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Abstract

In this note, we are interested in the numerical analysis of the collapse of an
unstable sandpile. By using the collapsing model introduced by Evans, Feldman and
Gariepy in [6], we give a description of the phenomena in terms of a composition of
projections onto interlocked convex sets around the set of stable sandpiles.

1. Introduction and main results

We are interested in the collapse of an unstable sandpile; i.e. taking some sandpile
with an unstable initial configuration, what is the final resting state of the sandpile
after various avalanches. To describe the problem we need to use some function
u : IRD → IR, the height function of the sandpile, where D ≥ 1 (in practice D = 2).
The stability constraint of the sandpile reads

|∇u| ≤ 1,(1)

and has the physical meaning that the sand cannot remains in equilibrium if the slope
anywhere exceeds angle π/4. Now, if g represents the height of a starting instable
profile (assume for instance g is the profile of a wet sandpile) i.e.

L := ‖∇g‖∞ > 1,

then constraint (1) forces the height function rearranges itself to achieve the profile
in a stable configuration. Our main interest lies into the description of mapping
IQ : g → IQ(g), where IQ(g) is the final stable profile of the sandpile associated with the
initial unstable one g.
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By using the Monge Kantorovich mass transfer theory, Evans, Feldman and
Gariepy [6] introduced a simplistic model for the collapse of an unstable sandpile.
It is given by the limit of the flow governed by the p−Laplacian, as p → ∞ :







−ut = ∆pu in Q := (0,∞) × Ω

u(0) = g in Ω.
(2)

Letting p → ∞, one expects that the limit of solution up satisfies evolution equation
(multivalued)

ut ∈ ∂IIK(u) in Q,(3)

where IIK is defined by

IIK(u) =

{

0 if u ∈ K

+∞ otherwise,

K =
{

u ∈ W 1,∞(Ω) ; |∇u| ≤ 1 a.e. Ω
}

.

and the subdifferential operator ∂IIK is defined in L2(Ω), by

h ∈ ∂IIK(u) ⇔ h ∈ L2(Ω), u ∈ K and

∫

Ω

h (z − u) ≤ 0 ∀z ∈ L2(Ω).

It is clear that compatible initial data for (3) leaves in K, so that the limit of the
solution of (2), when g 6∈ K, is singular: letting p → ∞, turns out to grew up a
boundary layer connecting g to the limit. In [6] (see also [3]), it is proved that that
the limitting function is v(1) (independent of t), where v is the unique solution of







v(t)/t − vt(t) ∈ ∂II∞(v(t)) a.e. t ∈ (δ, 1]

v(δ) = δ g
(4)

and δ = 1/‖∇g‖∞, in the sense that v ∈ W 1,2(δ, 1;L2(Ω)), v(δ) = δ g and, for any
t ∈ (δ, 1], v(t)/t − vt(t) ∈ ∂II∞(v(t)).

In terms of Monge Kantorovich mass transfer theory the equation (4) means that
v is a potential corresponding to optimal moving the mass µ+ = v(., t)/t dx to µ− =
vt(., t) dx.

As a consequence of [6] (see also [3]), we have the following characterization of
mapping IQ in terms of evolution equation (4):

Theorem 1 ([6] and [3]) For any g ∈ L2(Ω), IQ(g) = v(1), where v is the unique
solution of (4).

In [6], it is also proved that operator IQ is not the projection onto K, the set of stable
sandpiles. In order to give the numerical analysis and simulation of the collapsing of
a sandpile, we give, in this paper, a more precise description of IQ, in terms of a
composition of projections onto interlocked convex sets of L2(Ω), around convex K.
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To set our main results, let us give some notations. For a given convex C ⊆ L2(Ω),
we denote by IPC , the projection with respect to the L2 norm on C, defined by:

z = IPC(u) ⇔ z ∈ C,

∫

Ω

(u − z)(v − z) ≤ 0 for any v ∈ C.

For a given [a, b] compact interval of IR, we say that (di)
n
i=0 is an ε−discretization of

(a, b), provided ε > 0, d0 = a < d1 < d2 < .... < dn = b and di − di−1 ≤ ε, for any
i = 1, ...n. Notice that, letting ε → 0 in an ε−discretization of a fixed interval (a, b),
is equivalent to let n → ∞. For any d > 0, we denote by K(d), the convex set given
by

K(d) =
{

z ∈ W 1,∞(Ω) ; |∇z| ≤ d
}

.

Theorem 2 Let g ∈ W 1,∞(Ω), a := ‖∇g‖∞ and (di)
n
i=0 an ε−discretization of (1, a).

Then
IQ(g) = lim

n→∞

IPK(1)IPK(d1)...IPK(dn−2)IPK(dn−1) g.(5)

Proof : For i = 1, ...n, let us denote by

ui = IPK(dn−i)ui−1 and u0 = g,

i.e.
ui + ∂IIK(dn−i)(ui) ∋ ui−1 for i = 1, ....n,

and
IPK(1)IPK(d1)...IPK(dn−2)IPK(dn−1) g = un.

Setting, for i = 1, ....n,
zi = ui/dn−i,

it is not difficult to see that

zi + ∂IIK(1)(zi) ∋
dn−i+1

dn−i

zi−1.(6)

Now, setting
ti = 1/dn−i for i = 0, ...n,

it is clear that (ti)
n
i=0 is an ǫ−discretization of (δ, 1). So that, the ǫ-approximate

solution of






vt(t) + ∂II∞(v(t)) ∋ f(t) a.e. t ∈ (δ, 1]

v(δ) = δ g,

with f(t) = v(t)/t, associated with (ti)
n
i=0 converges to v in C([δ, 1];L2(Ω)). More

precisely, taking the Euler implicit discretization in time

vi + ∂IIK(1)(vi) ∋ vi−1 +
ti − ti−1

ti−1
v(ti−1), i = 1, 2, ...n,(7)
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where, we used the discretization of f given by fi =
v(ti−1)

ti−1
, for i = 1, ...n, and

defining ǫ-approximate solution vε by vε(t) = vi for t ∈ [ti, ti+1] for i = 0, 1, ...n − 1,
we have

vε → v in C([δ, 1];L2(Ω)), as ε → 0,(8)

and
vn → v(1) in L2(Ω), as n → ∞.(9)

Moreover, it is not difficult to see that (7) is equivalent to

vi + ∂IIK(1)(vi) ∋
dn−i+1

dn−i

vi−1 +
ti − ti−1

ti−1
(v(ti−1) − vi−1),

so that, by using (6) and the L2−contraction property of
(

I + ∂IIK(1)

)−1
, for i =

1, ...n, we get

‖vi − zi‖2 ≤
dn−i+1

dn−i

‖vi−1 − zi−1‖2 +
ti − ti−1

ti−1
‖v(ti−1) − vi−1‖2

≤
ti

ti−1
‖vi−1 − zi−1‖2 +

ti − ti−1

ti−1
‖v(ti−1) − vi−1‖2.(10)

Since, v0 = z0 = g, then iterating (10) for i = n, ..1, we obtain

‖vn − zn‖2 ≤

n
∑

i=2

tn
tn−i+1

tn−i+1 − tn−i

tn−i

‖v(tn−i) − vn−i‖2 +
tn − tn−1

tn−1
‖v(tn−1) − vn−1‖2

≤
1

δ2

n−1
∑

i=2

(tn−i+1 − tn−i) ‖v(tn−i) − vn−i‖2 +
1

δ
(tn − tn−1) ‖v(tn−1) − vn−1‖2

≤
1

δ2

n−1
∑

i=0

(tn−i+1 − tn−i) ‖v(tn−i) − vn−i‖2

≤
1

δ2

n−1
∑

i=1

(ti+1 − ti) ‖v(ti) − vi‖2,

where we used the fact that, for any k = 0, ...n, δ ≤ tk ≤ 1 and 1/tk ≤ 1/δ ≤ 1/δ2.
Considering vε given by vε(t) = v(ti) for t ∈ [ti, t+1i[ and i = 0, 2, ...n − 1, we obtain

‖vn − zn‖2 ≤
1

δ2

n−1
∑

i=0

∫ ti+1

ti

‖vε(t) − vε(t)‖2 dt

≤
1

δ2

∫ 1

δ

‖vε(t) − vε(t)‖2 dt

Since, as ε → 0, vε → v and vε → v in C([δ, 1];L2(Ω)), then

lim
n→∞

‖vn − zn‖2 = 0.
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At last, since zn = un/d0 = un, then by using (9), we deduce that, as n → ∞,

un → v(1) in L2(Ω),

and (5) follows.

2. Numerical approximations

2..1 The numerical problem

Let g ∈ W 1,∞(Ω) be given. Our aim in this section is to give a numerical approxima-
tion of IQ(g). By using Theorem 2, it is clear that it is enough to find an numerical
method to compute the projection of a given function, that we call g again, on a
convex K(d) with arbitrary d ≥ 1.

In [5], we gave a numerical method based on duality arguments for numerical ap-
proximation of the projection on the convex K(1). Even if the context here is different,
we are going to use the same method for our situation. Remember that

u = IPK(d)(g)(11)

is equivalent to
J(u) = inf{J(v), v ∈ W 1,∞(Ω)}

where J(v) = 1
2‖v − g‖2

L2 + IIK(d)(v). In, [5], we have proved that:

min
v∈W 1,∞(Ω)

J(v) = sup
q∈Hdiv(Ω)

−G(q)(12)

where

G(q) =
1

2

∫

Ω

|divq|2 +

∫

Ω

g divq +

∫

Ω

|q|

and
Hdiv(Ω) = {q ∈ (L2(Ω))2, div(q) ∈ L2(Ω)}.

Remember also, that in general sup
q∈Hdiv(Ω)

−G(q) is not reached in Hdiv(Ω). Indeed,

there exists σ a IRN -vector valued Radon measure such that div(σ) ∈ L2(Ω), u =
IPK(d)g = g − divσ in D′(Ω) and σ is related to the tangential derivative of u with
respect to |σ|, the total variation measure associated to σ (cf. [4]). For the exact
description of σ one can see the paper [11] for equivalent formulations in divergence
form of equation v ∈ ∂IIK(d)f .

So, an numerical approximation of IPK(d)g will follow by approximating
sup

q∈Hdiv(Ω)

−G(q) and computing g − div(q). Coming back to the numerical approxi-

mation of IQ(g), we take (di)
n
i=0 an ε−discretization of interval (1, ‖g‖∞), with a given

small ε > 0 ; i.e. a large n, and we use the algorithm of approximation of IPK(d)g, to
approximate composition

IPK(1)IPK(d1)...IPK(dn−2)IPK(dn−1) g.
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2..2 Space discretization

The solution of dual problem (12) is computed using Raviart Thomas finite element
of the lowest order [12]. Denoting by h the average length of the elements, Vh the
space of finite elements and σh the solution of problem

G(σh) = inf
qh∈Vh

G(qh),(13)

the convergence of σh to σ is guaranteed remarking that we have

‖σh − σ‖L2 ≤ ‖rh(σp) − σ‖L2

where rh is the projection onto Vh.

Finally, the minimization of G on Vh is implemented using a relaxation procedure.

3. Numerical results

In this section we present some numerical results on collapsing sandpiles.

3..1 The one dimensional case

First, we study example given in [6], where the stable sandpile is not the projection of
the initial data. More precisely, the unstable initial data is composed in the following
manner: two sandpiles with sides of slope equal to 2, with a width equal to 0.2, and
centered around x0 = ±0.22; and one sandpile with sides of slope equal to 250, with
a width equal to 0.008 and centered around x = 0. The spacial discretization of the
problem is carried out using N = 2500 points.

The maximal slope of this sandpile is |∇g|∞ = θ = 250.
Figure 1 presents solutions obtained using different uniform discretizations of in-

terval [1, θ]. In others words, decreasing maximal slope θi for sequence of projections

is chosen such that θi = 1 + i θ−1
M

for i = 1, ...,M . In the numerical experiments, the
number M of projections is ranging from 1 to 5000.

One can observe that if we do a direct projection on K(1) (M = 1), then the
numerical final stable sandpile is composed of three adjacent sandpiles. When number
M of subdivisions increases, the central small triangle disappears.

These numerical results corroborate the theoretical results given in [6], where it is
shown that in this case, the stable sandpile consists of two adjacent triangles.

3..2 The two dimensional case

This paragraph is devoted to the two dimensional computations.
First, figure 3 shows the convergence rate of the approximation of one projection,

when the average step of discretization tends to zero. In this computation, domain Ω
is unit square (−1, 1)2, discretized with squares [−1+ ih,−1(i+1)h]× [−1+ jh,−1+
(j + 1)h], with h = 2

N
and 0 ≤ i, j ≤ N for a given integer N .

Initial data g is a cone centered on the origin with radius of the basis equal to
R = 1

4 , height H = 1 (see figure 2, up), and exact solution u is a cone centered on the
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Figure 1: The counterexample where the final stable sandpile is not the direct projection
of the initial unstable sandpile (details on the right)

origin with radius of the basis R̃ and height H̃ equal to R̃ = H̃ = 2−
4
3 ≃ 0.397 (see

figure 2, down).
Results plotted in figure 3 shows the L2-norm of the error ‖uN −u‖L2(Ω) where uN

is the computed solution, versus number N = 2
h

of squares used for the discretization
in each direction. This figure shows that the convergence rate of the error verifies
‖uN − u‖L2(Ω) = O(N−α) with α ≃ 1.92, when N is ranging from 50 to 150.

We present here a result with a more complex initial unstable sandpile, plotted in
figure 4. The maximal slope of this sandpile is equal to |∇g|∞ = 4.1, and the maximal
slope of the final stable sandpile is equal to |∇u|∞ = 0.4.

Remarks In the theoretical part of this article, for seek of simplicity, angle α of the
maximal slope of stability has been taken equal to α = π

4 (see formula (1) for example),
but the results presented here are true with any angle α ∈ (0, π

2 ). Here, we have chosen
α ≃ π

8 .

Two different boundary conditions are considered to compute the projection:

• First, we take the Dirichlet boundary condition: u(x) = 0 on ∂Ω. This simulates
the experiment where the sandpile collapses on a table. The result is plotted in
figure 5.

• Then, we consider the Neumann boundary condition: m∂nu = 0 on ∂Ω. This
simulates the case where domain Ω is the bottom of a box. Here, the mass has
to be conserved. The final stable sandpile is plotted in figure 6. The initial and
the final sandpile has a volume equal to 0.62178, which shows that the volume
is numerically conserved.

These results are obtained using a spacial discretization with N = 100 and a
number of emboities projections equal to M = 40. In this case, the result does not
depend on M .
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Figure 2: Initial unstable (up) and final stable (down) sandpile
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Figure 3: Accuracy of the method (L2-norm of the difference between the exact and the
computed solution)

Figure 4: Initial unstable sandpile
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Figure 5: Collapsing sandpile with Dirichlet boundary condition

Figure 6: Collapsing sandpile with Neumann boundary condition
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