirements and the configuration of sensors are defined.

Table I shows that the danger is highly dependent on the

action taken by the machine and its direction. Accidents

rarely happen on the sides of the machines, except for

“rotating-base machines”, such as excavators. The back and

the front of a machine in motion are the most dangerous

parts. Fish-eye camera mounted at the back and in front of

the machine seem to be a good option (see Fig.1).

Our contribution in this paper lies at the analysis of the

influences of radial distortions in fish-eye images on the

people detection algorithm. An approach using enhanced

training dataset is proposed to bypass these influences. The

paper is organized as follows. First, a brief description of the

characteristics of fish-eye cameras is discussed in section

II. Section III presents our vision-based people detection,

the underlying assumptions together with the analysis on the

distortion of human appearance. The proposed solutions are

then details in section IV. Results of the experiments are

shown in section V followed by the conclusion section.

II. FISH-EYE CAMERAS

A. Distortion model

Wide-angle cameras have noticeable geometric distortions.

While these distortions may be artistically interesting, it is

generally desirable to remove them in many applications

in computer vision. The geometric distortions include two

major components: radial and tangential. Radial distortion

causes image points to be translated by an amount propor-

tional to their radial distance to the optical center. Tangen-

tial distortions (or decentering distortion) are generally less

significant than radial distortions and are produced by the

misalignment of the optical centers of various lens elements.

Given a real point P = (X,Y, Z)T , the undistorted

point projected on the image sensor will be represented as

p = ( u v )T =
(

X fx
Z

Y
fy
Z

)T

with fxand fy the

focal length of the camera optic. In the case of a wide-angle

camera, the position of the distorted point on image is given

by:
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imated distortion and p0 = (u0, v0) is the principal point

of the camera. δu(r), δv(r) represent radial distortions and

δu(r), δv(r) are the tangential distortions along the two image

axes.

Among different distortion models, the standard polyno-

mial model is the most popular [5]. In this paper, the standard

polynomial model at third degree is used:
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The optimal values of (fx, fy, u0, v0) and

(k1, k2, k3, p1, p2) are estimated through a calibration

process. It is a prerequisite for any accurate geometric

measurements from image data. Most of calibration

methods use known geometric patterns, such as corners,

dots, circles, lines and other features that can be easily

extracted from images. The method described in [6] and

implemented in [7] was used in our work

B. Warping fish-eye images

Given calibration information of a camera system, it is

possible to remove distortions and to apply any operator

in a local perspective plane. Wrapping a fish-eye image

into a local perspective image is the direct way to avoid

non-perspective deformations. Unfortunately, besides adding

computational load, this approach also creates undesirable

effects. It take about 60ms to warp an image at the VGA

resolution (640×480)3, which cannot be ignored in real-time

applications. The non-uniform compression of the image

structures (stretching effect) is a consequence of the wide-

angle lens mechanism. There are more details about the scene

on the center than on the edges of the image. In other words,

the image sampling frequency decreases proportionally with

the distance to the image center. The image rectification

process wraps the distorted wide-angle image into a local

perspective plane. As a result, the boundaries of a rectified

image will contain vacant pixels. These pixels are not directly

mapped from the original image but often deduced from the

neighbor pixels by performing interpolation method. Image

information at the boundaries of a rectified image is very low

because of blurred. Basically, image processing operators are

directly and uniformly applied on the whole rectified image

without consideration of these non-uniform degradations.

The advantages of the fish-eye camera lie at the large field-of-

view (FOV) so these boundaries areas are very important. A

3Measured on a Windows 64-bit PC (CPU inter core i5 2.5Ghz), by using
the library OpenCV 2.4.



drop in performance is observed in our experiments (section

V-B).

Daniilidis [8] and Bulow [9] are two of the first researchers

who argued that the warping of wide-angle images should

be avoided. Recently, there are others researchers who pro-

posed approaches to increase matching rate of Scale-invariant

feature transform (SIFT) for wide-angle images [10], [11].

Using fish-eye cameras in recognition applications turn out

to be an interesting research subject.

III. PEOPLE DETECTION ON FISH-EYE IMAGE

A. Related works

There is a quite large literature on people detection, dating

back to [12], [13], [14]. Better features or combination of

features, classifiers, prior knowledge and dataset have helped

people detection algorithms to become much more reliable.

The readers can refer to the recent surveys [15], [16] for

more details. People detectors typically follow a sliding

window paradigm which entails feature extraction and binary

supervised classification. Nearly all recently detectors use

some forms of oriented gradient histograms features. Support

vector machines and boosting are used in majority of the

cases for classification. Recent works are more focused on

combining multicue, multi-sensors [17], [18] or on handling

the pose variation and occlusion problems [19], [20]. To the

best of our knowledge, there have been few works exploiting

fish-eye cameras for people detection.

The underlying people detector used in this paper was

implemented as described in [14] and [21]. Histogram of

oriented gradients (HOG) features were extracted using the

integral histogram method [22]. Training and prediction

processes are done by light SVM [23]. The detection is

done by sliding a window with dense multiscale scanning. A

comparison of this detector to others key methods of people

detection is shown in experimental section (V-B).

B. Distortion analysis

The distortion of a wide-angle camera is not identical over

all the image area. It particularly affects the detection at

close range and at the image boundaries. The measurement of

geometric distortion of fish-eye images and how it affects the

detection performance is not well studied in the literature. We

tried to illustrate these distortions in function of the relative

position between the fish-eye camera and a person of an

average width and height W ×H (see Fig.2).

The center point P0 of a person in the coordinate of

the camera is projected on the image plane as described

in section II-A. The distortion of one point is computed

relatively to the center point as δp0− δpij . The mean square

error (MSE) of all points belonging to the rectangular R of

size W ×H around the person is:

MSEP 0
=

∑

(δp0 − δpij)
2

w � h
i, j ∈ R (4)

Although, the optic is open up to 90◦ on each side, a

person is not fully visible on the image for angles higher

than 60◦ and a distance closer to 0.7m. The curves in Fig.2

Fig. 2: Mean-square-error versus the relative position of a

person to the camera.

Fig. 3: Regions on the field-of-view of fish-eye camera:. In

zone A and B, people appearance have significant distortion.

In zone C, the distortion is not noticeable. In zone D, people

are not fully visible on image.

show that the distortion of a person at a distance higher than

2m between 0◦ and 30◦ can be ignored. The most interesting

range to be considered is therefore between 30◦ and 60◦

where the distortion does not depend much on the depth

distance but only on the radial angle. We can briefly say that

the difference between fish-eye and perspective images lies

in region A and B (see Fig.3).

IV. PROPOSED TRAINING AND DETECTION ALGORITHM

A. Distortion simulation

The direct approach to solve the problem of distortion is

to divide the field-of-view of the camera into sub-regions,

function of angles and distances. We assume that the su-

pervised classifier (SVM in this case) can recognize dis-

torted pedestrian appearance when it is trained with distorted

sample images. The training samples are separated into sub

classes, proportional to the amount of distortion. Wide-

angle optics are very different from one to another. If a

training dataset is built based on one kind of optic, it is

not usable with the others. Because the building process

of a training and a testing databases require a significant

amount of time and resources, it will not be very practical.

It is possible however to artificially deform existing image

databases, taken by perspective cameras, in order to simulate



Fig. 4: Example of artificial distorted images at distance of

1m. From left to right: original image, distorted image at 0◦,

distorted image at -40°, distorted image at 40°.

wide-angle camera geometry. Given an approximate size

(W ×H) of a person and its center position in the camera

frame, a distorted appearance can be calculated using the

camera projection equation and a given distortion model (see

Eq.1). The algorithm is described in Algo.1 and example of

distortion simulation is illustrated in Fig.4.

Algorithm 1 Distortion process

Input: - Height of the camera H0 and average real size of a

person W ×H

- Sample image of person at resolution a× b

- Position P0 = (X0, Y0, Z0)

Output: - Distorted image correspond to position P0 at

resolution a× b

1: ◮ Compute size on image of the person by Eq.1

2: ◮ Resize sample image to resolution w × h

3: ◮ Each pixel p = (i, j) from sample image correspond

to a real point P = (X,Y, Z) where






X = X0

Y = (H0 −H) + jH
h

Z = Z0 −
W
2 + iW

w

with
i ∈ [0, w]
j ∈ [0, h]

4: ◮ Project all points P on image as described in II-A

5: ◮ Crop and resize to original size a× b

There is a trade-off between the image quality and the

amount of distortion added to the training examples. This

process has the drawback of introducing missing pixels

that have to be filled by interpolation. This phenomenon is

proportional to the amount of distortion and we believe that

it may have an effect on the performance of the detector. In

practice, the quality of the image samples simulated at angle

superior to 60◦ are unusable because the samples loose most

image details.

B. Proposed people detection approach

Using distorted images generated by the method men-

tioned above (IV-A), we propose two people detection ap-

proaches in fish-eye images. To this end, the angles Θ =
[−45°, 0°, 45°] and the distance D = 1.5m were chosen to

represent the critical areas A and B in the FOV as shown in

III-B.

(a) (b)

Fig. 5: Flow chart of proposed people detection algo-

rithms: (a) Multi-angles approach. (b) Mix-training-dataset

approach.

1) Multi-angles approach: 3 detectors (left, right and

center) are trained by 3 different distorted datasets corre-

sponding to the 3 angles in Θ. The detection follows a

sliding-window paradigm with dense multiscale scanning

(rescaling factor e = 1.1). The three specialized detectors

operates on 3 overlapping image areas. The left-model takes

care of the first and second zones; the center-model works

on two center zones and the right-model operates in the third

and forth zones (see Fig.5a). Overlapping the detection zones

avoids occlusions when a person is at the frontier between

two zones. This approach needs however a classifier fusion

mechanism at the overlapping areas; here zone 2 and 3 as

shown in Fig.5a. The winner takes all approach is adopted

in our work.

2) Mix-training-dataset approach : In this approach we

use one classifier only. The classifier is however trained

on sample images without distortions and with simulated

distortions at different rates. Starting from a training dataset

without distortions, we replace randomly a percentage of

undistorted images by distorted ones. The latter are simulated

at different distortion angles. Therefore the total number of

positive and negative sample images in the training dataset is

the same in all cases. After training, the detector is applied

on the whole image(see Fig.5b). Percentage of the distorted

images in training dataset can vary and its effect on the

performance of the detector is analyzed in section V-B.

V. EXPERIMENTS AND RESULTS

A. Evaluation method

The detection system takes an image and return bounding

boxes with corresponding scores or confidence indicators. A

detected bounding box A and a ground truth bounding box

B form a match if they have a sufficient overlap area. In the

PASCAL challenge [24] and the survey of Dollár [15] et al.,

the overlap criterion between the two bounding box A and

B is t = A∩B
A∪B

> t0 where t0 is a threshold. t0 = 0.5 is



Label “person” “person-occluded” “ignore”

Percentage of occlusion <20% >20% and <60% >60%

TABLE II: Labels used in evaluation

considered reasonable and is commonly used. The protocol

of evaluation is adapted from the tool of Dollár which was

use in [15]. As the context of heavy machines requires to

reduce false detection rate, the result is represented in miss

rate against false positive per image (FPPI).

Only bounding boxes with height more than 50 pixels are

considered. This is reasonable because the smallest sliding

window used in our tests is of 48×96 pixels and there is no

upsampling applied to detect smaller objects. Each detected

bounding box may be matched once with the ground truth

and redundant detections are consider false positive.

We have built a test dataset with 7 image sequences

of 3200 images captured by a fish-eye camera (Firefly-

MV from Pointgrey, angle-of-view is up to 180◦). The

sequences include indoor and outdoor scenes with different

backgrounds. The camera is held at the height of 90cm and

parallel to the ground. They are not taken in a crowded

place, there are maximum 3 or 4 people in a frame. The

annotation for the ground truth of these image sequences are

done by the labeling tool of Dollár et al.. This tool require

marking the bounding box around objects in some key-

frames and provide linear interpolation to infer the bounding

boxes of the same object in intermediate frames. The object

can be labeled, in our case as: “person”,“person-occluded”

and “ignore” (see table II). In the evaluation, only “person”

label are considered.

Each detector is trained by 15 660 positive and 20 000

negative sample images taken from the Daimler dataset [16].

B. Results

The first experiment involves the HOG-SVMLight detector

(conventional detector), multi-angles detector (denoted by

Full-distorted) and Mix-training-dataset detectors at different

percentage of distorted images (denoted by Mix-model). We

plot miss rate versus FPPI (lower curves indicate better

performance) and use the log-average miss rate to summarize

detector performance. The log-average miss rate computed

by averaging miss rate at nine FPPI rates evenly spaced in

log-space in the range 10−2 to 100 (for curves that end before

reaching a given FPPI rate, the minimum miss rate achieved

is used). When curves are somewhat linear in this range, the

log-average miss rate is similar to the performance at 10−1

FPPI but is more stable in general [25], [15]. The displayed

legend entries are ordered by log-average miss rate from the

worst to the best. Fig.6 show the full image evaluation of all

the detectors. Fig.7 summary the performance of detectors

versus percentage of distorted image in training dataset.

The multi-angles approach which was trained with only

distorted images have the worst performance. The degrada-

tion of image quality during the distortion process affects

remarkably the performance of the detection. Notice however

that our proposition to train the SVM classifier with distorted

Fig. 6: Result of different detectors trained with different

percentage of distorted samples on fish-eye test sequences.

Fig. 7: Log-average miss rate versus the percentage of

distorted image in training dataset.

and non-distorted images gives better results. In Fig.6, we

also show the performance of HOG-SVMLight detector on

rectified test sequences to a perspective plane. The results

are even worse than applying the HOG-SVMLight directly

on the fish-eye images. The approach of rectified distortion

might work with a small amount of distortion but it is not

adapted to fish-eye optics where the angle-of-view is too

large.

Fig.8 shows the performances of all the detectors in

function of the horizontal position of a person on the fish-eye

images. Detection results are compared to the ground truth

annotation on a region of 240 × 480 pixels. By sliding this

region horizontally across the image we hope to see experi-

mentally the effect of the distortion rate on people detection.

The results are better at the center than at the boundaries of

the images, which is proportional to the amount of distortion.

The curves are not symmetric because people do not evenly

appear across images in the test sequences. For the multi-

angles detector, the performance is the same at all angles

but it is hard to conclude anything because the log-average

miss rate is over 95%, which is far worse than the rest.



Fig. 8: Evaluation of detection performance along the hor-

izontal axis of fish-eye images. Different detectors trained

with different percentage of distorted images are compared.

VI. CONCLUSION

In this paper a novel approach to improve the performance

of people detection on fish-eye images is proposed. It is

demonstrated by the result of the experiments that enriching

the training dataset can handle the distortion on the people’s

appearance. Such approach has the advantage of being more

generic as it can be adapted to all camera optics with

known distortion in order to simulate the camera distortions.

Moreover, the increase of complexity is only on the training

process without any influence on online detection speed.

In future work, the performance of the mix-training-dataset

approach can be enhanced by increasing the quality of the

distorted images. More precisely, a thorough analysis of the

effect of interpolation during distorting process of sample

images is needed. Additionally, a comparison of the HOG

feature vectors of perspective image and distorted sample

images might reveal a possibility to introduce the distortion

directly on the HOG vectors without manipulating the sample

image.

In order to improve the robustness of the detection, espe-

cially in the context of heavy machines, we plan to combine

fish-eye camera with a range sensor (Lidar or ultrasonic).

Indeed, range sensors are very helpful in accelerating the

detection and reducing false positive in a complex texture

background.
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