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In this paper, we address the problem of weak solutions of Yudovich type for the inviscid MHD equations in two dimensions. The local-in-time existence and uniqueness of these solutions sound to be hard to achieve due to some terms involving Riesz transforms in the vorticity-current formulation. We shall prove that the vortex patches with smooth boundary offer a suitable class of initial data for which the problem can be solved. However this is only done under a geometric constraint by assuming the boundary of the initial vorticity to be frozen in a magnetic field line.

We shall also discuss the stationary patches for the incompressible Euler system (E) and the MHD system. For example, we prove that a stationary simply connected patch with rectifiable boundary for the system (E) is necessarily the characteristic function of a disc.

Introduction

In this paper we shall consider a fluid which is electrically conducting and moves through a prevalent magnetic fields. The interaction between the motion and the magnetic fields are governed by the coupling between Navier-Stokes system and Maxwell's equations in the magnetohydrodynamics approximation. The basic equations of hydromagnetics are given by, (1)

       ∂ t v + v • ∇v -ν∆v + ∇p = b • ∇b, t > 0, x ∈ R d , d ∈ {2, 3}, ∂ t b + v • ∇b -µ∆b = b • ∇v, div v = div b = 0, v |t=0 = v 0 , b |t=0 = b 0 ,
where v denotes the velocity of the fluid particles and b the magnetic field which are both assumed to be solenoidal. The pressure p is a scalar function that can be recovered from the velocity and the magnetic field by inverting an elliptic equation. The parameters ν, µ ≥ 0 are called the viscosity and the resistivity, respectively.

The major use of MHD is in liquid metal and plasma physics and the derivation of the governing equations can be done by using Maxwell's equations where we neglect the displacement currents, div b = 0, curl b = 4πJ and curl E = -µ∂ t b with E the electric field, J the current density and µ the magnetic permeability. To complete the fields equations we need an equation for the current density J which requires some assumption on the nature of the fluid. This is described by Ohm's law

J = σ E + µ v × b .
The combination of the preceding equations will lead to the second equation of the magnetohydrodynamics system [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF]. When the conducting fluid is in motion currents are induced and the magnetic field will in turn act on the fluid according to Lorenz force

L L µJ × b = µ 4π curl b × b, curl b × b = b • ∇b - 1 2 ∇|b| 2 .
Observe that in the foregoing formula Lorentz force is decomposed into two parts: the first one which appears in the first equation of ( 1) is called a curvature force and acting toward the center of curvature of the field lines. The second one is a magnetic pressure which acts perpendicular to the magnetic fields and it is implicitly contained in the pressure term p. For a general review about the derivation of the MHD equations and some dynamical aspects of the interaction between the magnetic fields and the velocity we can consult the references [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF][START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF][START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF][START_REF] Duvaut | Inéquations en thermoélasticité et magnétohydrodynamique[END_REF]. The theoretical study of the MHD system has started with the pioneering work of Alfvén [START_REF] Alfvén | Existence of electromagnetic-hydrodynamic waves[END_REF] who was the first to describe the generation of electromagnetic-hydrodynamic waves by conducting liquid using the MHD equations. From mathematical point of view a lot of progress has be done from that time. For example, the local well-posedness theory which is a central subject in modern PDEs is carried out in various classical function spaces, see for instance [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF][START_REF] Casella | Global classical solutions for MHD system[END_REF][START_REF] Chen | On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces[END_REF][START_REF] Fefferman | Higher order commutator estimates and local existence for the non-resistive MHD equations and related models[END_REF][START_REF] Jiu | Mathematical results related to a two-dimensional magneto-hydrodynamic equations[END_REF][START_REF] Kozono | Weak and classical solutions of the two-dimensional magnetohydrodynamic equations[END_REF][START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF][START_REF] Miao | Well-posedness of the ideal MHD system in critical Besov spaces[END_REF][START_REF] Sermange | Some mathematical questions related to the MHD equations[END_REF][START_REF] Wu | Viscous and inviscid magnetohydrodynamics equations[END_REF] and the references therein. However the global existence of such solutions is an open problem except in two dimensions with the full dissipation ν, µ > 0.

From now onwards we shall focus only on ideal MHD fluid corresponding to ν = µ = 0 and therefore the equations become (2)

       ∂ t v + v • ∇v + ∇p = b • ∇b, x ∈ R d , t > 0, ∂ t b + v • ∇b = b • ∇v div v = div b = 0, v |t=0 = v 0 , b |t=0 = b 0 ,
One of the most important consequence of the second equation of [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] and known in the literature by Alfvén's theorem is the freezing of the magnetic field lines into the fluid; this means that the magnetic lines follow the motion of the fluid particles. We note that the ideal MHD is quite successful model for large-scale plasma physics and can be illustrated in various phenomena in Earth's magnetosphere and on the sun like the sunspots. As we shall see the frozen-in magnetic fields will be of crucial importance in our study of weak solutions of Yudovich type in the two dimensional space.

It is in some extent true that the system [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] is at a formal level a perturbation of the incompressible Euler equations and therefore it is legitimate to see whether the known results for Euler equations work for the MHD system as well. For example, it is proved in [START_REF] Schmidt | On a magnetohydrodynamic problem of Euler type[END_REF][START_REF] Secchi | On the equations of ideal incompressible magnetohydrodynamics[END_REF] that the commutator theory developed by Kato and Ponce in [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF] can be successfully implemented leading to the local well-posedness for [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] when the initial data v 0 , b 0 belong to the sub-critical Sobolev space H s , s > d 2 +1 and the maximal solution satisfies v, b ∈ C([0, T ⋆ ); H s ). Whether or not the lifespan T ⋆ is finite is an outstanding open problem even in two dimensions. However it is well-known that for planar motion and in the absence of the magnetic field b 0 = 0, classical solutions are global in time since the vorticity ω ∂ 1 v 2 -∂ 2 v 1 is transported by the flow, namely we have

(3) ∂ t ω + v • ∇ω = 0.
This shows that Euler equations have a Hamiltonian structure and gives in turn an infinite family of conservation laws such as ω(t) L p = ω 0 L p for any p ∈ [1, ∞]. These global a priori estimates allow Yudovich [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF] to relax the classical regularity and establish the global existence and uniqueness only with ω 0 ∈ L 1 ∩ L ∞ . Unfortunately, as we shall see the structure of the vorticity is instantaneously altered for the model [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] due to the effects of the magnetic fields. This fact will be a source of at least two main difficulties. The first one is connected to the global existence of classical solutions where no strong global a priori estimates are known till now. The second one concerns Yudovich solutions whose construction is not at all clear even for short time. This can be clarified through the equations governing the vorticity and the current density

j = ∂ 1 b 2 -∂ 2 b 1 , (4) 
∂ t ω + v • ∇ω = b • ∇j ∂ t j + v • ∇j = b • ∇ω + 2∂ 1 b • ∇v 2 -2∂ 2 b • ∇v 1 .
We observe that the magnetic field contributes in the last nonlinear part of the second equation with the quadratic term which can be described as a linear superposition of the quantities R ik ωR lm j, where

R ik = ∂ i ∂ k ∆ -1
is the iterated Riesz transform. The main step when we wish to deal with Yudovich solutions is to be able to propagate the L p ∩ L ∞ bound of the vorticity for some finite value of p. This problem is not trivial due to two effects. The first one is the lack of continuity of Riesz transform on the bounded functions; and the second one concerns the nonlinear structure of the term H(v, b). We point out that even for finite value of p no global a priori estimates are known in the literature and their persistence requires the velocity to be in the Lipschitz class. One of the main scope of this paper is to be able to construct local unique solutions for a subclass of Yudovich data. In broad terms, we shall see that the vortex patches offer a suitable class of initial data for which the construction of Yudovich solutions is possible. But before stating our result let us briefly discuss what is known for Euler equations with this special initial data. First, we say that a vorticity ω 0 is a patch if it is constant inside a bounded set Ω and vanishes outside, namely and by normalization we can take ω 0 = χ Ω . It is clear from the transport equation (3) that this structure is not altered through the time and the vorticity remains always a patch. This means that for any positive time ω(t) = χ Ωt , with Ω t ψ(t, Ω) being the image of Ω by the flow. A connected problem that was raised first in the numerical studies and leading later to a nice theoretical achievement was to understand whether or not the boundary develops finite-time singularities. In [START_REF] Chemin | Perfect incompressible Fluids[END_REF], Chemin proved that when we start with a smooth boundary, say ∂Ω belongs to the Hölderian class C 1+ε , 0 < ε < 1, then for any time t the boundary ∂Ω t remains in the same class. The basic idea of Chemin is that only the co-normal regularity ∂ X ω of the vorticity contributes for the Lipschitz norm of the velocity. The choice of the vector fields (X t ) can be done in such a way that it should be tangential to ∂Ω t for any positive time. This is satisfied when it is transported by the flow, that is, (6)

∂ t X + v • ∇X = X • ∇v.
One of the main feature of these vector fields is their commutation with the transport operator ∂ t + v • ∇, which leads to the important equation ( 7)

(∂ t + v • ∇)∂ X ω = 0.
This means that the co-normal regularity of the vorticity is also transported by the flow and this is the crucial tool in the framework of the vortex patches.

Our main concern here is to valid similar results for the MHD equations and as we shall see the situation is slightly more complex. The presence of the magnetic field will contribute with two opposite effects. First, it will destroy the structure of the vortex patches and introduce nonlocal singular operators of Calderón-Zygmund type. Second, the fact that the magnetic field is transported by the flow-it is a push-forward vector field-will be of great importance especially for measuring the co-normal regularity of the vorticity.

Before stating our contribution in this subject we shall discuss a little bit an intermediary problem concerning the stationary patches. This consists in finding simply connected bounded domains Ω and D such that ω(t) = χ Ω and j(t) = χ D define a solution for the vorticity-current formulation (4). We can analyze the same problem for the 2d incompressible Euler equations. The only example that we know for this latter model is the Rankine vortices corresponding to the domains with circular shape. We will show that these are in fact the only stationary patches. This expected but non trivial result can be obtained from Fraenkel's theorem on potential theory as we shall see later in Section 5 and whose proof is based on many tools of elliptic equations. For the MHD system, we will conduct the same study with the same tools and our results can be summarized in the following theorem.

Theorem 1.1. The following assertions hold true.

I)

Let Ω be a simply connected domain with rectifiable Jordan boundary. Then χ Ω is a stationary patch for the 2d Euler equations if and only if Ω is a ball.

II)

Let D and Ω be two bounded domains and ω 0 = χ Ω , j 0 = χ D .

(1) If D = Ω then (ω 0 , j 0 ) is a stationary solution for the MHD system (2).

(2) If the boundaries ∂D and ∂Ω are disjoint and rectifiable then (ω 0 , j 0 ) is a stationary solution for the system (2) if and only if Ω and D are concentric balls.

Few remarks are in order.

Remark 1.2. In the statement II) -(1) of the preceding theorem, there are no constraints on the domain Ω. This is due to the special structure of the inviscid MHD equations: if we take b 0 = v 0 then we can readily check that this corresponds to a stationary solution for (2) without pressure. This illustrates one of the deepest and rigid geometric structure of the magnetic field which forces here the motion to be independent in time.

Remark 1.3. The stationary patches of Euler equations appear as a special case of rotating patches whose study were done in a series of papers such as [START_REF] Burbea | Motions of vortex patches[END_REF][START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF].

Some additional remarks and comments will be raised in Section 5. Now we shall come back to the consideration of Yudovich solutions in the framework of vortex patches and we shall formulate a general statement later in Theorem 6.1.

Theorem 1.4. Let Ω be a simply connected domain of class W 2,∞ and ω 0 = χ Ω . Let b 0 = ∇ ⊥ ϕ 0 be a divergence-free magnetic field such that its current density j 0 belongs to L 1 ∩W 1,p , with 2 < p < ∞. Assume that:

(1) Compatibility assumption:

b 0 • n = 0 on ∂Ω,
where n is a normal vector to the boundary ∂Ω.

(2) There exist two constants δ, η > 0 such that

(8) ∀ x ∈ R 2 , |ϕ 0 (x) -λ| < η =⇒ |b 0 (x)| > δ
where λ is the value of ϕ 0 on the boundary ∂Ω. Then there exists T > 0 and a unique solution (v, b) for the system (2) with

ω, j ∈ L ∞ ([0, T ]; L 1 ∩ L ∞ ) and v, b ∈ L ∞ ([0, T ]; Lip).
Moreover, for any t ∈ [0, T ], the boundary of ψ(t, Ω) belongs to W 2,∞ .

Before giving some details about the proof, we shall give few remarks.

Remark 1.5. It is worth noting that the compatibility assumption is not only restrictive to the vortex patch problem but appears in the current vortex sheets called also in the literature by the MHD tangential discontinuity. The construction of local in time piecewise smooth solutions apart from a smooth hypersurface Γ t is known provided that the magnetic field b 0 is tangential to Γ 0 and a stability condition is satisfied at each point of the initial discontinuity. For more details see [START_REF] Coulombel | A priori estimates for 3D incompressible currentvortex sheets[END_REF][START_REF] Morando | Stability of incompressible current-vortex sheets[END_REF] and the references therein.

Remark 1.6. The existence of ϕ 0 in the foregoing theorem follows from the incompressibility of b 0 which is a Hamiltonian vector field. Moreover, since b 0 is co-normal to the connected curve ∂Ω according to the assumption (1), then necessarily this curve must be a level set of ϕ 0 and this justifies the existence of λ in the assumption [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF]. For more details see Proposition 3.4.

Remark 1.7. The compatibility assumption (1) imparts to the magnetic field some rigidity: it must be singular for at least one point inside the domain Ω. This follows easily from the fact that the Hamiltonian ϕ 0 is constant on the boundary and thus it has a critical point in Ω.

Remark 1.8. The condition [START_REF] Casella | Global classical solutions for MHD system[END_REF] implies in particular that the extrema of the Hamiltonian function ϕ 0 should not be located on the regular level surface energy containing the curve ∂Ω. This means somehow that the magnetic field must be regular close to this level set. This assumption is very strong and unfortunately it does not allow to reach Chemin's result for the Euler case corresponding to b 0 = 0. It seems that the restriction described by the compatibility assumption (1) is relevant and essential in our analysis since it induces deep algebraic structure; we need that any co-normal vector field to the initial patch must commute with the initial magnetic field. However we can hope to dispense with the non degeneracy assumption of the magnetic field around the boundary which sounds to be a technical artifact. Remark 1.9. As we have already seen, Chemin proved in [START_REF] Chemin | Perfect incompressible Fluids[END_REF] the global persistence of the C 1+ε , 0 < ε < 1 boundary regularity for the two dimensional Euler equations. But in our main result we require more: the boundary should be at least in the class W 2,∞ . This is due to the following technical fact: the space C ε-1 ∩ L ∞ used naturally to measure the co-normal regularity is not an algebra and to overcome this difficulty we should work with positive index spaces.

Remark 1.10. As we shall see next in Lemma 2.4, the assumptions (1) and (2) of Theorem 1.4 are not empty.

Outline of the proof. The proof uses the standard formalism of vortex patches developed by Chemin in [START_REF] Chemin | Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel[END_REF][START_REF] Chemin | Perfect incompressible Fluids[END_REF] for incompressible Euler equations. As we have already seen, one of the main feature of Euler equations is the commutation of the push-forward vector fields given by [START_REF] Caflisch | Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD[END_REF] with the transport operator leading to the master equation [START_REF] Calderón | Commutators of singular integral operators[END_REF]. This algebraic property is instantaneously destroyed by the magnetic field which contributes with additional terms as the following equations show (9)

∂ t ∂ X ω + v • ∇∂ X ω = b • ∇∂ X j + ∂ ∂ X b-∂ b X j ∂ t ∂ X j + v • ∇∂ X j = b • ∇∂ X ω + ∂ ∂ X b-∂ b X ω + ∂ X {2∂ 1 b • ∇v 2 -2∂ 2 b • ∇v 1 }.
Thus and in order to get similar equations to (4) we should at this stage kill the terms involving the vector field ∂ X b -∂ b X. Therefore we shall assume that the vector fields X and b commute initially and this algebraic property is not altered through the time. For the sake of simplicity we can make the choice X = b and this algebraic constraint will lead in the special case of the vortex patch to the geometric constraint described by the compatibility assumption. It is worth noting that the main obstacle to reach the regularity C 1+ε for the boundary is the estimate of the last term of the system (9) in the space C ε-1 and it is not at all clear how to proceed since C ε-1 ∩ L ∞ is not an algebra. Besides the geometric condition stated in the compatibility assumption will force the Hamiltonian magnetic field to be degenerate at least at some points inside the domain Ω and subsequently we shall get from the vortex patch formalism some useful information only far from this singular set. In this region, it is not clear how to construct a non degenerate vector field which commutes with the magnetic field. To circumvent this difficulty we use that the initial data are smooth wherever the magnetic field is degenerating combined with the finite speed of propagation of the transport operator. So for a short time we expect the influence of the singular parts to be localized close to the image by the flow of the initial one. This fact is not quite trivial due to the nonlocal property of Riesz transforms in [START_REF] Burbea | Motions of vortex patches[END_REF] and thus some elaborated analysis are required.

Especially, the truncation of the solutions far from the singular set should be done in a special way by cutting along the streamlines of the magnetic field. We emphasize that in this step we use an algebraic identity for the last term of (4), see [START_REF] Fefferman | Higher order commutator estimates and local existence for the non-resistive MHD equations and related models[END_REF], combined with Calderón commutator type estimates.

The paper is structured as follows. In Section 2 we recall some classical spaces frequently used in the vortex patch problem. We end this section with some results on the persistence regularity for various transport models. In Section 3 we shall review some basic results on the algebra vector fields . In Section 4 we detail some weak estimates for both the vorticity and the current density. In Section 5 we shall be concerned with the stationary patches and we plan to give the proof of Theorem 1.1. Some general facts on conformal mapping and rectifiable boundaries will be also discussed. Section 6 will be devoted to the proof of Theorem 1.4 and its extension to generalized vortex patches. Finally, we shall close this paper by some commutator estimates.

Basic tools

In this section we shall introduce some function spaces and investigate some of their elementary properties. We will also recall few basic results concerning some transport equations. First we need to fix a piece of notation that will be frequently used along this paper.

• For p ∈ [1, ∞], the space L p denotes the usual Lebesgue space.

• We denote by C any positive constant that may change from line to line and by C 0 a real positive constant depending on the size of the initial data. • For any positive real numbers A and B, the notation A B means that there exists a positive constant C independent of A and B such that A CB.

• For any two sets E, F ⊂ R 2 and x ∈ R 2 , we define

d(x, E) inf{|x -y|; y ∈ E}; dist(E, F ) inf{d(x, F ); x ∈ E}.
• For a subset A ⊂ R 2 , we denote by χ A the characteristic function of A which is defined by

χ A (x) = 1, if x ∈ A, 0 if x / ∈ A 2.1. Function spaces.
In what follows we intend to recall the definition of Hölder spaces C α and Sobolev spaces of type W 1,p . Let α ∈]0, 1[, we denote by C α the set of continuous functions u : R d → R such that

u C α = u L ∞ + sup x =y |u(x) -u(y)| |x -y| α < ∞.
The Lipschitz class denoted by Lip corresponds to the borderline case α = 1,

u Lip = u L ∞ + sup x =y |u(x) -u(y)| |x -y| < ∞.
We shall also make use of the space C 1+α (R d ) which is the set of continuously differentiable functions u such that

u C 1+α = u L ∞ + ∇u C α < ∞.
By the same way we can define the spaces C n+α , with n ∈ N and α ∈]0, 1[. Now we shall recall Sobolev space W 1,p for p ∈ [1, ∞], which is the set of the tempered distribution u ∈ S ′ equipped with the norm

u W 1,p u L p + ∇u L p .
Our next task is to introduce the anisotropic Sobolev spaces, which are the analogous of the anisotropic Hölder spaces introduced by Chemin some years ago in [START_REF] Chemin | Perfect incompressible Fluids[END_REF].

Definition 2.1. Let ε ∈ (0, 1), p ∈ [1, ∞] and X : R 2 → R 2 be a smooth divergence-free vector field. Let u : R 2 → R be a scalar function in L 1 ∩ L ∞ .

(1) We say that u belongs to the space C ε X if and only if

u C ε X u L 1 ∩L ∞ + ∂ X u C ε-1 < ∞.
(2) The function u belongs to the space W p X if and only if

u W p X u L 1 ∩L ∞ + ∂ X u L p < ∞
where we denote by ∂ X u = div(Xu).

We will see later in Section 3 some additional properties about the Lie derivative ∂ X . Now we shall introduce the notion of Hölderian singular support.

Definition 2.2. Let ε ∈]0, 1[ and u : R 2 → R. We say that x / ∈ Σ ε sing (u) if there exits a smooth function χ defined in a neighborhood of x with χ(x) = 0 and χu belongs to C ε . The closed set Σ ε sing (u) is called the Hölderian singular support of u of index ε. Example: Let Ω be a Jordan domain and u = χ Ω be the characteristic function of Ω. Then

Σ ε sing (u) = ∂Ω. Moreover, if the boundary is C 1 then ∂ X χ Ω = -(X • n)dσ ∂Ω ,
with dσ ∂Ω the arc-length measure on ∂Ω and n the outward unit normal. In the particular case where X is tangential, said also co-normal, to ∂Ω we get

∂ X χ Ω = 0.
Now we shall briefly discuss some elementary results on the Littlewood-Paley theory. First we need to recall the following statement concerning the dyadic partition of the unity. There exist two radial positive functions χ ∈ D(R d ) and

ϕ ∈ D(R d \{0}) such that i) χ(ξ) + q≥0 ϕ(2 -q ξ) = 1; ∀ q ≥ 1, supp χ ∩ supp ϕ(2 -q ) = ∅ ii) supp ϕ(2 -j •) ∩ supp ϕ(2 -k •) = ∅, if |j -k| ≥ 2.
For any v ∈ S ′ (R d ) we set the cut-off operators,

∆ -1 v = χ(D)v ; ∀q ∈ N, ∆ q v = ϕ(2 -q D)v and S q = -1≤p≤q-1 ∆ p .
From [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], we split formally the product uv of two distributions into three parts,

uv = T u v + T v u + R(u, v), with T u v = q S q-1 u∆ q v, R(u, v) = q ∆ q u ∆q v and ∆q = 1 j=-1 ∆ q+j .
We will make continuous use of Bernstein inequalities (see [START_REF] Chemin | Perfect incompressible Fluids[END_REF] for instance).

Lemma 2.3. There exists a constant C such that for q, k ∈ N, 1 ≤ a ≤ b and for u ∈ L a (R d ),

sup |α|=k ∂ α S q u L b ≤ C k 2 q(k+d( 1 a -1 b )) S q u L a , C -k 2 qk ∆ q u L a ≤ sup |α|=k ∂ α ∆ q u L a ≤ C k 2 qk ∆ q u L a .
Now we shall recall the characterization of Hölder spaces in terms of the frequency cut-offs. For s ∈ [0, ∞[\N, the usual norm of C s is equivalent to

u C s ≈ sup q≥-1 2 qs ∆ q u L ∞ .
Now we shall prove that the assumptions of Theorem 1.4 can be satisfied by choosing suitably the magnetic vector field. Proof. We will briefly outline the proof of this lemma. First, it is a well-known fact that when the boundary ∂Ω is at least C 1 then it can be seen as a level set of a smooth function. More precisely, there exists a smooth function f : R 2 → R + with the following properties:

∂Ω = {x ∈ R 2 ; f (x) = 1}; Ω = f -1 (]1, +∞[); lim x →∞ f (x) = 0 and ∇f (x) = 0, ∀x ∈ ∂Ω.
For h > 0 introduce the sets

Ω h {x; dist(x, Ω) ≤ h}; ∂Ω h {x; dist(x, ∂Ω) ≤ h}.
Then for η > 0 sufficiently small, there exists h > 0 such that

(10) ∀x ∈ R 2 , |f (x) -1| ≤ η =⇒ x ∈ ∂Ω h . Now let χ : R 2 → [0, 1] be a smooth compactly supported function such that χ(x) = 1, ∀x ∈ Ω h . Set ϕ 0 (x) = χ(x)f (x) and b 0 = ∇ ⊥ ϕ 0 .
Then b 0 satisfies the assumptions (1) and (2) of Theorem 1.4. Indeed, the first assumption is easy to check. As to the second one, using [START_REF] Chen | On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces[END_REF] we easily obtain

{|χf -1| ≤ η} ⊂ ∂Ω h . Moreover, it is clear that for x ∈ Ω h , b 0 (x) = χ(x)∇ ⊥ f (x) = ∇ ⊥ f (x).
Since ∂Ω is a regular energy curve, then we can choose h > 0 small enough such that, for some δ > 0,

∀x ∈ ∂Ω h ; |b 0 (x)| ≥ δ.
This concludes the proof of the lemma.

2.2. Transport equations. We intend to discuss some basic results about the persistence regularity for some transport equations. The first one is very classical and whose proof can found in [START_REF] Chemin | Perfect incompressible Fluids[END_REF] for instance.

Proposition 2.5. Let v be a divergence-free vector field and F be a smooth function. Let f be a solution of the transport equation

∂ t f + v • ∇f = F.
Then the following estimates hold true.

(1) L p -estimates:

Let p ∈ [1, ∞] then for any t ≥ 0 f (t) L p ≤ f (0) L p + ˆt 0 F (τ ) L p dτ.
(2) Hölder estimates:

For ε ∈] -1, 1[ we get f (t) C ε ≤ Ce CV (t) f (0) C ε + ˆt 0 e -CV (τ ) F (τ ) C ε dτ ,
with C a constant depending only on the index regularity ε and

V (t) ˆt 0 ∇v(τ ) L ∞ dτ.
Next we shall deal with the same problem for a coupled transport model generalizing the previous one and which appears naturally in the structure of the MHD system (2).

(

) ∂ t f + v • ∇f = b • ∇g + F ∂ t g + v • ∇g = b • ∇f + G 11 
where F and G are given and the unknowns are f and g.

Proposition 2.6. Let v and b be two divergence-free smooth vector fields and f, g be two smooth solutions for [START_REF] Chemin | Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel[END_REF]. Then the following estimates hold true.

(1) L p -estimates:

For p ∈ [1, ∞] we get f (t) L p + g(t) L p f (0) L p + g(0) L p + ˆt 0 F (τ ) L p + G(τ ) L p dτ (2) Hölder estimates: For ε ∈] -1, 1[ we get f (t) C ε + g(t) C ε ≤ Ce CV (t) f (0) C ε + g(0) C ε + ˆt 0 e -CV (τ ) F (τ ) C ε + G(τ ) C ε dτ , with V (t) ˆt 0 ∇v(τ ) L ∞ + ∇b(τ ) L ∞ dτ.
Proof. We shall introduce Elasser variables, see [START_REF] Elsasser | The hydromagnetic equations[END_REF],

Φ f + g and Ψ f -g.

Then we can easily check that

∂ t Φ + (v -b) • ∇Φ = F + G ∂ t Ψ + (v + b) • ∇Ψ = F -G
These are transport equations with divergence-free vector fields and thus we can apply Proposition 2.5 leading to the desired estimates.

Basic results on vector fields

In this section we shall review some general results on vector fields and focus on some canonical commutation relations. Special attention will be paid to the Hamiltonian vector fields for which some nice properties are established. Most of the results that will be discussed soon are very known and for the commodity of the reader we prefer giving the proofs of some of them.

3.1. Push-forward. Let X : R n → R n be a smooth vector field and f : R n → R be a smooth function. We denote by ∂ X f the derivative of f in the direction X, that is,

X(f ) = ∂ X f = n i=1 X i ∂ i f = X • ∇f.
This is the Lie derivative of the function f with respect to the vector field X, denoted usually by L X f and in the preceding formula we adopt different notations for this object.

For two vector fields X, Y : R n → R n , their commutator is given by the Lie bracket [X, Y ] defined in the coordinates system by

[X, Y ] i n i=1 X j ∂ j Y i -Y j ∂ j X i = ∂ X Y i -∂ Y X i .
This can also be written in the form

(12) ∂ X ∂ Y -∂ Y ∂ X = ∂ ∂ X Y -∂yX .
We mention that when f is not sufficiently smooth, for example f ∈ L ∞ and this will be mostly the case in our context, and the vector field X is divergence-free we define ∂ X f in a weak sense as follows,

∂ X f = div(Xf ).
Now we intend to study some geometric and analytic properties of the push-forward of a vector field X 0 by the flow map associated to another time-dependent vector field v(t). First recall that the push-forward φ ⋆ X of a vector field X by a diffeomorphism φ of R d is given by

(φ ⋆ X)(φ(x)) X(x) • ∇φ(x).
Let v(t) be a smooth vector field acting on R n and define its flow map by the differential equation

∂ t ψ(t, x) = v(t, ψ(t, x)), ψ(0, x) = x.
It is a classical fact that for v belonging to the Lipschitz class the flow map is a diffeomorphism from R d to itself and thus the push-forward of the a vector field X 0 by ψ t is the vector field (X t ) that can be written in the local coordinates in the form

(13) X t (x) = X 0 • ∇ψ(t) (ψ -1 (t, x)).
We can easily check by using this formula that the evolution equation governing X t is given by the transport equation ( 14)

∂ t X + v • ∇X = X • ∇v.
Besides, it is a known fact that for two smooth vector fields over R n , X and Y and for a diffeomorphism φ :

R n → R n we have φ ⋆ [X, Y ] = [φ ⋆ X, φ ⋆ Y ].
In the case where φ is given by the flow map ψ t , the above identity can be easily checked using the dynamical equations. As an immediate consequence we see that if two vector fields commute then their push-forward vector fields will commute as well. For a future use of this property it should be better to state it in the next lemma. Lemma 3.1. Let (X t ) t≥0 and (Y t ) t≥0 be two smooth vector fields solving the equation ( 14) with the same velocity v. If [X 0 , Y 0 ] = 0, then we get

[X t , Y t ] = 0, ∀t ≥ 0.
Next we discuss the commutation between the vector fields given by the equation ( 14) and the material derivative D t ∂ t + v • ∇ and the proof is straightforward. Proposition 3.2. Let X be the push-forward of a smooth vector field X 0 defined by [START_REF] Danchin | Poches de tourbillon visqueuses[END_REF]. Then X commutes with the transport operator

D t ∂ t + v • ∇, ∂ X D t -D t ∂ X = 0.
3.2. Hamiltonian vector fields. We shall discuss now some special structures of Hamiltonian vector fields in two dimensions. To precise the terminology, we say that a smooth vector fields is Hamiltonian if it is divergence-free and in this case there exists a potential scalar function, called stream function or Hamiltonian function, ϕ : R 2 → R such that

X(x) = ∇ ⊥ ϕ(x) -∂ 2 ϕ ∂ 1 ϕ .
Notation: Let X : R n → R n be a continuous vector field. We denote by Z X the set of the zeros of X, that is its singular set defined by

Z X = x ∈ R n , X(x) = 0 .
A point x is said to be regular for X when X(x) = 0. Obviously the singular set is closed and the regular one is open.

Definition 3.3. Let γ : [0, 1] → R 2 be a C 1 Jordan curve and X : R 2 → R 2 be a C 1 vector field.
We say that X is co-normal or tangential to the curve γ if X is regular on γ and

X(x) • n(x) = 0, ∀x ∈ γ,
where n(x) denotes a normal vector to the curve at the point x.

Sometimes we use the vocabulary streamline or a field line for X to denote a curve obeying to the previous definition. This terminology is justified by the next classical result.

Proposition 3.4. Let γ : [0, 1] → R 2 be a C 1 Jordan curve and X : R 2 → R 2 be a C 1 Hamiltonian vector field. Then X is co-normal to the curve γ if and only if the curve is a streamline or a level set for the potential function ϕ, that is there exists a constant λ such that

ϕ(x) = λ, ∀x ∈ γ.
In this case the vector field X has at least a singular point inside the domain delimited by the curve γ.

Proof. Denote by t ∈ [0, 1] → (x 1 (t), x 2 (t)) a parametrization of the curve γ. Then a normal vector to the curve is given by n = (-x ′ 2 (t), x ′ 1 (t)). Now X is co-normal to this curve means that for any t ∈ [0, 1]

∇ ⊥ ϕ(x 1 (t), x 2 (t)) • (-x ′ 2 (t), x ′ 1 (t)) = 0. The left-side term coincides with d dt ϕ(x 1 (t), x 2 (t)
) and thus the co-normal assumption becomes

d dt ϕ(x 1 (t), x 2 (t)) = 0, ∀t ∈ [0, 1].
This is equivalent to say that ϕ is constant along the curve γ.

Our next goal is to give a precise description of the push-forward of a Hamiltonian vector-field X 0 and discuss its fozen-in property. In broad terms, the vector fields (X t ) transported by a vector field v according to the equation ( 14) will remain Hamiltonian and the dynamics of the stream function will be simply described by a transport equation. This has a deep connection of the freezing of the streamlines of vector fields (X t ) into the fluid motion. This latter property was established for the magnetic field and collectively known as Alfvén's theorem.

Lemma 3.5. Let ϕ 0 : R 2 → R be a smooth function and X 0 = ∇ ⊥ ϕ 0 . Then the solution to the equation ( 14) with initial datum X 0 is given by

X(t, x) = ∇ ⊥ ϕ(t, x)
with ϕ the unique solution to the problem

D t ϕ = 0, ϕ(0, x) = ϕ 0 (x).
Proof. It is straightforward computations that the vector field x → ∇ ⊥ ϕ(t, x) satisfies also the equation ( 14) and thus by uniqueness of the Cauchy problem we get the desired result.

Vorticity-current formulation

Recall that the vorticity of the velocity v coincides in two dimensions with the scalar function

ω = ∂ 1 v 2 -∂ 2 v 1
and the current density of the magnetic field b is given by j

= ∂ 1 b 2 -∂ 2 b 1 .
Applying the curl operator to the first equation of (2) and using the notation D t = ∂ t + v • ∇ to denote the material derivative we get D t ω = b • ∇j. Remark that we have used the following identity: for any two-dimensional vector field X we have

curl(X • ∇X) = X • ∇curlX + curlX divX.
Performing similar computations for the second equation of (2) one gets

D t j = b • ∇ω + ∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 -∂ 1 v • ∇b 2 -∂ 2 v • ∇b 1 .
By straightforward computations we can easily check that

∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 = -∂ 1 v • ∇b 2 -∂ 2 v • ∇b 1 + ω div b + j div v = -∂ 1 v • ∇b 2 -∂ 2 v • ∇b 1 .
Consequently the MHD system can be written in terms of the coupled equations on ω and j, (15)

D t ω = b • ∇j D t j = b • ∇ω + 2∂ 1 b • ∇v 2 -2∂ 2 b • ∇v 1 .
For reasons that will be apparent shortly in the proof of Theorem 1.4 we shall need some algebraic structure especially for the last term of [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF].

We shall start with the following identities used in [START_REF] Chemin | Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel[END_REF][START_REF] Chemin | Perfect incompressible Fluids[END_REF] and whose proof are very simple. Let X = (X 1 , X 2 ) be a smooth vector field over R 2 , then

|X(x)| 2 ∂ 11 = X 1 ∂ X ∂ 1 -X 2 ∂ X ∂ 2 + X 2 2 ∆, (16) |X(x)| 2 ∂ 22 = X 2 ∂ X ∂ 2 -X 1 ∂ X ∂ 1 + X 2 1 ∆, |X(x)| 2 ∂ 12 = X 1 ∂ X ∂ 2 + X 2 ∂ X ∂ 1 -X 1 X 2 ∆.
Applying these identities to ∆ -1 ω and using Biot-Savart law ∆v = ∇ ⊥ ω we get for any

x ∈ R 2 |X(x)| 2 R 11 ω = X 1 ∂ X v 2 + X 2 ∂ X v 1 + X 2 2 ω, (17) |X(x)| 2 R 22 ω = -X 2 ∂ X v 1 -X 1 ∂ X v 2 + X 2 1 ω, |X(x)| 2 R 12 ω = -X 1 ∂ X v 1 + X 2 ∂ X v 2 -X 1 X 2 ω,
where we denote by R ij the Riesz transform ∂ ij ∆ -1 . Therefore we obtain ( 18)

|X(x)| 2 |∇v(x)| X L ∞ ∂ X v L ∞ + X 2 L ∞ ω L ∞ . Similarly we find (19) |X(x)| 2 |∇b(x)| X L ∞ ∂ X b L ∞ + X 2 L ∞ j L ∞ .
The following lemma will play a crucial role in the proof of Theorem 1.4. Lemma 4.1. For smooth divergence-free vector fields X, b and v we get for X(x) = 0,

H(v, b) ∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 (20) = 2 |X| 2 ∂ X b 1 ∂ X v 2 -∂ X b 2 ∂ X v 1 + 1 |X| 2 j X • ∂ X v -ω X • ∂ X b .
The dot • denotes the canonical inner product of R 2 .

Proof. According to Biot-Savart laws one has

H(v, b) = R 12 ω R 11 j -R 22 j -R 12 j R 11 ω -R 22 ω .
Using [START_REF] Duren | Theory of H p spaces[END_REF] we get

R 11 j -R 22 j = 1 |X(x)| 2 2X 1 ∂ X b 2 + 2X 2 ∂ X b 1 + (X 2 2 -X 2 1 )j
and thus

R 12 ω R 11 j -R 22 j = 1 |X(x)| 4 -X 1 ∂ X v 1 + X 2 ∂ X v 2 -X 1 X 2 ω × 2X 1 ∂ X b 2 + 2X 2 ∂ X b 1 + (X 2 2 -X 2 1 )j .
Similarly we get

R 12 j R 11 ω -R 22 ω = 1 |X(x)| 4 -X 1 ∂ X b 1 + X 2 ∂ X b 2 -X 1 X 2 j × 2X 1 ∂ X v 2 + 2X 2 ∂ X v 1 + (X 2 2 -X 2 1 )ω .
Subtracting the preceding identities yields to the desired identity.

Weak estimates.

In what follows we shall investigate some weak estimates for the vorticity and the current density.

Proposition 4.2. Let (ω, j) be a smooth solution of the system (4) then the following results hold true.

(1) For ω 0 , j 0 ∈ L p with 1 < p < ∞ we get

(ω, j)(t) L p ≤ C (ω 0 , j 0 ) L p e C ´t 0 ∇v(τ ) L ∞ dτ .
(2) For ω 0 , j 0 ∈ L ∞ we get

(ω, j)(t) L ∞ ≤ C (ω 0 , j 0 ) L ∞ + ˆt 0 ∇v(τ ) L ∞ ∇b(τ ) L ∞ dτ.
(

) Let ω 0 , j 0 ∈ L 1 ∩ L 2 , we get (ω, j)(t) L 1 ≤ C (ω 0 , j 0 ) L 1 + C (ω 0 , j 0 ) 2 L 2 t e C ´t 0 ∇v(τ ) L ∞ dτ . Proof. 3 
(1) Applying Proposition 2.6 to the equation ( 15) we get

ω(t) L p + j(t) L p ω 0 L p + j 0 L p + ˆt 0 ∇b(τ ) L p ∇v(τ ) L ∞ dτ
Using the continuity of Riesz transform on L p with p ∈]1, ∞[ one gets

∇b(t) L p j(t) L p which yields in turn ω(t) L p + j(t) L p ω 0 L p + j 0 L p + ˆt 0 j(τ ) L p ∇v(τ ) L ∞ dτ.
It suffices now to apply Gronwall inequality in order to get the suitable estimate.

(2) Using once again Proposition 2.6 implies

ω(t) L ∞ + j(t) L ∞ ω 0 L ∞ + j 0 L ∞ + ˆt 0 ∇b(τ ) L ∞ ∇v(τ ) L ∞ dτ.
which is the desired result.

(3) Arguing as before and using Hölder inequality we obtain

ω(t) L 1 + j(t) L 1 ω 0 L 1 + j 0 L 1 + ˆt 0 ω(τ ) L 2 j(τ ) L 2 dτ
At this stage we combine this estimate with the one of the first part (1).

Stationary patches

As we can readily observe from the vorticity-current formulation (4) the structure of the initial patches ω 0 = χ Ω , j 0 = χ D cannot be in general conserved in time in contrast with the incompressible Euler equations. This is due peculiarly to the last two terms in the second equation involving Riesz transforms. In what follows we shall look for stationary solutions for (2) in the framework of vortex patches. In other words, we shall characterize the simply connected bounded domains Ω and D such that ω(t) = χ Ω and j(t) = χ D is a solution for the system (4). First observe that when the domains are concentric balls then according to the symmetry invariance of the equations we obtain a stationary solution. We will see that in the case of the disjoint patches these are the only examples of stationary solutions. The proof that we shall present of this intuitive result is not trivial but it will make appeal to a deep result of potential theory which characterize the circle with Newtonian potential. Our result which was introduced in Theorem 1.1 will be now restated only for the inviscid MHD system.

Theorem 5.1. Let D and Ω be two simply connected domains and ω 0 = χ Ω , j 0 = χ D . Then the following holds true:

(1) If D = Ω then (ω 0 , j 0 ) is a stationary solution for the MHD system (2).

(2) If the boundaries ∂D and ∂Ω are disjoint rectifiable Jordan curves then (ω 0 , j 0 ) is a stationary solution for the MHD system (2) if and only if Ω and D are concentric balls.

Some remarks are in order.

Remark 5.2. We can deduce from the proof that for the two-dimensional incompressible Euler equations the stationary patches with rectifiable Jordan boundaries are given by χ Ω with Ω a ball.

Remark 5.3. In the case of the 2d incompressible Euler equations we know according to Yudovich result that the patches give rise to unique global solutions. Whether or not the same claim remains true for the MHD equations even locally in time is not at all clear. We will see later in the next section that this can be proved for example for the patches with sufficiently smooth boundaries.

The proof of Theorem 5.1 relies on Franekel's result and will be divided into two steps depending on the smoothness of the boundaries. The case of C 1 boundaries is more easier than the rectifiable ones and we shall need for this latter case more sophisticated analysis. Especially we will use the conformal mappings to parametrize the boundaries combined with some interesting properties on their boundary behavior. For the clarity of the proofs it would be better to recall some basic results on conformal mappings and rectifiable Jordan curves that will be substantially used later. This will be the subject of the next section.

5.1. Conformal mappings. We shall in the first part fix some notation and concepts. Afterwards we discuss the conformal mapping theorem and some basic results on the boundary behavior of the conformal maps.

A planar curve C is called a Jordan curve if it is simple and closed meaning that it can be parametrized by an injective continuous function γ : T → R 2 . This curve is said to be rectifiable if it is of bounded variation and its length L is the total variation of γ. This means that L sup

(ξ i ) n i=1 ∈P n k=1 |γ(ξ k+1 ) -γ(ξ k )| < ∞
where the supremum is taken over all the partition P of the unit circle T.

The following result due to Riemann is one of the most important results in complex analysis. To restate this result we shall recall the definition of simply connected domains. Let C C ∪ {∞} denote the Riemann sphere. We say that a domain Ω ⊂ C is simply connected if the set C\Ω is connected. Riemann Mapping Theorem. Let D denote the unit open ball, Ω ⊂ C be a simply connected domain different from C and z 0 ∈ Ω. Then there is a unique bi-holomorphic map (conformal map) Φ : D → Ω such that Φ(0) = z 0 and arg Φ ′ (0) > 0.

The area of the domain Ω is given by

|Ω| = ˆD |Φ ′ (z)|dA(z),
where dA denotes the Lebesgue measure of the plane. In this theorem the regularity of the boundary has no effect regarding the existence of the conformal mapping but as it was shown in various papers it will contribute in the boundary behavior of the conformal mapping, see for instance [START_REF] Ch | Boundary behaviour of conformal maps[END_REF][START_REF] Warschawski | On the higher derivatives at the boundary in conformal mapping[END_REF]. One of the main result in this subject dealing with the continuous extension to the boundary goes back to Carathéodory.

Carathéodory Theorem. The conformal map Φ : D → Ω has one-to-one continuous extension to the closure D if and only if the boundary ∂Ω is a Jordan curve.

In the next theorem we shall discuss the characterization of rectifiable Jordan curves in terms of the regularity of the associated conformal map. This will require the use of Hardy space of type H 1 which is defined as follows. Let f : D → C be an analytic function, we define the integral means

M (r, f ) ˆ2p 0 |f (re iθ )|dθ, 0 < r < 1.
The function f is said to be of class

H 1 if sup 0<r<1 M (r, f ) < ∞.
A classical result known by the name Hardy's convexity theorem asserts that r → M (r, f ) is a nondecreasing function and r → log M (r, f ) is a convex function of log r. For the proof of this result see for example Theorem 1.5 of [START_REF] Duren | Theory of H p spaces[END_REF], a reference which provides additional relevant information on the topic.

Next we shall give an analytic characterization of rectifiable curves through the regularity of the conformal mapping. The first result is discussed in Theorem 3.12 of [START_REF] Duren | Theory of H p spaces[END_REF]. As to the second one, we refer the reader to Theorem 2.6 of the same reference. An immediate consequence of Theorem 5.4 reads as follows. 

Potential characterization of the balls.

There are many results emerging from potential theory with the basic goal to characterize the balls of the Euclidian space R n . One of them uses the Newtonian potential defined for a domain Ω ⊂ R 2 by ( 21)

ϕ(x) = 1 2p ˆΩ log 1 |x -y| dy.
In the vocabulary of fluid dynamics this is the stream function of the vorticity χ Ω . When the domain coincides with a ball then ϕ is constant on the boundary. The converse is proved by Fraenkel [START_REF] Fraenkel | An introduction to maximum principles and symmetry in elliptic problems[END_REF], see Theorem 1.1 page 18, that we recall here.

Theorem 5.6. Let Ω be a bounded domain set of R 2 and ϕ its Newtonian potential. If ϕ is constant on the boundary of Ω, then Ω must be a ball.

The result of Fraenkel is not specific to the two dimensions but can be extended for higher dimensions. Moreover it is worth pointing out that this theorem does not require any assumption on the regularity of the boundary. Recently a partial extension of this result was accomplished by Reichel in [START_REF] Reichel | Characterization of balls by Riesz-potentials[END_REF].

5.3. Proof of Theorem 5.1. We intend to give the proof concerning the stationary patches.

Proof.

(1) This can be deduced from the following fact which is related to the special structure of the inviscid MHD equations (2): if b 0 = ±v 0 then we can easily check that this corresponds to a stationary solution without pressure. This allows to get the desired result.

(2) This proof is more tricky and founded on Theorem 5.6. For the sake of clear presentation we shall distinguish smooth boundaries from the rough ones. We mean by smooth a C 1 Jordan curve and by rough a rectifiable Jordan curve. As we shall see the basic difference between these cases appears when we deal with the flux across the boundary. For smooth boundaries this can be done by using Gauss-Green formula. However for the rough boundaries more sophisticated analysis will be required. To answer to this problem there are at least two approaches that one could consider. The first one is to use a general version of Gauss-Green formula coming from the geometric measure theory. The disadvantage of this formula is that it not so explicit to allow exploitable computations.

The second one that will be developed here is to use the conformal mappings. Therefore the problem reduces to measuring the flux across the unit sphere for a modified vector field and by this way we transform the problem into the regularity of the conformal mapping close to the boundary. This has been discussed previously in Section 5.1.

• Smooth curves. We assume that the curves ∂Ω and ∂D are of class C 1 , then we may use the classical result concerning the derivative in the distribution sense of the characteristic function χ D ,

∇χ D = -n dσ ∂D , (22) 
where dσ ∂D is the arc-length measure on ∂D and n the outward unit normal. Accordingly the first equation of ( 15) can be written for the stationary patches in the form

(v 0 • n)dσ ∂Ω = (b 0 • n)dσ ∂D .
Since the boundaries are disjoint then the involved measures are disjointly supported and thus, Denote by ϕ 0 and ψ 0 the stream functions of v 0 and b 0 , respectively. They satisfy the elliptic equations ∆ϕ 0 = χ Ω , ∆ψ 0 = χ D . Now since v 0 = ∇ ⊥ ϕ 0 and b 0 = ∇ ⊥ ψ 0 we deduce in view of Proposition 3.4 that the stream functions ϕ 0 and ψ 0 are constant on the boundaries ∂Ω and ∂D, respectively. At this stage we can use Fraenkel's theorem and conclude that Ω and D are balls. It remains to show that these balls are concentric. For this goal we will use the second equation of [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF]. Thus performing similar calculations we get in the weak sense,

(v 0 • n)dσ ∂D = (b 0 • n)dσ ∂Ω -2∂ 1 b 0 • ∇v 2 0 -2∂ 2 b 0 • ∇v 1 0 .
As the functions ∇v 0 , ∇b 0 belong to L p for any finite p ∈ (1, ∞), the last term appearing between the braces is a function and consequently the preceding equation is equivalent to the conditions [START_REF] Hmidi | Global well-posedness for Euler-Boussinesq system with critical dissipation[END_REF] v 0 • n = 0 on ∂D; b 0 • n = 0 on ∂Ω and ( 25)

∂ 1 b 0 • ∇v 2 0 -∂ 2 b 0 • ∇v 1 0 = 0, a.
e. Consequently we deduce by Proposition 3.4 that the curve ∂D is a streamline for ϕ 0 and ∂Ω is a streamline for ψ 0 . Without loss of generality one can assume that the ball Ω is centered at the origin and with radius r. It is known that in this case the stream function ϕ 0 has the form

ϕ 0 (x) = 1 4 |x| 2 -r 2 2 log 1 r + 1 2 , |x| ≤ r, r 2 
2 ln |x|, |x| ≥ r.

From which we deduce that the streamlines of ϕ 0 are concentric circles and this implies in turn that ∂D has the same center as ∂Ω. We can also deduce that

v 0 (x) = f (|x|)x ⊥ and b 0 (x) = g(|x|)x ⊥
for two known Lipschitz functions f and g. To check the equation ( 25) we shall write it in the weak sense and use the foregoing structure for v 0 and b 0 ,

∂ 1 b 0 • ∇v 2 0 -∂ 2 b 0 • ∇v 1 0 = div v 2 0 ∂ 1 b 0 -v 1 0 ∂ 2 b 0 = div rf (r)∂ r (g(r)x ⊥ ) = div f (r)(r∂ r g + g)x ⊥ = 0.
This concludes the proof in the case of disjoint C 1 boundaries.

• Rough curves. We start with writing in the distribution sense the equations of the stationary patches according to the equations [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF]. The first one reads as follows

div(v χ Ω ) = div(b χ D ).
We can readily check in view of the incompressibility condition that the supports of these distributions satisfy supp(div(v χ Ω )) ⊂ ∂Ω and supp(div

(v χ D )) ⊂ ∂D. Since ∂D ∩ ∂Ω = ∅ we get div(v χ Ω ) = div(b χ D ) = 0. This means that for any ψ ∈ D(R 2 ), we have ˆΩ div(v ψ)dx = ˆD div(bψ)dx = 0.
The next goal is to deduce from these equations that the Newtonian potential ϕ 0 and ψ 0 introduced in the previous case are constant on the corresponding boundaries. With this in hand we can conclude by using Fraenkel's result and deduce that the boundaries are necessary circles. Afterwards we shall check by using similar arguments as previously that their centers must agree. As we have mentioned before the major difficulty concerns the use of Gauss-Green formula for rough boundaries. Our approach is based on the use the conformal mapping combined with an approximation procedure. Let D denote the unit open ball and Φ : D → Ω be a conformal mapping. Since ∂Ω is a Jordan curve then by Carathéodory theorem Φ has a continuous extension to D and maps the unit circle T one-to-one onto ∂Ω. Moreover, according to Theorem 5.4 as the boundary is rectifiable Jordan curve the derivative Φ ′ exists for almost all ξ ∈ T and

Φ ′ ∈ L 1 (T).

First recall the Cauchy-Riemann equations for the holomorphic function

Φ = Φ 1 + iΦ 2 inside D ∂ 1 Φ 1 = ∂ 2 Φ 2 , ∂ 2 Φ 1 = -∂ 1 Φ 2 .
Set F v ψ, then we have the equation [START_REF] Jiu | Mathematical results related to a two-dimensional magneto-hydrodynamic equations[END_REF] ˆΩ div F dx = 0.

Observe that from Biot-Savart law the velocity enjoys the following regularities Using Cauchy-Riemann equations we obtain the following formula for the Jacobian |J Φ (y)|,

v ∈ L ∞ , ∇v ∈ L p , ∀p ∈]1, ∞[.
|J Φ (y)| = (∂ 1 Φ 1 (y)) 2 + (∂ 2 Φ 1 (y)) 2 , ∀ y ∈ D.
Now we claim that,

(div F )(Φ(y)) |J Φ (y)| = ∂ 1 Φ 1 (div (F (Φ(y)) + ∂ 1 Φ 2 curl(F (Φ(y)) (28) = ∂ 2 Φ 2 ∂ 1 (F 1 (Φ(y)) -∂ 1 Φ 2 ∂ 2 (F 1 (Φ(y)) + ∂ 1 Φ 1 ∂ 2 (F 2 (Φ(y)) -∂ 2 Φ 1 ∂ 1 (F 2 (Φ(y)).
Indeed, easy computations yield

∂ 1 (F j (Φ)) = (∂ 1 F j )(Φ)∂ 1 Φ 1 + (∂ 2 F j )(Φ)∂ 1 Φ 2 ∂ 2 (F j (Φ)) = (∂ 1 F j )(Φ)∂ 2 Φ 1 + (∂ 2 F j )(Φ)∂ 2 Φ 2 .
Using Cauchy-Riemann equations one finds

(∂ 1 F j )(Φ)|J Φ | = ∂ 1 Φ 1 ∂ 1 (F j (Φ)) -∂ 1 Φ 2 ∂ 2 (F j (Φ)) (∂ 2 F j )(Φ)|J Φ | = ∂ 2 Φ 2 ∂ 2 (F j (Φ)) -∂ 2 Φ 1 ∂ 1 (F j (Φ)).
This gives the identity [START_REF] Kirchhoff | Vorlesungen uber mathematische Physik[END_REF]. Combining ( 27) and ( 28) with Gauss-Green formula we get

ˆΩr div F dx = r ˆ2p 0 (∂ 2 Φ 2 )(re iθ ) cos θ -(∂ 1 Φ 2 )(re iθ ) sin θ F 1 (Φ(re iθ ))dθ + r ˆ2p 0 (∂ 1 Φ 1 )(re iθ ) sin θ -(∂ 2 Φ 1 )(re iθ ) cos θ F 2 (Φ(re iθ ))dθ.
Recall that

F = vψ = ψ ∇ ⊥ ϕ 0
and thus with the notation ζ = e iθ we get

ˆΩr div F dx = -r ˆ2p 0 (∂ 2 Φ 2 )(rζ) cos θ -(∂ 1 Φ 2 )(rζ) sin θ (∂ 2 ϕ 0 )(Φ(rζ))ψ(Φ(rζ))dθ + r ˆ2p 0 (∂ 1 Φ 1 )(rζ) sin θ -(∂ 2 Φ 1 )(rζ) cos θ (∂ 1 ϕ 0 )(Φ(rζ))ψ(Φ(rζ))dθ = -r ˆ2p 0 (∂ 2 Φ 1 )(rζ)(∂ 1 ϕ 0 )(Φ(rζ)) + (∂ 2 Φ 2 )(rζ)(∂ 2 ϕ 0 )(Φ(rζ)) cos θ ψ(Φ(rζ))dθ + r ˆ2p 0 (∂ 1 Φ 1 )(rζ)(∂ 1 ϕ 0 )(Φ(rζ)) + (∂ 1 Φ 2 )(rζ)(∂ 2 ϕ 0 )(Φ(rζ)) sin θ ψ(Φ(rζ))dθ = - ˆ2p 0 d dθ ϕ 0 (Φ(re iθ )) ψ(Φ(re iθ ))dθ.
We have used the notation, ϕ 0 (Φ(re iθ )) = ϕ 0 Q 1 (r cos θ, r sin θ), Q 2 (r cos θ, r sin θ) .

To pass to the limit in the left-hand side when r approaches 1 we use that

div F = v • ∇ψ ∈ L ∞
combined with the fact that the area of Ω r converges to the area of Ω. This latter claim follows from the formula 

|Ω\Ω r | = ˆD\Dr |Φ ′ (z)|dA(z).
ψ(z) = h(Φ -1 (z), z ∈ ∂Ω.
The function ψ is continuous over ∂Ω and has an extension belonging to C ∞ c (R 2 ). Therefore we deduce from (30) that for any h ∈ C(T; C), This allows to conclude that d dθ ϕ 0 (Φ(e iθ )) = 0, a.e.

As θ → d dθ ϕ 0 (Φ(e iθ )) is absolutely continuous then we can use Taylor formula which implies the existence of a constant λ such that

ϕ 0 (Φ(e iθ )) = λ, ∀θ ∈ [0, 2p].
This means that ϕ 0 (z) = λ, ∀z ∈ ∂Ω.

At this stage we can use Fraenkel's result to conclude that the domain Ω should be a ball. The same proof shows that D is also a ball and to check that the balls have the same center we follow the same computations as for the smooth boundaries.

Generalized vortex patches

In this section, we shall extend the conclusion of Theorem 1.4 to more general initial data belonging to the Yudovich class.

6.1. General statement. Before stating our result we shall recall some definitions that were briefly introduced in Section 2. For a continuous vector field X : R 2 → R 2 and δ ≥ 0 we denote by

Z δ X x ∈ R 2 , |X(x)| ≤ δ .
Let ε ∈]0, 1[ and f, g : R 2 → R be two functions. We define the C ε singular support of the couple (f, g) by Σ ε sing (f, g) Σ ε sing (f ) ∪ Σ ε sing (g), where the singular support of a single function was given in Definition 2.2. We may also recall the push-forward of a vector field X 0 by the flow map associated to another time dependent vector field v, as the solution of the transport equation

D t X = X • ∇v, X(0) = X 0 .
Finally recall that the anisotropic space W p X was introduced in Definition 2.1. Our main result reads as follows.

Theorem 6.1. Let p ∈]2, ∞[, ϕ 0 : R 2 → R be an element of W 2,∞ and G : R → R be a function such that G ′ ∈ W 2,∞ and inf R |G ′ | > 0. Take X 0 = ∇ ⊥ ϕ 0 and b 0 = ∇ ⊥ {G(ϕ 0 )},
and assume that the initial data v 0 and b 0 satisfy

(1) The vorticity ω 0 and the current density j 0 belong to W p X 0 . (2) There exists a smooth compactly supported function ρ such that

(1 -ρ)ω 0 , (1 -ρ)j 0 ∈ C 1-2 p .
(3) The singular set Σ 1-2 p sing (ω 0 , j 0 ) is compact and there exists δ > 0 such that

(31) dist ϕ 0 (Z δ X 0 ), ϕ 0 Σ 1-2 p
sing (ω 0 , j 0 ) > 0. Then there exists T > 0 and a unique solution (v, b) for the MHD equations with ∀t ∈ [0, T ], ω(t), j(t) ∈ W p X(t) and X, v, b ∈ L ∞ ([0, T ]; Lip). Moreover, let ψ be the flow of v, then

∂ X 0 ψ(t) ∈ L ∞ ([0, T ]; Lip).
Remark 6.2. Let ω 0 = χ Ω , j 0 = χ D and b 0 the magnetic field associated to j 0 . Then following the proof of Theorem 5.1 we obtain that ω 0 , j 0 ∈ W p b 0 if and only if Ω and D are concentric discs. Remark 6.3. Theorem 6.1 allows to work with more general vortices than the vortex patches: we can for example take an initial vorticity of the form

ω 0 (x) = f (x)χ Ω
with f a smooth compactly supported function and the magnetic field b 0 should of course satisfy the assumption [START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF].

As we shall see now this theorem allows to get the result of Theorem 1.4. 6.2. Proof of Theorem 1.4. We shall apply the preceding theorem with ω 0 = χ Ω and G(x) = x, meaning in this case that X 0 = b 0 . According to the assumption j 0 ∈ L 1 ∩ W 1,p and the embedding W 1,p ֒→ L ∞ we easily deduce that j 0 ∈ W p X 0 . The assumption ω 0 ∈ W p X 0 is equivalent to the vanishing of the normal component of the magnetic field: b 0 • n = 0 on the boundary ∂Ω. Therefore it remains to check that the condition (8) of Theorem 1.4 implies the assumption [START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF]. From the embedding W 1,p ֒→ C

1-2 p , the C 1-2
p -singular support of j 0 is empty and thus the joint singular support Σ ε sing (ω 0 , j 0 ) coincides with ∂Ω. Let x ∈ Z δ X 0 and y ∈ ∂Ω. Since |b 0 (x)| ≤ δ then from the condition (8) of Theorem 1.4 we obtain |ϕ 0 (x) -λ| ≥ η, with λ the constant value of ϕ on the boundary ∂Ω. It follows that ∀x ∈ Z δ X 0 , ∀y ∈ ∂Ω, |ϕ 0 (x) -ϕ 0 (y)| ≥ η. This gives the assumption (31) and thus we can apply Theorem 6.1 leading to the first part of Theorem 1.4. Concerning the persistence regularity for the boundary ψ(t, ∂Ω), recall that a parametrization of Ω is given by the equation

∂ s γ 0 (s) = X 0 (γ 0 (s)), γ 0 (0) = x 0 ∈ ∂Ω.
Therefore we may parametrize ψ(t, ∂Ω) by γ t : s → ψ(t, γ 0 (s)) and thus

∂ s γ t (s) = (∂ X 0 ψ)(t, γ 0 (s)).
This implies ∂ s γ t ∈ W 1,∞ and consequently γ t ∈ W 2,∞ . 6.3. Persistence of the co-normal regularity. Next, we shall study the persistence regularity of the solutions in the anisotropic spaces W p X and C ε X . This step requires that the first commutator between the vector field X 0 and the magnetic field b 0 vanishes an we believe that this algebraic condition is not just a technical artifact but a deep geometric obstruction for the well-posedness problem. We intend to prove the following results. Proposition 6.4. Let ϕ 0 : R 2 → R be an element of W 2,∞ and G : R → R be a function such that G ′ ∈ W 2,∞ with inf R |G ′ | > 0. Take X 0 = ∇ ⊥ ϕ 0 and b 0 = ∇ ⊥ {G(ϕ 0 )}, and assume that the initial data ω 0 , j 0 ∈ W p X 0 , with p ∈]2, ∞[. Let (v, b) be a smooth solution of the system (2) defined in some interval [0, T ], with T ≤ 1 and (X t ) be the push-forward of the vector field X 0 . Then for any

t ∈ [0, T ], (∂ X ω, ∂ X j)(t) L p ≤ C 0 1 + tW 2 (t) e CtW (t)
and

(∂ X v, ∂ X b)(t) C 1-2 p + X t C 1-2 p ≤ C 0 1 + tW 2 (t) e exp C 0 tW (t) . Moreover, ∂ X v W 1,p + ∂ X b W 1,p ≤ C 0 1 + W (t) e CtW (t) . with W (t) ∇v L ∞ t L ∞ + ∇b L ∞ t L ∞ . Proof. Denote by L ∇ ⊥ ∆ -1
, then from Biot-Savart law we can easily check that

∂ X v = L(∂ X ω) -[L, ∂ X ]ω.
To estimate the first term of the right-hand side we combine the dyadic partition of the unity with Bernstein inequality leading for p ∈ [1, ∞] to

L∂ X ω C 1-2 p ∆ -1 ∇ ⊥ ∆ -1 ∂ X ω L ∞ + ∂ X ω C -2 p ∇ ⊥ ∆ -1 ∂ X ω L p + ∂ X ω C - 2 
p . According to Lemma 3.5 the vector field X t remains solenoidal and as Riesz transforms are continuous over L p for p ∈]1, ∞[, then

∇ ⊥ ∆ -1 ∂ X ω L p = ∇ ⊥ ∆ -1 div (Xω) L p Xω L p X L ∞ ω L p .
By the virtue of Lemma 7.3, one obtains

[L, ∂ X ]ω C 1-2 p X C 1-2 p ω L ∞ ∩L p .
Putting together the preceding estimates yields (32)

∂ X v C 1-2 p ∂ X ω C -2 p + X C 1-2 p ω L ∞ ∩L p . Next we shall estimate X(t) C 1-2 p .
For this purpose we use the persistence result of Proposition 2.5 which gives for p ∈ (2, ∞)

(33) X(t) C 1-2 p ≤ Ce CV (t) X 0 C 1-2 p + ˆt 0 e -CV (τ ) ∂ X v(τ ) C 1-2 p dτ , with V (t) = ∇v L 1 t L ∞ . Set f (t) = e -CV (t) ∂ X v C 1-2 p , then f (t) ∂ X ω(t) C -2 p + X 0 C 1-2 p ω(t) L p ∩L ∞ + ω(t) L p ∩L ∞ ˆt 0 f (τ )dτ.
This gives in view of Gronwall inequality,

f (t) ∂ X ω L ∞ t C -2 p + X 0 C 1-2 p ω L ∞ t (L p ∩L ∞ ) e Ct ω L ∞ t (L p ∩L ∞ ) . Set W (t) ∇v L ∞ t L ∞ + ∇b L ∞ t L ∞ then we obtain from Proposition 4.2 ω L ∞ t (L p ∩L ∞ ) ≤ C 0 e CtW (t) + C 0 tW 2 (t). Therefore we get by restricting t ∈ [0, 1] ∂ X v(t) C 1-2 p ∂ X ω(t) C -2 p + C 0 + C 0 tW 2 (t) e exp C 0 tW (t)
. Performing the same analysis for the magnetic field we get

∂ X b(t) C 1-2 p ∂ X j(t) C -2 p + C 0 + C 0 tW 2 (t) e exp C 0 tW (t) and consequently (34) (∂ X v, ∂ X b)(t) C 1-2 p (∂ X ω, ∂ X j)(t) C - 2 
p + C 0 + C 0 tW 2 (t) e exp C 0 tW (t) . To estimate the co-normal regularity of ω and j we shall first write down the equations of ∂ X ω and ∂ X j. According to Proposition 3.2 and using the equations [START_REF] Davidson | An Introduction to Magnetohydrodynamics[END_REF] we get

(35) D t ∂ X ω = ∂ X (b • ∇j) D t ∂ X j = ∂ X (b • ∇ω) + 2∂ X (∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 ).
From the relation [START_REF] Chemin | Perfect incompressible Fluids[END_REF], we get 

∂ X ∂ b -∂ b ∂ X = ∂ ∂ X b-∂ b X . Consequently, (36) D t ∂ X ω = b • ∇∂ X j + ∂ ∂ X b-∂ b X j D t ∂ X j = b • ∇∂ X ω + ∂ ∂ X b-∂ b X ω + 2∂ X (∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 ) Set Y t = ∂ Xt b t -∂ bt X t then
Y t = 0, ∀t ∈ [0, T ].
Therefore equations (36) become

D t ∂ X ω = b • ∇∂ X j D t ∂ X j = b • ∇∂ X ω + 2∂ X (∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 ).
The estimate of the last term of the second equation in the Hölder space with negative index C

-2 p is quite difficult due to the fact that the product L ∞ × C -2 p is not contained in C -2
p . To avoid this technical difficulty we shall replace the space C -2

p by Lebesgue space L p which scales at the same level and satisfies L p ֒→ C 1-2 p . Using Proposition 2.6 one gets [START_REF] Saffman | Vortex dynamics[END_REF] 

(∂ X ω, ∂ X j)(t) L p ≤ C 0 + C ˆt 0 ∂ X ∇b(τ ) L p ∇v(τ ) L ∞ + ∂ X ∇v(τ ) L p ∇b(τ ) L ∞ dτ.
From Biot-Savart law we have easily

∂ X ∇b L p ≤ 2 i,k=1 ∂ X R i,k j L p and ∂ X ∇v L p ≤ 2 i,k=1 ∂ X R i,k ω L p where R i,k = ∂ i ∂ j ∆ -1
. Now we shall combine the identity

∂ X R i,k ω = R i,k ∂ X ω -R i,k , ∂ X ω
together with the continuity of Riesz transforms on the L p spaces with p ∈ (1, ∞) leading finally to

∂ X R i,k ω L p ∂ X ω L p + [R i,k , ∂ X ]ω L p .
At this stage we shall use Calderón's estimate, see Lemma 7.2,

(38) [R i,j , ∂ X ]ω L p ≤ C ∇X L ∞ ω L p .
It is not at all obvious how to bound the Lipschitz norm of the vector field X from its evolution equation due to the low regularity of v and as we shall see its specific structure will be of great importance to reach this target. Indeed, we know that at time zero the magnetic field is given by b 0 = ∇ ⊥ {G(ϕ 0 )}. Thus it follows from Lemma 3.5 that

(39) b t = ∇ ⊥ {G(ϕ(t))} and X t = ∇ ⊥ ϕ t
with ϕ t the unique solution of the transport equation

D t ϕ = 0, ϕ(0) = ϕ 0 .
Therefore we get the relation b t = G ′ (ϕ t )X t and thus differentiating with respect to the spatial variable we obtain

∇X t G ′ (ϕ) L ∞ ≤ ∇b t L ∞ + X t 2 L ∞ G ′′ L ∞ .
By the assumptions G ′′ is bounded and |G ′ | is bounded below by a positive constant which imply

∇X t L ∞ ∇b t L ∞ + X t 2 L ∞ .
Coming back to the equation ( 14) and using the maximum principle and Gronwall inequality we get easily

X(t) L ∞ ≤ X 0 L ∞ + ˆt 0 X(τ ) L ∞ ∇v(τ ) L ∞ dτ ≤ C 0 e CV (t) . (40) Hence X t Lip ∇b t L ∞ + C 0 e CtW (t) . (41) 
Plugging this estimate into (38) and using Proposition 4.2 one obtains

[R i,j , ∂ X ]ω(t) L p ≤ C 0 W (t) + e CtW (t) e CtW (t) ≤ C 0 W (t) + 1 e CtW (t) .
Thus we deduce (42)

∂ X R i,k ω(t) L p C 0 W (t) + 1 e CtW (t) + ∂ X ω(t) L p .
Similarly we get for the current density the estimate,

∂ X R i,k j(t) L p C 0 W (t) + 1 e CtW (t) + ∂ X j(t) L p .
Inserting these estimates into (37) yields in view of Gronwall inequality

(∂ X ω, ∂ X j)(t) L p ≤ C 0 tW 2 (t) + tW (t) e CtW (t) + ˆt 0 W (τ ) (∂ X ω, ∂ X j)(τ ) L p ≤ C 0 1 + tW 2 (t) e CtW (t) . (43) 
Combining this estimate with [START_REF] Morando | Stability of incompressible current-vortex sheets[END_REF] 

gives for t ∈ [0, 1] (∂ X v, ∂ X b)(t) C 1-2 p ≤ C 0 1 + tW 2 (t) e exp C 0 tW (t) .
Putting this estimate in [START_REF] Miao | Well-posedness of the ideal MHD system in critical Besov spaces[END_REF] one gets for t ∈ [0, 1], (44)

X(t) C 1-2 p ≤ C 0 1 + tW 2 (t) e exp C 0 tW (t) . Now we shall estimate the co-normal regularity of ∂ X v and ∂ X b in W 1,p . First it is easily seen that for p ∈ (1, ∞) ∂ X v L p ≤ X L ∞ ∇v L p X L ∞ ω L p .
Denote by L ∇ ⊥ ∆ -1 , then from Biot-Savart law,

∂ i ∂ X v = ∂ i X • ∇v + ∂ X ∂ i Lω = ∂ i X • ∇v + ∂ i L∂ X ω -∂ i L, ∂ X ω.
Since Riesz transform ∂ i L is continuous over L p then we deduce

∂ i X • ∇v + ∂ i L∂ X ω L p ∇X L ∞ ω L p + ∂ X ω L p . Using Lemma 7.2, we get [∂ i L, ∂ X ]ω L p ∇X L ∞ ω L p . Putting together the preceding estimates implies (45) ∂ X v W 1,p ∂ X ω L p + X Lip ω L p .
Performing the same computations for the magnetic field gives the estimate

(46) ∂ X b W 1,p ∂ X j L p + X Lip j L p .
Combining Proposition 4.2 with the estimates (45), ( 46), ( 41) and [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF] gives t) . (47) 6.4. Persistence of the regularity far from the boundary. We have seen in the previous section how to propagate the co-normal regularity of the solution using in a crucial way the special structure of the magnetic field which should be tangential to the boundary. However the vector field X 0 is singular at some points far from the boundary and thus we cannot recover the regularity everywhere. The idea to follow is simple: to track the regularity far from the singular set we can use somehow the hyperbolic structure of the equations through the classical principle of finite speed propagation of the smooth part. Even though the equations are not local, we shall prove that the singular set does not affect for small time the smooth part of the solution. Before giving more details we need to recall the following notations:

∂ X v(t) W 1,p + ∂ X b(t) W 1,p ≤ C 0 1 + tW 2 (t) + ∇b(t) L ∞ e CtW (t) ≤ C 0 1 + W (t) e CtW (
Z δ X 0 x ∈ R 2 , |X 0 (x)| ≤ δ , Σ 1-2 p sing Σ 1-2 p sing (ω 0 ) ∪ Σ 1-2 p sing (j 0 ) and W (t) sup τ ∈[0,t] ∇v(τ ) L ∞ + ∇b(τ ) L ∞ , V (t) ˆt 0 ∇v(τ ) L ∞ + ∇b(τ ) L ∞ dτ.
Proposition 6.5. Let v 0 and b 0 be two divergence-free vector fields satisfying the assumptions of Theorem 6.1. Let ψ denote the flow associated to the velocity v. Then there exists a function

(t, x) → χ(t, x) ∈ [0, 1]
, taking 1 in a neighborhood of ψ(t, Z δ ) and vanishing around ψ(t, Σ 1-2 p sing ) such that: for any T satisfying

C 0 T W 4 (T )e exp C 0 T W (T ) ≤ 1 we get ∀t ∈ [0, T ], χ(t)ω(t) C 1-2 p + χ(t)j(t) C 1-2 p ≤ C 0 (1 + tW 2 (t))e exp C 0 tW (t) .
Proof. From the assumption [START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF] and the compactness of the singular set Σ

1-2 p
sing we can easily prove the existence of small δ > 0 depending particularly on ∇ϕ 0 L ∞ such that

dist ϕ 0 (Z δ X 0 ), ϕ 0 (Σ 1-2 p ,δ
sing ) > 0, where we denote by

Σ 1-2 p ,δ sing x ∈ R 2 ; d(x, Σ 1-2 p sing ) ≤ δ .
Using Urysohn Theorem we can construct a smooth function H : R → [0, 1] such that

H(θ) = 1, if θ ∈ ϕ 0 (Z δ X 0 ), 0, if θ ∈ ϕ 0 (Σ 1-2 p ,δ sing 
). An explicit formula for this function in the Lipschitz class is given by

H(θ) = dist(θ, A) dist(θ, A) + dist(θ, B) , A ϕ 0 (Σ 1-2 p ,δ sing ), B ϕ 0 (Z δ X 0 ).
We point out that by enlarging a little bit A and B and following a smoothing procedure we can construct H in C ∞ class with bounded derivatives. Now introduce the new function

(48) χ 0 (x) = H(ϕ 0 (x)).
Since ϕ 0 belongs to W 2,∞ and H is very smooth we get χ 0 ∈ W 2,∞ . It is easy to check that this function satisfies the following properties:

χ 0 (x) = 1, if x ∈ Z δ X 0 , 0, if x ∈ Σ 1-2 p ,δ sing . It is clear that (49) ∀x ∈ R 2 , 1 -χ 0 (x) = 0 =⇒ |X 0 (x)| > δ.
Moreover according once again to the assumptions of Theorem 6.1, the functions χ 0 ω 0 and χ 0 j 0 belongs to the space C 1-2 p . Let ϕ be the solution of the transport equation (50)

D t ϕ = 0, ϕ(0, x) = ϕ 0 (x).
then by Lemma 3.5

X(t, x) = ∇ ⊥ ϕ(t, x). Define the cut-off function (51) χ(t, x) = H(ϕ(t, x)).
Then it is easy seen that, (52) D t χ = 0, χ(0, x) = χ 0 (x).

We shall now prove the following assertion,

(53) ∀x ∈ R 2 , 1 -χ(t, x) = 0 =⇒ |X(t, x)| ≥ δe -CV (t) .
Indeed, set Y (t, x) = X(t, ψ(t, x)) where ψ is the flow associated to the vector field v. Then

∂ t Y (t, x) = (D t X)(t, ψ(t, x)) = Y (t, x) • {(∇v)(t, ψ(t, x))}
and we get by Gronwall inequality

|Y (t, x)| ≤ |X 0 (x)|e C ´t 0 ∇v(τ ) L ∞ dτ .
Combining this estimate with the reversibility of the equation gives

|X 0 (x)| ≤ |Y (t, x)|e C ´t 0 ∇v(τ ) L ∞ dτ , which means that |X(t, x)| ≥ |X 0 (ψ -1 (t, x))|e -CV (t) . Consequently, by (49) one gets ∀x ∈ R 2 , 1 -χ 0 (ψ -1 (t, x)) = 0 =⇒ |X(t, x)| ≥ δ e -CV (t) .
Since χ(t, x) = χ 0 (ψ -1 (t, x) then the proof of ( 53) is now complete. The next step is to estimate the regularity of the solutions far from the boundary. To do so we start with the following notations

f -(t, x) = f (t, x)χ(t, x), f + (t, x) = f (t, x)(1 -χ(t, x)).
Combining ( 15) and (52), we find that ω -satisfies the equation

D t ω -= χb • ∇j = b • ∇j --j b • ∇χ.
According to [START_REF] Secchi | On the equations of ideal incompressible magnetohydrodynamics[END_REF] we get b(t, x) = ∇ ⊥ {G(ϕ(t, x))}. which yields in view of (51) to b(t, x) • ∇χ(t, x) = 0.

Therefore the equation of ω -becomes (54)

D t ω -= b • ∇j -.
By the same way we can establish that (55)

D t j -= b • ∇j -+ 2χ ∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 .
Since b = b + + b -then the last term can be decomposed as follows

χ ∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 = χ ∂ 1 b + • ∇v 2 -∂ 2 b + • ∇v 1 + χ ∂ 1 b -• ∇v 2 -∂ 2 b -• ∇v 1 I + II. ( 56 
)
Straightforward computations give for the first term

I = χ(1 -χ) ∂ 1 b • ∇v 2 -∂ 2 b • ∇v 1 -χ ∂ 1 χ b • ∇v 2 -∂ 2 χ b • ∇v 1 I 1 + I 2 .
To estimate the term I 1 we shall use the identity [START_REF] Fefferman | Higher order commutator estimates and local existence for the non-resistive MHD equations and related models[END_REF],

I 1 = 2χ 1 -χ |X| 2 ∂ X b 1 ∂ X v 2 -∂ X b 2 ∂ X v 1 + 1 -χ |X| 2 j -X • ∂ X v -ω -X • ∂ X b . (57)
Using (53) and the algebra structure of C ε for ε > 0, we get

I 1 (t) C 1-2 p ≤ Ce CV (t) 1 + χ(t) 2 C 1-2 p X(t) C 1-2 p ∂ X v(t) C 1-2 p |∂ X b(t) C 1-2 p + Ce CV (t) χ(t) C 1-2 p 1 + X(t) 2 C 1-2 p j -(t) C 1-2 p ∂ X v(t) C 1-2 p + ω -(t) C 1-2 p ∂ X b(t) C 1-2 p . ( 58 
)
To estimate χ C 1-2 p , we apply Proposition 2.5 to the equation (52),

χ(t) C 1-2 p ≤ C χ 0 C 1-2 p e CV (t) ≤ C 0 e CtW (t) . ( 59 
)
Combining Proposition 6.4 with ( 58) and (59) we get for t ∈ [0, 1]

I 1 (t) C 1-2 p ≤ C 0 (1 + tW 2 (t))e exp C 0 tW (t) 1 + j -(t) C 1-2 p + ω -(t) C 1-2 p ≤ C 0 e exp C 0 tW (t) 1 + W (t) 1 + j -(t) C 1-2 p + ω -(t) C 1-2 p . (60) 
The term I 2 can be estimated as follows,

I 2 (t) C 1-2 p ≤ C ∇χ(t) C 1-2 p b(t) C 1-2 p χ∇v(t) C 1-2 p . (61)
For the last term of the right-hand side we write,

χ∂ i v = χ∂ i ∇ ⊥ ∆ -1 ω = ∂ i ∇ ⊥ ∆ -1 (ω -) -∂ i ∇ ⊥ ∆ -1 , χ ω.
The first term can be treated by using Bernstein inequality leading to

∂ i ∇ ⊥ ∆ -1 (ω -) C 1-2 p ∆ -1 ∂ i ∇ ⊥ ∆ -1 (ω -) L ∞ + ω - C 1-2 p ω - L p + ω - C 1-2 p ω L p + ω - C 1-2 p . Using Proposition 4.2 we find ∂ i ∇ ⊥ ∆ -1 ω -(t) C 1-2 p ≤ C 0 e CtW (t) + ω -(t) C 1-2 p .
As to the commutator term we use Lemma 7.2,

∂ i ∇ ⊥ ∆ -1 , χ ω C 1-2 p χ Lip ω L p .
Since χ is transported by the flow then

χ(t) Lip ≤ C χ 0 Lip e C ∇v L 1 t L ∞ ≤ C 0 e CtW (t) .
Hence we find using once again Proposition 4.2 t) .

∂ i ∇ ⊥ ∆ -1 , χ ω(t) C 1-2 p ≤ C 0 e CtW (
Putting together the preceding estimates gives 

(t) C 1-2 p b(t) L ∞ + W (t) b 0 L ∞ e C ∇v L 1 t L ∞ + W (t) C 0 e CtW (t) + W (t). ( 63 
)
Concerning the second one ∇χ(t)

C 1-2 p recall that ∇ ⊥ ϕ(t) = X(t) and χ(t, x) = H(ϕ(t, x) which imply ∇ ⊥ χ(t) C 1-2 p = H ′ (ϕ(t)) X(t) C 1-2 p ≤ H ′ (ϕ(t)) C 1-2 p X(t) C 1-2
p . Now we use the classical composition law

H ′ (ϕ(t)) C 1-2 p H ′ W 1,∞ 1 + ϕ(t) C 1-2 p
which gives according to Proposition 4.2 and Proposition 6.4 that for t ∈ [0, 1],

∇ ⊥ χ(t) C 1-2 p ≤ C 0 1 + tW 2 (t) e exp C 0 tW (t) (64) ≤ C 0 (1 + W (t))e exp C 0 tW (t) .
Putting together (61),(62), ( 63) and (64) we obtain (65) I 2 (t)

C 1-2 p ≤ C 0 1 + W 2 (t) e exp C 0 tW (t) 1 + ω -(t) C 1-2 p
Combining this estimate with (60) we get (66)

I(t) C 1-2 p ≤ C 0 1 + W 2 (t) e exp C 0 tW (t) 1 + ω -(t) C 1-2 p + j -(t) C 1-2
p . Coming back to the estimate of the second term II of (56). From the algebra structure of C

1-2 p , II(t) C 1-2 p ∇b -(t) C 1-2 p χ∇v(t) C 1-2
p . Therefore we get according to (62)

II(t) C 1-2 p C 0 e CtW (t) + ω -(t) C 1-2 p ∇b -(t) C 1-2
p . The last term will be estimated as follows,

∂ i b - C 1-2 p ≤ χ∂ i b C 1-2 p + b∂ i χ C 1-2 p ≤ χ∂ i b C 1-2 p + b C 1-2 p ∇χ C 1-2 p
Using (63) and (64) we obtain

∂ i b -(t) C 1-2 p ≤ χ(t)∂ i b(t) C 1-2 p + C 0 1 + W 2 (t) e exp C 0 tW (t)
. Concerning the estimate of the first term of the right-hand side we imitate the same computation of (62)

χ∂ i b C 1-2 p ≤ C 0 e CtW (t) + j - C 1-2 p .
It follows that t) . Putting together the previous estimates

∂ i b - C 1-2 p ≤ j - C 1-2 p + C 0 1 + W 2 (t) e exp C 0 tW (
II C 1-2 p ≤ C 0 1 + ω -(t) C 1-2 p 1 + j - C 1-2 p 1 + W 2 (t) e exp C 0 tW (t) .
Inserting this estimate and (66) into (56) gives

χ(t) ∂ 1 b•∇v 2 -∂ 2 b•∇v 1 (t) C 1-2 p ≤ C 0 1+ ω -(t) C 1-2 p j - C 1-2 p +1 1+ W 2 (t) e exp C 0 tW (t) . Set g(t) ω -(t) C 1-2 p + j -(t) C 1-2
p , then applying Proposition 2.6 to the system (54) and (55) we get for t ∈ [0, 1],

g(t) ≤ C 0 e exp C 0 tW (t) 1 + tW 2 (t) + C 0 e exp C 0 tW (t) ˆt 0 g 2 (τ ) 1 + W 2 (τ ) dτ.
It follows that for small time t ∈ [0, T ] such that

(67) 4C 2 0 T e exp C 0 T W (T ) 1 + W 2 (T ) 2 ≤ 1 we get g(t) ≤ 2C 0 e exp C 0 tW (t) 1 + tW 2 (t) .
This completes the proof of the proposition. We point out that as a by-product of (62) one obtains (68)

χ(t)∇v(t) C 1-2 p + χ(t)∇b(t) C 1-2 p ≤ C 0 e exp C 0 tW (t) 1 + tW 2 (t) .
6.5. Proof of Theorem 6.1. We shall now discuss the proof of Theorem 6.1. We first establish the suitable a priori estimates and second we sketch the principal ingredients for the construction of the solution in our context. We end with the uniqueness part.

Proof. We shall start with the local a priori estimates.

• Local a priori estimates.

We assume that the system (2) admits a smooth solution and we wish to find some a priori estimates. The crucial quantities for the persistence of the regularity are the Lipschitz norms of the velocity and the magnetic field. To estimate the Lipschitz norm of the velocity we shall use (68). Then under the assumption (67)

∇v(t) L ∞ ≤ χ(t)∇v(t) L ∞ + (1 -χ(t))∇v(t) L ∞ ≤ χ(t)∇v(t) C 1-2 p + (1 -χ(t))∇v(t) L ∞ ≤ C 0 e exp C 0 tW (t) 1 + tW 2 (t) + (1 -χ(t))∇v(t) L ∞
To estimate the last term we shall use the identity [START_REF] Duvaut | Inéquations en thermoélasticité et magnétohydrodynamique[END_REF],

(1 -χ(t))∇v(t) L ∞ ≤ 1 -χ(t) |X(t)| 2 L ∞ X(t) L ∞ ∂ X v(t) L ∞ + X(t) 2 L ∞ ω(t) L ∞ ≤ 1 -χ(t) |X(t)| 2 L ∞ X(t) L ∞ ∂ X v(t) C 1-2 p + X(t) 2 L ∞ ω(t) L ∞ .
Using Proposition 6.4 combined with [START_REF] Sermange | Some mathematical questions related to the MHD equations[END_REF], (53) and Proposition 4.2

(1 -χ(t))∇v(t) L ∞ ≤ C 0 1 + tW 2 (t) e exp C 0 tW (t) 1 + ˆt 0 ∇v(τ ) L ∞ ∇b(τ ) L ∞ dτ ≤ C 0 1 + tW 2 (t) 2 e exp C 0 tW (t) .
Consequently we obtain

∇v(t) L ∞ ≤ C 0 1 + tW 2 (t) 2 e exp C 0 tW (t) .
In a similar way we get for the magnetic field

∇b(t) L ∞ ≤ C 0 1 + tW 2 (t) 2 e exp C 0 tW (t) .
Thus we find under the assumption (67):

∀t ∈ [0, T ], W (t) ≤ C 0 1 + tW 2 (t) 2 e exp C 0 tW (t) .
The goal is to find a suitable time existence T = T (C 0 ) > 0 subject to the above constraints. We shall look for small T such that W (T ) < 2eC 0 . This holds true whenever

1 + 4e 2 C 2 0 T 2 e exp 2eC 2 0 T < 2e.
The existence of such T follows from the continuity in time of left-hand side and the fact that the previous inequality is strict for T = 0. It remains to check the condition (67). This is true if

(69) 4C 2 0 1 + 4e 2 C 2 0 2 T e exp 2eC 2 0 T ≤ 1.
To guarantee this last condition we take T sufficiently small. Under this assumption we see from the previous computations in the last sections that ω(t), j(t) ∈ W p X(t) , ∀t ∈ [0, T ]. Moreover the vector fields v, b and X belong to L ∞ ([0, T ]; W 1,∞ ). To achieve the a priori estimates of Theorem 6.1 it remains to check that ∂ X 0 ψ(t) ∈ L ∞ ([0, T ]; W 1,∞ ). For this aim we use the identity

∂ X 0 ψ(t) = X t • ψ(t).
It suffices now to use the fact that X t and ψ(t) belong both to the Lipschitz class W 1,∞ .

• Existence and smoothing procedure.

To justify rigorously the previous a priori estimates and construct a solution as claimed in Theorem 6.1 we start with smoothing out the initial data as follows

v n 0 = v 0 ⋆ η n , b n 0 = ∇ ⊥ {G(ϕ n )}, X n 0 = X 0 ⋆ η n , ϕ n = ϕ ⋆ η n where η n (x) = n 2 η(nx) is a standard mollifier.
From the assumptions we can easily check that for any n, v n 0 , b n 0 ∈ C 1+α for any α ∈ (0, 1). Consequently we can apply the classical theory which ensures for each n the existence and the uniqueness of local solution (v n , b n ) defined on some interval [0, T n ] and with values in C 1+α . We shall prove that inf n T n ≥ T > 0 where T is defined in (69) but this does not mean that the bounds are uniform in the classical space C 1+α . The uniformness in tho space is false but it will be proven in the space of the initial data. Indeed, it suffices to show that the smooth family (v n 0 , b n 0 ) satisfies the assumptions of Theorem 6.1 with uniform bounds with respect to n. First we intend to check the first assumption , that is,

∂ X n 0 ω n 0 , ∂ X n 0 j n 0 ∈ L p with uniform bounds. First observe that the vorticity ω n 0 of v n 0 is given by ω n 0 = ω 0 ⋆ ρ n and ∂ X n 0 ω n 0 (x) = ∂ X n 0 -X 0 ω n 0 (x) + ∂ X 0 ω n 0 (x).
The first term can be estimated in a classical way as follows

∂ X n 0 -X 0 ω n 0 L p ≤ X n 0 -X 0 L ∞ ∇ω n 0 L p ≤ ∇X 0 L ∞ | • |η n L 1 ω 0 L p ∇η n L 1 ∇X 0 L ∞ ω 0 L p .
As regards the second term we write

∂ X 0 ω n 0 (x) = η n ⋆ (∂ X 0 ω 0 )(x) + n 2 ˆR2 [X 0 (x) -X 0 (y)] • ∇ y ω 0 (y)η(n(x -y))dy I n + II n .
Using the convolution inequalities we obtain

I n L p ∂ X 0 ω 0 L p .
Integration by parts combined with the incompressibility of X 0 yields

II n (x) = n 3 ˆR2 [X 0 (x) -X 0 (y)] • (∇ y η)(n(x -y))ω 0 (y)dy.
Thus we get

|II n (x)| ≤ ∇X 0 L ∞ n 3 ˆR2 |x -y||(∇ y η)(n(x -y))||ω 0 (y)|dy.
From the classical convolution laws one gets

II n L p ≤ ∇X 0 L ∞ | • |∇η L 1 ω 0 L p .
This achieves the proof of the first assumption of Theorem 6.1.

Let us now check the second assumption of this theorem. We shall show that

sup n∈N ⋆ (1 -ρ)ω n 0 C 1-2 p + sup n∈N ⋆ (1 -ρ)j n 0 C 1-2 p < ∞.
We point out that in the application the function 1-ρ is closely related to the function χ 0 introduced in (48) and this latter one belongs to W 2,∞ . Thus the function ρ should belong to W 2,∞ and not more. We write

(1 -ρ(x))ω n 0 (x) = η n ⋆ [(1 -ρ)ω 0 ](x) + ˆR2 [ρ(x) -ρ(y)]ω 0 (y)η n (x -y)dy I 1 (x) + I 2 (x)
From the classical convolution inequalities one gets

I 1 C 1-2 p (1 -ρ)ω 0 C 1-2 p .
For the second term we claim that

I 2 W 1,∞ ω 0 L ∞ .
Indeed, the uniform boundedness is easy to get. Concerning the Lipschitz norm we write

∇I 2 (x) = ∇ρ(x) η n ⋆ ω 0 (x) + n 3 ˆR2 [ρ(x) -ρ(y)]ω 0 (y)(∇η) n(x -y) dy.
Consequently we find

∇I 2 L ∞ ≤ ∇ρ L ∞ ω 0 L ∞ η n L 1 + ∇ρ L ∞ ω 0 L ∞ | • |∇η L 1 ω 0 L ∞ .
Concerning the uniform estimate of (1 -ρ)j n 0 C

1-2 p it suffices to bound (1 -ρ)b n 0 in the Hölder space C 2-2 p . For this purpose we write by the definition

(1 -ρ)b n 0 = G ′ (ϕ n )[(1 -ρ)∇ ⊥ ϕ n ].
Using the algebra structure of W

2-2 p yields (1 -ρ)b n 0 C 2-2 p G ′ (ϕ n ) C 2-2 p [(1 -ρ)∇ ⊥ ϕ n ] C 2-2
p . From the classical law products one obtains

G ′ (ϕ n ) C 2-2 p G ′ W 2,∞ ϕ n C 2-2 p .
Combining this inequality with the convolution laws

ϕ n C 2-2 p ϕ C 2-2 p allows to get G ′ (ϕ n ) C 2-2 p G ′ W 2,∞ ϕ C 2-2
p . On the other hand we have

[(1 -ρ)∇ ⊥ ϕ n ] C 2-2 p [(1 -ρ)∇ ⊥ ϕ n ] L ∞ + ∇ρ∇ ⊥ ϕ n W 1,∞ + (1 -ρ)∇ ⊥ ∇ϕ n C 1-2 p ρ W 2,∞ ϕ n W 2,∞ + (Id -∆ -1 )[(1 -ρ)∇ ⊥ ∇ϕ n ] C 1-2 p ρ W 2,∞ ϕ W 2,∞ + (Id -∆ -1 )[(1 -ρ)∇ ⊥ ∇ϕ n ] C 1-2 p . As to the last term we transform it into (1 -ρ)∇ ⊥ ∇ϕ n = {∇[(1 -ρ)∇ ⊥ ϕ]} ⋆ η n + ˆR2 [ρ(y) -ρ(x)]∇ ⊥ ϕ(y)∇η n (x -y)dy J 1 + J 2 .
Using once again the convolution inequalities we find

J 1 C 1-2 p (1 -ρ)∇ ⊥ ϕ C 2-2 p . For the term J 2 we write (Id -∆ -1 )J 2 C 1-2 p ∇J 2 L ∞ .
It is easy to check that

∂ i J 2 = (∂ i ρ∇ ⊥ ϕ) ⋆ ∇η n -∂ i ρ(x)∇ ⊥ ϕ ⋆ ∇η n + ˆR2 [ρ(y) -ρ(x)]∂ i ∇ ⊥ ϕ(y)∇η n (x -y)dy.
The first two terms of the right-hand side can be estimated as follows

(∂ i ρ∇ ⊥ ϕ) ⋆ ∇η n -∂ i ρ(x)∇ ⊥ ϕ ⋆ ∇η n L ∞ ∇(∂ i ρ∇ ⊥ ϕ) L ∞ + ∇ρ L ∞ ∇∇ ⊥ ϕ L ∞ ρ W 2,∞ ϕ W 2,∞ .
Concerning the last term we write

ˆR2 [ρ(y) -ρ(x)]∂ i ∇ ⊥ ϕ(y)∇η n (x -y)dy ≤ ∇ρ L ∞ ∇∇ ⊥ ϕ L ∞ ˆR2 |y -x||∇η n (x -y)|dy ∇ρ L ∞ ϕ W 2,∞ .
Therefore we obtain

J 2 L ∞ ρ W 2,∞ ϕ W 2,∞ .
Putting together the preceding estimates allows to get the uniform estimate

sup n∈N ⋆ (1 -ρ)j n 0 C 1-2 p < ∞.
It remains to check the assumption [START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF] uniformly with respect to n. This condition should be a little bit clarified since the singular support of (ω n 0 , j n 0 ) is smoothed out. We replace in [START_REF] Lin | Global small solutions to 2-D incompressible MHD system[END_REF] sing (ω 0 , j 0 ). Now since {ϕ n } converges uniformly to ϕ we can easily see that the assumption (31) is satisfied for sufficiently large values of n. This achieves the fact that the family {v n 0 , b n 0 } is smooth and satisfies the assumptions (1) -( 2) -(3) of Theorem 6.1 uniformly with respect to n.

• Uniqueness part.

Let {(v i , b i , p i ), i = 1, 2} be two solutions of the system (2) with the same initial data (v 0 , b 0 ) and belonging to the space

L ∞ T W 1,∞ such that (ω i , j i ) ∈ L ∞ T (L 1 ∩ L ∞ ). We set v v 1 -v 2 , b b 1 -b 2 and p = p 1 -p 2 .
It is known that in general the velocity does not belong to L 2 when its vorticity is only bounded and integrable but belongs to L p , ∀p > 2. However by reproducing the arguments developed in [START_REF] Chemin | Perfect incompressible Fluids[END_REF] we can show the existence of two vector fields σ 1 and σ 2 solutions of the stationary Euler equations and satisfying in addition σ i ∈ C ∞ b and ∇σ i ∈ H s , ∀s ∈ R, such that the solutions v i and b i constructed in the previous step belong to σ 1 + L 2 , σ 2 + L 2 , respectively. Therefore and in order to give a simple proof for the uniqueness part we shall assume that σ i ≡ 0. It is easy to check that (v, b) satisfies the following equations (70)

∂ t v + v 1 • ∇v + ∇p = b 1 • ∇b -v • ∇v 2 + b • ∇b 2 ∂ t b + v 1 • ∇b = b 1 • ∇v -v • ∇b 2 + b • ∇v 2 .
Taking the L 2 -inner product of the first equation of (70) with v and of the second equation with b we find after using the incompressibility of the involved vector fields, 1 2

d dt v(t) 2 L 2 + b(t) 2 L 2 = ˆR2 (b 1 • ∇b) • v + (b 1 • ∇v) • b dx + I(t) with 
I(t) = ˆR2 -v • ∇v 2 + b • ∇b 2 • v dx + ˆR2 (-v • ∇b 2 + b • ∇v 2 • b dx.
Integration by parts shows that the first term of the right-hand side vanishes. For the term I(t) one obtains by using successively Hölder and Young inequalities

|I(t)| v(t) 2 L 2 + b(t) 2 L 2 ∇v 2 (t) L ∞ + ∇b 2 (t) L ∞ . Consequently d dt v(t) 2 L 2 + b(t) 2 L 2 v(t) 2 L 2 + b(t) 2 L 2 ∇v 2 (t) L ∞ + ∇b 2 (t) L ∞
and thus the uniqueness follows from Gronwall inequality.

Commutator estimates

We shall in this section discuss some commutator estimates that most of them were of great use in the previous sections. The first one is technical and whose proof can be found for example in [START_REF] Hmidi | Global well-posedness for Euler-Boussinesq system with critical dissipation[END_REF]. Next we intend to recall and precise a crowd of estimates for some commutators of Calderón type. First, we denote by R ij the iterated Riesz transform

R ij ∂ i ∂ j ∆ -1 .
This operator acts continuously over Lebesgue spaces L p for 1 < p < ∞ and has an even kernel which is smooth in R 2 \{0} and with zero mean value on the the unit circle.

Lemma 7.2. Let f, g : R 2 → R be two smooth functions. Then the following assertions hold true.

(1) For p ∈]1, ∞[ we have

[R ij , f ]∂ k g L p ∇f L ∞ g L p .
(2) For ε ∈]0, 1[ and p ≥ 2 1-ε , we get

R ij , f g C ε f L ∞ + ∇f L ∞ g L p .
Proof.

(1) This result follows from Theorem 1 of [START_REF] Calderón | Commutators of singular integral operators[END_REF], but in this theorem the dependence of the constant with respect to the norm of f is not precised. However we can obtain our estimate from Theorem 2 of the same paper [START_REF] Calderón | Commutators of singular integral operators[END_REF] and we shall outline in the next lines how to reduce our problem to this case. Let K i denote the Kernel of Riesz transform R i ∂ i √ -∆ which is odd, homogeneous of order -d and belongs to C ∞ (R d \{0}). Now it is easy to check that [R i , f ]∂ k g(x) =

ˆR2

K i (x -y) f (y) -f (x) ∂ y k g(y)dy.

Thus using integration by parts yields

[R i , f ]∂ k g(x) = -R i (g∂ x k f ) + ˆR2 (∂ y k K i )(x -y) f (y) -f (x) g(y)dy I + II.
To estimate the first term we use the continuity of R i : L p → L p for p ∈]1, ∞[ and therefore

I L p ≤ C g∂ x k f L p ≤ C ∇f L ∞ g L p .
As regards the second term we shall use Theorem 2 of [START_REF] Calderón | Commutators of singular integral operators[END_REF] which is valid in our context since the map x → ∂ x k K i (x) is even, homogeneous of degree -d -1, locally integrable in R d \{0}. Consequently II L p ≤ C ∇f L ∞ g L p . Putting together the previous estimates gives the following result

(71) [R i , f ]∂ k g L p ∇f L ∞ g L p .
Now let us come back to the iterative Riesz transform R ij = R i R j and write

R ij , f ∂ k g = R j [R i , f ∂ k g + [R j , f ∂ k R i g.
Using the preceding result (71) combined with the continuity of Riesz transforms on L p lead to the desired result.

(2) We shall use the para-differential calculus through Bony's decomposition,

R ij , f g = q∈N R ij , S q-1 f ∆ q g + q∈N R ij , ∆ q f S q-1 g + q≥-1 R ij , ∆ q f ∆q g q∈N π q 1 + q∈N π q 2 + q≥-1 π q 3 π 1 + π 2 + π 3 .
To estimate the first term π q 1 we use its convolution structure, π q 1 = h q ⋆ (S q-1 f ∆ q g) -S q-1 f (h q ⋆ ∆ q g),

where h q (ξ) = ξ i ξ j |ξ| 2 ψ(2 -q ξ) and ψ is a smooth function supported in an annulus centered at zero. Therefore h q (x) = 2 2q h(2 q x) with h ∈ S. Then in view of the Lemma 7.1 we get,

π q 1 L ∞ xh q L 1 ∇S q-1 f L ∞ ∆ q g L ∞ .
Using the fact xh q L 1 = 2 -q xh L 1 combined with Bernstein inequality we obtain with the assumption p ≥ 2 1-ε

2 qε π q 1 L ∞ 2 q(-1+ 2 p +ε) ∆ q g L p ∇f L ∞ g L p ∇f L ∞ . Since ∆ j q∈N π q 1 = |j-q|≤4
π q 1 then it follows

π 1 C ε g L p ∇f L ∞ . ( 72 
)
Concerning the second term π q 2 , we follow the same steps of the preceding case 2 qε π q 2 L ∞ 2 q(-1+ε) S q-1 g L ∞ ∇∆ q f L ∞ 2 q(-1+ε+ 2 p ) S q-1 g L p ∇f L ∞ g L p ∇f L ∞ . Now we can conclude in a similar way to the first term π 1 that (73)

π 2 C ε g L p ∇f L ∞ .
Let us now move to the third term π 3 . By the definition of the remainder term we have

∆ q π 3 L ∞ k≥q-3 R ij , ∆ k f ∆k g L ∞ + R ij , ∆ -1 f ∆-1 g L ∞ χ [-1,4] (q) k≥q-3 R ij (∆ k f ∆k g) L ∞ + k≥q-3 ∆ k f (R ij ∆k g) L ∞ + R ij , ∆ -1 f ∆-1 g L ∞ χ [-1,4] (q) 
I q + II q .

By Bernstein inequality and the continuity of Riesz transforms over L p we get

2 qε I q g L p 2 qε k≥q-3 2 k 2 p ∆ k f L ∞ g L p ∇f L ∞ 2 qε k≥q-3 2 k( 2 p -1) g L p ∇f L ∞ . ( 74 
)
For the low frequency term II q we use once again Bernstein inequality combined with the continuity of Riesz transforms over L p

II q L p ∆ -1 f L ∞ ∆-1 g L p ≤ f L ∞ g L p .
Consequently we find (75)

π 3 C ε f L ∞ + ∇f L ∞ g L p .
Therefore putting together (72), ( 73) and (75) yields

R ij , f g C ε ( f L ∞ + ∇f L ∞ g L p .
This completes the proof of the commutator estimate. Now, we introduce the following operator L := ∂ i ∆ -1 which is of convolution type and our aim is to establish a commutator estimate between this singular operator and the convection operator v • ∇.

Lemma 7.3. Let ε ∈]0, 1[, p, ∈]1, ∞[. Let ρ : R 2 → R be a smooth function and v be a smooth divergence-free vector field on R 2 . Then

L, v • ∇ ρ C ε v C ε ρ L ∞ ∩L p .
Proof. The proof will be done in the spirit of the preceding one. From Bony's decomposition,

L, v • ∇ ρ = q∈N L, S q-1 v • ∇ ∆ q ρ + q∈N L, ∆ q v • ∇ S q-1 ρ + q≥-1 L, ∆ q v • ∇ ∆q ρ q∈N π q 1 + q∈N π q 2 + q≥-1 π q 3 π 1 + π 2 + π 3 .
To estimate the first term π q 1 we use its convolution structure, π q 1 = h q ⋆ (S q-1 v∆ q ∇ρ) -S q-1 v(h q ⋆ ∇∆ q ρ), where h q (ξ) = ξ i |ξ| 2 ψ(2 -q ξ) and ψ is a smooth function supported in an annulus with center zero. Therefore h q (x) = 2 q h(2 q x) with h ∈ S and in view of Lemma 7.1 we get,

π q 1 L ∞ 2 -2q ∇S q-1 v L ∞ ∆ q ∇ρ L ∞ 2 -q ∇S q-1 v L ∞ ∆ q ρ L ∞ .
Hence we obtain since ε < 1

2 qε π q 1 L ∞ 2 q(-1+ε) ρ L ∞ -1≤j≤q-2 ∇∆ j v L ∞ 2 q(-1+ε) ρ L ∞ -1≤j≤q-2 2 j(1-ε) v C ε ρ L ∞ v C ε .
Therefore we get

π 1 C ε ρ L ∞ v C ε . ( 76 
)
Concerning the second term π q 2 , we imitate the previous computations

π q 2 L ∞ 2 -2q ∇∆ q v L ∞ S q-1 ∇ρ L ∞ ∆ q v L ∞ ρ L ∞ .
Therefore we obtain

2 qε π q 2 L ∞ v C ε ρ L ∞
and consequently

π 2 C ε ρ L ∞ v C ε . ( 77 
)
Let us now move to the third term π 3 . By the definition of the remainder term we have

π 3 = q≥-1
Ldiv(∆ q v ∆q ρ) -q≥-1 ∆ q v • ∇L( ∆q ρ) π 1 3 -π 2 3 . By Bernstein inequality we obtain for j ∈ N

2 jε ∆ j π 1 3 L ∞ 2 jε q≥j-4 ∆ q v L ∞ ∆q ρ L ∞ ρ L ∞ v C ε q≥j-4 2 (j-q)ε ρ L ∞ v C ε .
For the low frequency we use the continuity of Riesz transforms over L p

∆ -1 π 1 3 L ∞ q≥-1 ∆ q v L ∞ ∆q ρ L p v C ε ρ L p .
Thus we find

π 1 3 C ε v C ε ρ L p ∩L ∞ . ( 78 
)
As regards the term π 2 3 we write

π 2 3 = q≥2 ∆ q v • ∇L( ∆q ρ) + 1 q=-1
∆ q v • ∇L( ∆q ρ) π 2,1 3 + π 2,2 3 . Since for q ≥ 2 the Fourier transform of ∆q ρ is supported in an annulus of size 2 q then 2 jε ∆ j π 2,1

3

L ∞ 2 jε q≥j-4;q≥2

∆ q v L ∞ ∇L( ∆q ρ) L ∞ ρ L ∞ 2 jε q≥j-4 ∆ q v L ∞ ρ L ∞ v C ε
For the term π 2,2 3 we get

π 2,2 3 C ε 1 q=-1 ∆ q v L ∞ ∇L( ∆q ρ) L p v C ε ρ L p .
It follows that

π 2 3 C ε v C ε ρ L p ∩L ∞ . ( 79 
)
Putting together (78) and (79) we find

π 3 C ε v C ε ρ L p ∩L ∞ .
Combining this estimate with (76) and (77) yields for any p ∈]1, ∞[and 0 < ε < 1,

(80) L, v • ∇ ρ C ε v C ε ρ L p ∩L ∞ .
This completes the proof of the commutator estimate.

( 5 )

 5 H(v, b) 2∂ 1 b • ∇v 2 -2∂ 2 b • ∇v 1

Lemma 2 . 4 .

 24 Let Ω be a simply connected domain with boundary in C 1+ε and ε ∈]0, 1[. Then we can find a Hamiltonian vector field b 0 satisfying the assumptions (1) and (2) of Theorem 1.4.

Theorem 5 . 4 . 0 |Φ ′ (re iθ )|dθ. 2 )

 5402 The following assertions hold true. 1) Let Φ : D → Ω be the conformal mapping. Then ∂Ω is rectifiable if and only if Φ ′ ∈ H 1 andL = limr→1 ˆ2p Let f ∈ H 1 then f has an angular limit f (e iθ ) almost everywhere on the boundary T and lim r→1 ˆ2p 0 |f (re iθ )|dθ = ˆ2p 0 |f (e iθ )|dθ, and lim r→1 ˆ2p 0 |f (re iθ ) -f (e iθ )|dθ = 0.

Corollary 5 . 5 .

 55 Let Φ be a conformal mapping of the unit ball D onto the interior of a rectifiable Jordan curve ∂Ω. Then Φ ′ has an angular limit almost everywhere on the boundary T and lim r→1 ˆ2p 0 |Φ ′ (re iθ )|dθ = ˆ2p 0 |Φ ′ (e iθ )|dθ, and lim r→1 ˆ2p 0 |Φ ′ (re iθ ) -Φ ′ (e iθ )|dθ = 0.

( 23 )

 23 v 0 • n = 0 on ∂Ω and b 0 • n = 0 on ∂D.

For each 0

 0 < r < 1, let us denote by D r the open ball of radius r and centered at the origin and set Ω r Φ(D r ). The boundary ∂Ω r is an analytic curve and Φ maps conformally D r onto Ω r . By the change of variable x = Φ(y) we obtain (27) ˆΩr div F dx = ˆDr (div F )(Φ(y)) |J Φ (y)|dy.

  to the limit in the right-hand side we use ∇ϕ 0 ∈ C b (R 2 ) combined with the following result discussed before in the preliminaries, lim r→1 ˆ2p 0 |∇Φ(re iθ ) -∇Φ(e iθ )|dθ = 0. Therefore we obtain from the preceding identity combined with (29) Φ(e iθ )) ψ(Φ(e iθ ))dθ = 0, ∀ ψ ∈ D(R 2 ). Let h : T → C be any continuous function on the circle. From Carathéodory Theorem we can extend Φ to the closure D and Φ : D → Ω is a homeomorphism. Consequently the inverse Φ -1 : ∂Ω → T is continuous and we can define the function ψ : ∂Ω → C by

  Φ(e iθ )) h(e iθ )dθ = 0.

  we can easily check that from our choice we obtain at time zero Y 0 = 0. Now according to Lemma 3.1, we get

2 pp.

 2 ≤ C 0 e CtW (t) + ω -(t) Coming back to (61), then it remains to estimate b(t) The first term is estimated as follows, b

Lemma 7 . 1 .

 71 Let (a, b) ∈ [1, ∞] 2 such that a ≥ b ′ with 1 b + 1 b ′ = 1. Given f, g and h three functions such that ∇f ∈ L a , g ∈ L b and xh ∈ L b ′ . Then, h ⋆ (f g) -f (h ⋆ g) L a xh L b ′ ∇f L a g L b .

  the set Σ

	1-2 p sing (ω n 0 , j n 0 ) by compactly supported function χ with χ(x 0 ) = 1 such that χω n Σ1-2 p sing defined as follows: we say that x / Σ1-2 p sing if and only if there exists a smooth ∈ 0 and χj n 1-2 p uniformly 0 belong to C on n. Performing straightforward calculations one can prove that
	Σ1-2 p sing = Σ 1-2 p
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