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Positivity and lower bounds
for the density of Wiener functionals
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Abstract. We consider a functional on the Wiener space which is smooth and not
degenerated in Malliavin sense and we give a criterion for the strict positivity of
the density, that we can use to state lower bounds as well. The results are based
on the representation of &dﬁ?sﬂfy in terms of the Riesz transform introduced in
Malliavin and Thalmaier, :? acﬁla on the estimates of the Riesz transform given in
Bally and Caramellino %3]17

Keywords: Riesz transform, Malliavin calculus, strict positivity and lower bounds
for the density.
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1 Introduction

The aim of this paper is to study the strict positivity and lower bounds for the
density of a functional on the Wiener space. Although the two problems are related
each other, the hypothesis under which the results may be obtained are different.
Just to make clear what we expect to be these hypothesis, consider the example of
a d dimensional diffusion process X; solution of dX; = 7", 0;(X;) o dW} +b(X;)dt
where odW/ denotes the Stratonovich integral. The skeleton associated to this
diffusion process is the solution x;(¢) of the equation dz.(¢) = > 7" | o;(xy(0)) bl dt +
b(x(¢))dt, for a square integrable ¢. The celebrated support theorem of Stroock
and Varadhan guarantees that the support of the law of X, is the closure of the set
of points x which are attainable by a skeleton, that is x = x;(¢) for some control
¢ € L*([0,T]). Suppose now that the law of X; has a continuous density px, with
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respect to the Lebesgue measure. Then in order to get a criterion for py, (z) > 0, we
prove that this holds if x is attainable, that is z = z4(¢) for some ¢, and a suitable
non degeneracy assumption holds in x. The second problem is to give a lower bound
for px,(x) and this can be achieved if a non degeneracy condition holds all along the
curve z(¢) which arrives in x at time t. Roughly speaking, the idea is the following.
If one has a non degeneracy condition all along the skeleton curve arriving in x at
time ¢, one may give a lower bound for the probability to remain in the tube up
to t — 0 for a small 6 > 0 and then one employs an argument based on Malliavin
calculus in order to focus on the point x - essentially this means that one is able to
give a precise estimate of the behavior of the diffusion in short time (between t — §
and t). This allows one to obtain a lower bound for py,(z). If one is not interested
in lower bounds but only in the strict positivity property, the argument is the same
but one does not need to estimate the probability to remain in the tube: using the
support theorem one knows that this probability is strictly positive (but this is just
qualitative, so one has no lower bound for it) and then one focuses on the point
x using again the same argument concerning the behavior of the diffusion in short
time. So one needs the non degeneracy condition in x only.

The two problems mentioned above have been intensively studied in the literature.
Let us begin with the strict positivity. At the best of our knowle%%e:‘fglﬁﬂrst
probabilistic approach to this problem is due to Ben-Arous and Leandre [8], who used
Malliavin calculus in order to give necessary and sufficient conditions allowing one to
have px, (x) > 0 for a diffusion process (as above). They proved that if Hormander’s
condition holds then px,(z) > 0 if and only if z is attainable by a skeleton z;(¢)
such that ¢ — x4(1)) is a submersion in ¢. The argument they used is based on the
inverse function theorem and on a Girsanov transformation. All the papers which

Q]&Qﬁeg}( %ﬁveloped in some way their techniques. First, Aida, Kusuoka and Stroock
gave a generalization of this criterion in an abstract ﬁF%n?ﬁz%rek which still permits

to exhibit a notion of skeleton. Then Hirsch and Song studied a variant of such
a criterio ig():r[ﬁa?&%ﬁeral functional on the Wiener space using capacities and finally
Leandre [[T4] obtained similar results for diffusion processes on manifolds. Notice
that once one has a criterion of the above type there is still a non trivial problem to
be solved: one has to exhibit the skeleton which verifies the submersion property.
So, number of authors dealt with concrete examples in which they are able to use

in a more ar %%sfsp]direct way the argument of Ben-Arous and Leandre: Bally and
%g&g&%ﬁmwith parabolic stochastic heat equations, Millet and Sanz- ({]té: [F]
;8 worked with hyperbolic stochastic partial differential gaﬁsom, Fournier [T0
considered jump type equations, Dalang and D. Nualart %%Teﬂb_ls&% positivity

results for building a potential theory for SPDE’s and E. Nualart [20] has recently
proved results in this direction again for solutions of SPDE’s.

Concernjng 1%%11 bounds for the density, a first result was found by Kusuoka and

lkb"' . . . .. .
Stroock [13] Tor diffusion processes. Hg_ verify a strong uniform Hormander condi-
tion. Afterwards Kohatsu-Higa [T2] obtained lower bounds for geneﬁ% ,fléglcltionals on

the Wiener space under a uniform ellipticity condition and Bally [2] proved results




under local ellipticity conditions. Recently, Ga gsbi_aghécype lower and upper bounds
are studied in E. Nualart and Quer-Sardanyons 5T] for the nonlinear stochastic heat
equation.

The present paper gives a contribution in this framework: we study the strict posi-
tivity and lower bounds for the densit _ggta general functional on the Wiener space
starting from a result (Proposition Eﬂ."gWﬁich gives the behavior of a small pertur-
bation of a Gaussian random variable - it corresponds to the study of a diffusion
process in short tiirllg(aig%etween t — 60 and t). This is a consequence of an abstract
result (Theorem 2.4) in which the distance between the local density functions of
two random variables (doesn’t mafter if one of them is Gaussian) is studied. It is
worth to stress that Theorem 2.4 15 of interest in itself and can be linked to the
implicit function theorem in order to get further estimates which C:%I&b]gse used to
handle the same problem under H;'Cgrp%réder type conditions (see%%.i

So, our main result (see Theorem B.3] gives sufficient conditions in order to obtain
the following lower bound for the law of F' around a point y € R%: there exists n > 0
and c(y) > 0 such that

P(F € A) > c(y)Lebg(A) for every Borel set A C B, (y),

Leb, denoting the Lebesgue measure on R, In particular, if the law of F' is abso-
lutely continuous on B, (y) then the density pp satisfies pr(x) > c(y) > 0 for every
x € B,(y). Essentially, our conditions are that y belongs to the support of the law
of F' and an ellipticity-type condition holds around y.

In our examples, we first deal with an Ito process X; defined as a component of a
diffusion process, that is

m t t
Xt =Iy + Z / 0j (Xt, n)thJ + / b(Xt, }/;)dt
j=1"9 0

mo e . t
Voot - [ oy Yawy + [ 5 Ve
= Jo 0

Notice that for diffusion processes, etge[’% E}l]example which is essentially t eSANG o
treated in Ben Arous and Leandre\%mAida, Kusouka and Stroock [I]: i%ef
(z(9),y(¢)) denote the skeleton associated to the diffusion pair (X,Y’) and let x =
x4(¢) for some suitable control ¢. Then, whenever a continuous local density py, of
X exists in x, we prove that if oo*(z,y:(¢)) > 0 then px,(z) > 0. And moreover, if
infe<, infyglqzésgs(gb), y) > A > 0 and z,(¢) belongs to a suitable class of paths (see
Theorem A.T for details), then a lower bound for px,(x) can be written in terms of
the lower estimates for the probahility that [to processes remain near a path proved

in Bally, Ferndndez and Meda in}%

As a second example, in Section Eﬁe treat the two dimensional diffusion process

dX} =0y (X)dW, + by (Xo)dt,  dX] = by(X,)dt
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which is degenerated in any point x € R?. We assume that z is attainable by a
skeleton x:(¢) and that |oy(z)] > 0 and |01b2(x)| > 0 - which amounts to say
that the weak Hormander condition holds in the point x. We prove that un eL . 5. KH]
this hypothesis one has px,(z) > 0. For this example Bally and Kohatsu-Higa 5
have already given a lower bound for the density under the stronger hypothesis
that inf,<; |o(zs(¢))| > 0 and infs<; |01ba2(x5(¢))| > 0. So the same non degeneracy
condition holds but along the whole curve z4(¢),0 < s < t. Notice that we use
a skeleton x4(¢) which arrives in z but we do not ask for the immersion property
(according the result of Ben-Arous and Leandre it follows that a skeleton which
verifies the immersion property exists also, but we do not know how to produce
it directly and we do not need it). And it seems clear to us that our criterion
may be used for SPDE’s as well and would simplify the proofs given in the already
mentioned papers.

. . . sect-resume . .
The paper is organized as follows. In Section b we first state localized representation
formulas for the density by means of the Riesz transform (see Section b [) and then
we studg the .ditstanqe between_the. local densities of two random variables (see
ect-dis sect-perturbation

Section 2.2)."Section B1s devoted o the results on the perturbation of a Gaussian
Sect—-—lemma
)3 [)and t

random variable (see Section 3. o the study of the strict positivity and the
Hower bouglds 1gor the density of a general functional on the Wiener space (see Section
sect-positivity sect—-examples

3.2). We finally discuss our examples in Section 4.

2 Localized integration by parts formulas

ect-resume

We consider a probability space (€2,.%,P) with an infinite dimensional Brownian
motion W = (W"),cn and we use the Malliavin alcylys in order to obtain integra-

tion by parts formulas. We refer to D. Nualart “for notation and basic results.
We denote by D*? the space of the random variables which are k times differentiable
in Malliavin sense in L? and for a multi-index a = («,...,a,,) € N™ we denote

by D*F' the Malliavin derivative of F' corresponding to the multi-index a. So, D™
is the closure of the space of the simple functionals with respect to the Malliavin
Sobolev norm

IE I, = IF], + > E(DWFP)

k=1

IDW |2 = Z/ (D F| dsi, ... dsy.

la|=k [0,00)%

where

In the special case k = 1, we consider the notation
|IDF|? .= |DWF|? = Z/ |D§F|2 ds,
¢=0 V [0.)

(for the sake of clearness, we recall that D stands for the Malliavin derivative w.r.t.
W - and not the derivative of order £). Moreover, for F = (F!, ..., F4), F' € D2

4



ect-1locIBP

we let or denote the Malliavin covariance matrix associated to [ :
i i G\ Xk i ok j c o
ol = (DF,DF>_Z/ DFFIDFFIds, ij=1,....d.
k=10

If op is invertible, we denote through o the inverse matrix. Finally, as usual, the
notation L will be used for the OrnsteinUhlenbeck operator.

2.1 Localized representation formulas for the density

Consider now an integrable random variable U taking values on [0, 1] and set
dPy = UdP.

Py is a non negative measure (but generally not a probability measure) and we set
Ey the expectation (integral) w.r.t. Py. For F' € D*P, we define

k
IFly =Eu(FP) and |IFI, = IFlhy + Y Eo(DYFP).

i=1
We assume that U € DY and we consider the following condition:
my(p) =1+ Ey(|]DInU|P) < oo, for every p € N. (2.1)

Mallil

(b._%)’could seem problematic because U may vanish and then D(InU) is not well
defined. Nevertheless we make the convention that D(InU) = DU 1y 4oy (in fact
this is the quantity we are really concerned in). Since U > 0 Py-a.s. and DU is well
defined, the relation ||InUl|;, < oo makes sense.

We give now the integration by parts formula with respect to Py (that is, locally)

and we study some consequences con ergl_i&g C‘[:Ihe regularity o ygeslaw starting ﬁl"gp}m
the results in Bally and Caramellino 3 (see also Shigekawa “or Malliavin [15]).

In particular, for I € (DY*)? we will need that the Malliavin covariance matrix op
is invertible a.s. under Py, so we call again 65 the inverse of o on the set {U # 0}.

Let Q4 denote the Poisson kernel on R?: (), is the fundamental solution of the
equation AQy = dg in R? (§y denoting the Dirac mass at the origin) and is given by

Qi(r) = max(z,0), Qu(z) =Ay'In|z| and Qu(z) = —A;" |2/, d > 2,
(2.2)
where for d > 2, Ay is the area of the unit sphere in RY. Then one has

alll
Lemma 2.1. Assume that (%. 25 holds. Let F = (Fy,..., Fy) be such that F; € D>,
i=1,...,d. Assume that det op > 0 on the set {U # 0} and moreover

Ey((detop)™) <oo VpeN. (2.3)

Let G be the inverse of o on the set {U # 0}. Then the following statements hold.

5



A. For every f € C°(RY) and V € D one has
Ey(0if(F)V) =Eu(f(F)Hiy(F,V)), i=1,...,d,with
d
Hiy(F,V) =Y (V&%LFJ’ —(D(V&}),DF?) — V&3 (DInU, DFY) ) (2.4)
j=1

d.
B. Let Qg be the Poisson kernel in R given in (Z?Zna. Then for every p > d one has

Ev(IVQa(F — 2)|77) % < CpuEu(|Hy(F, 1)[P)rd (2.5)

where C,, 4 s a universal constant depending on p and d and k, 4 = (d—1)/(1—d/p).

C. Under Py, the law of F is absolutely continuous and has a continuous density
pru which may be represented as

d

pro(r) =Y Eu(0Qu(F — x)Hyu(F, 1)). (2.6)
i=1
Moreover, there exist constants C' > 0 and p,q > 1 depending on d only such that
pru(z) < Cyru(p)'nru(p)*mu(p)? (2.7)
alll

with my (p) given in (2.1,
Yru(p) = 1+ Ey(ldetop|™") and npy(p) =1+ [|Flly,y + ILF|po.  (2.8) [F,U
Finally, if V € DY then there exist C > 0 and p,q > 1 depending on d such that

prov(z) < Cypu(p)'neu(p)'mu @) IV, - (2.9)

Proof. A. The standard integration by parts formula in Malliavin calculus gives
(vector notations)

Ey(V(F)V) =E(NVf(F)UV) = E(f(F)H(F,UV))
where, setting DU = U x D(InU), one has

H(F,UV) = VUGpLF — (D(VUGy), DF)
= U(VGpLF — (D(VGy), DF)) — Vop (DInU, DF)),

15
So, H(F,UV) = UHy(F,V), and (B17 s proved.
B. This point str?i%httfé)r&fardly follows from the results and the techniques in Bally

and Caramellino [3]. bib: [B.C] Bisi
C. (g.ﬁi again follows from \[3], while (\2.1? ] is a consequence of the inequality

| Hu (F, V)0 < Cyeu @) neu®)'mu(p) VI o (2.10)

6




holding for suitable C' > 0 and p, g o 1]1§epending on d only. This can be proved by

applying the Hol er ingqs%ality to (2.4) (further details can 9 nd in the proof of
next Pﬁg i)gjtion .2 0, by usi g t}le Holder inequality to ( sy considering
both (Zgi and (b I(ii, one gets (2.7). Finally, i %1 ofgley; to prove we formally

write (the rigorous arguments can be found in

pF,Uv($> :EUv(ég(F — x)) = EU\/<AQd(F — I)) = EU(AQC{(F — JJ)V)
:EU<<VQd(F - $), HU(Fa V))

Mall5’ Bis4’ Bis3
Then using (2.5) and(2.10) one obtains (i‘Z 9). O

2.2 The distance between two density functions
__sect—dist
We compare now the densities of the laws of two random variables under Py .

111
Proposition 2.2. Assume that (%?25 holds. Let F' = (Fy,..., Fy) and G = (Gy, ...,

Gyq) be such that F;,G; € D>* i=1,....d, and

Yrau(@) =14 sup Ey((det ogier-a)) ™)) <oo, VpeN.

0<e<1

Then under Py the laws of F' and G are absolutely continuous with respect to the
Lebesgue measure with continuous densities ppy and pgu respectively. Moreover,
there exist a constant C' > 0 and two integers p,q > 1 depending on d only such that

‘pF,U<y) - pG,U(?/)‘ < C’VF,G,U(p)an,G,U(P)qu(p)q | A (F, G)Hp,U (2.11)

111
with my (p) given in (%?25 and

Ay(F,G) = |D(F = G)| + [DP(F = G)| + |L(F - G|
nrgu(p) =1+ [[Fllypy + Gl p0 + ILElpw + I LGp0-

212

Moreover, since |U| < 1 almost surely, using Meyer’s inequality one has

pru(y) —peuW)| < Cyreu(P)'mo (@) (1 + [Flly, + Gl ,)" I1F = Glly, - (2.13)

Proof. Throughout this proof, C,p,q (that can vary from line to line) will be
universal constants depending on d only

By applying Lemma b.l, we first notice that under Py, the laws of F' and G are both
absolutely continuous with respect to the Lebesgue measure and the densities can

be written as
pru(y) = Ev((VQa(F — y), Hy(F,1))) and
peu(y) =Ev((VQa(G —y), Hu (G, 1))). (2.14)

Step 1. We prove that for V€ D>, on the set {U # 0} one has

\Hy(F,V) — Hy(G, V)| < C Apg Bre (L+|DInU)(|[V|+|DV]) x Ay (F, G) (2.15)

7



where on the set {U # 0} (that is, where the inverse Malliavin covariance matrices
or and o are actually well defined) the above quantities are equal to

AF,G = (1 V det /O'\F)Q(l V det 80)2,
Brg = (1+|DF| + |DG| + |DPF| + |[DBG|)™=V(1 + |LF| + |LG)).

So, we work on the set {U # 0}. We first notice that

’3? - 5Zj| <C(1Vdetap)(1Vdetag) |D(F —G)|(|DF| + |DG|)*¢1),
|DGY — D5/ | <C(1VdetGr)*(1V det56)*(|D(F — G)| + |DP(F - G)))
x (|DF|+ |DG| + |D(2)F| + ‘D(Q)G})d(d_l)'

113 Mall3
Then a straightforward computation gives (gél 5). Now, using (bél 5) and the Holder
inequality one has

[1Hy(F, V) = Hu (G, V)lpv < Crpeu@)'mu @) VI o 182(F, Gy (2.16)

Step 2. By using arguments similar to the ones developed in Step 1, we get

|H (B V) < Crpn @ onen G)me@) VI, . (217)
F,U Mall5’
npo(p') and ypu(p') being defined in (}’ZLS’) So, by taking p = (d+1)/d in (b%i and
by using (% [7) with V' =1 one gets
IVQa(F = y)llp/w-nw < Cyru@) nro (@) mo(p)’. (2.18)
FGU

Step 3. By using (2.14), we can write

pru(y) — peu(y) =Ev((VQa(F —y) — VQu(G —y), Hy(G, 1))+
+ EU(<de(F - y)7 HU(F7 1) - HU<G7 1)>)
=1+ J

. Mall6 .
Using (2.16) we obtain

|J| < C'YF,G’,U(p)an,G,U(p>qu(p)qHAQ(Fv G)Hp,U-

We study now the quantity I. For A € [0, 1] we denote Fy = G + A(F' — G) and we
use Taylor’s expansion to obtain

d 1
I = Z Rk,j Wlth Rkﬂ‘ = / EU(akand(F)\ — y)Hj7U<G, 1)(F — G)k)d/\
0

k,j=1

Let Vi, = H;u(G,1)(F — G);. Using again the integration by parts formula (in
respect to F) we obtain

1
Ry, = / Ev (0;Qa(Fy — y)Hyu (F, Vi) dA.
0



Now, one ha(ga%((det agifﬁ)%p) < Yreu(p) < oo for every A € [0,1] and p > 1. So,

we can use and (2.I7) with F' = F), and we get

[Riil < Cyure®)nure®)'mo®) [Vl o
< C'ure®) nure®) mu®)? | As(F, G|y
O

Example 2.3. We give here an ezample aé. qcalizmg function giving rise to a lo-
calizing random variable U that satisfies . Fora >0, set i, : R — R, as

a2

Ya() = zj<a + €xp (1 T2 (z-—

a)2)1a<x|<2a. (2.19)

Then 1, € C’,}(R), 0 <, <1 and for every p > 1 one has
4P
sup |(In g (z)) [Pe(z) < = sup(t*er ™) < oo.
T a; t>0

For ©, ¢ DY and a; >0, i =1,....¢, we define

V4
7= [ (). (2:20)
=1

_ _ 111
Then U € D, U € [0, 1] and (%é?% holds. In fact, one has

~

l
DI TPT = 3 (4, (©) D64 ] e, (©))
i=1 j=1
¢

<() \<1nwai>'<@i>\2)”2(i Do) TT v (©))

i=1 i=1 j=1

<CPZ| Inv,,)' ()74, (6:) x [ DO
<C L DO
>Lp Z; a_;;) | |

for a suitable C,, > 0, so that

y4 l
1
E(|DInUPT) < E:—p E(|DOJ) < §: s [lelff, <oco.  (221) [Malliz

sﬁli—

Malli0 B p-dist
Using the localizing function in (Zélgi and by applying Proposition i Welget the

following result.



111
Theorem 2.4. Assume that (%é?% holds. Let F' = (Fy, ..., Fy) and G = (G, ..., Gq)

with F;, G; € D** and such that for every p € N one has

ru(p) =1+ Ey((detop) ™)) < oo and ryou(p) =1+ Ey((detog)™)) < oo.

Then under Py, the laws of F' and G are absolutely continuous with respect to the
Lebesgue measure, with continuous densities pry and pguy respectively, and there
exist a constant C' > 0 and two integers p,q > 1 depending on d only such that

ipru(y) — pau ()| < C(vau(p) Vyru(p)mreu(p)mu(p)? X |Ax(F, G)pu

| e o 22
with npcu(p) and Aqo(F,G) given in W’and my(p) given in %

Proof. Set R = F — G. It is easy to check that for every A € [0, 1] one has

det ocyar > detog — aq|DR||DG| (1 + |DF| + |DG|)**, (2.23)

, , ~ MalllO
for a suitable oy > 0 depending on d only. For 1), as in (2.19), we define

aq|DR||DG| (14 |DF| + |DG|)*!

= H ith H =
v ¢1/4( ) i det og

so that if V' # 0 then det ogiar > 5 detog. It follows that vpeov(p) < Cyeu(p),
C denoting a suitable positive constant (which will vary ir t]ff 1flollovmng lines). We
also have myy (p) < C(my(p) + E(UV|DInV|?)) and by (2.21) we have

E(UVIDIn V") < CIDH ; < Cnpeu (@)oo (P)!

Mall
for some p, g, so that myv (p) < Cmy(p)nre,u(p)™eu(p)?. So, we can apply (bani
with localization UV and we get

prov(y) = peuv )| < Cyru(p) V60 p)) nreo () mu(p)!| A (F, G) v

We write now

lpeu(y) — pauv)| < lprov(y) — pauv(y)| + ‘pF,U(l—V)<y)‘ + |PG,U(1—V)(y) ;

and we have already seen that the first addendum on the r.h.s. behaves as desired.
So, it remains to see t gécsalso the remaining two terms have the right behavior. To
this purpose, we use (2.9). So, we have

‘pF,U(l—V)<y)‘ < vru(@)meLe(p)i'my(p)? x (|1 — V||17p,U-
We recall that 1 — V' # 0 implies that H > 1/8, so that
1= V7,0 =Eu(1 = V") + Eu(IDV[’) < C(Py(H > 1/8) + Ev(V|DIn V"))
< C(Ey(H?) +Eu(|DH|")) (2.24) [1-v

10



rturbation
sect-lemma

. . Mallii
in which we have used (2.2I). Now, one has

Ey(|H|P) < CWG,U(ﬁ)an,G,U(ﬁ)q Ey(|D(F — G)|2p)1/2 and
]EU(|DH|p) S CvG,U(ﬁ)an,G,U(ﬁ)q (EU(|D(F — G)|2p)1/2 + EU(|D(2)(F o G)|2p)1/2)

and by inserting above we get
11 = Vllipv < Crau®)necu®)? | A2(F,G)|l2p0-
This gives
lproa-v(®)] < C(veu(p) Vvau () 'necu (p)'mu (p)! || Aa(F, G) |l
for suitable constants C' > 0 and p,q > 1. Similarly, we get
Ipeva-v ()| < C(vrvp) V reu ) nreu(p)ime ()| A (F, G)||p0.

The statement now follows. OJ

3 Small perturbations of a Gaussian random vari-
able

3.1 Preliminary estimates

We consider here a r.v. of the type F' = 2 + G + R € R? where R € D** and

o5 [Chom:

with h; : [0, 4+00) — R? deterministic and square integrable. Then G is a centered

. . . . k
Gaussian random variable of covariance matrix Mg = (M&")gp=1...4, With

-----

My = [T s = 3 [ e, Ep=1.d
j=1

We assume that M is invertible and we denote by g, the density of G that is

gMG(y) = (27T)d/2\1/m exp(— <M§1y, y>)

Our aim is to give estimates of the de étﬁ 1%f, F in terms of gp,. To this purpose,
we use a localizing r.v. U of the form (2.

11
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Proposition 3.1. Let 1), be the function in (%?295 and set
U= ep(DRP) with R=Mg"*R. (3.1)

here ¢, is such that aq(1 + 2d)%c,(1 + ¢.)¥ ' < 1/2, oy denoting the constant in
;}2 BI??. Then the following statements hold.

i) Under Py, the law of F' has a smooth density ppy and one has

Su% ‘pF,U(y) — Mg (y - :L‘)’ < €(MG7 R)> Y€ Rdﬂ
yeR

where
Ca

vdet Mg

Here cq,qq, 0y are some universal positive constants depending on d only.

£(Ma, R) = 1+ [[Bll,,,) |7

H2 qd

i) If the law of F' under P has a density pg, then one has

pF(Q) Z gMG(y - fE) - €<MG7 R)? ) € Rd'

Proof. i) Suppose first that x = 0 and Mg = I, I denoting the identity matrix, so
that R = R. We notice that det o = 1, which gives vg (p) < 2 for every p nd
|DGJ? = d. Moreover, on the set {U # 0} one has |DR| < ¢, and by using (
straightforward computations give

d

L
detop > 1 — ag(1 +2d)YDR|(1 + |DR)* > 1 — ag(1 4 2d)%c,(1 +c,)t > =

allill

It then follows that yry(p) < 1+ 2P < oo for every p. Mareover, by (g 21) one
has my(p) < 1+ ||R|[5,,- We can then apply Theorem b 47to the pair F' and G,
with localizing r.v. U. By Stralghtforward Computatlons and the use of the Meyer
inequality, one has nrcu(p) < Cp(1 4 I Bl2)" and [[Qa(EG)llp < Coll Rll2,2,
with npqu(p) and Ay(F, G) given in (2.12). Therefore, (2.22) gives

pru(y) = peu(®)| < & (14 |[Rl2g)" | Rll2q  for every y € RY,
where & > 0 and q;,¢; > 1 are Goystants depending on d only. It remains to
compare pey with pg = gr: from (2.9) (applied with U =1,V =1—-U and F = G)
we immediately have
pev(z) —pa(e)| = pei-v(z) < Crea(p)nea(p)'mi(p) (11 = Ully, < ClI1=Ully,
for a suitable C' > 0 and p > 1 depending on d only. No _recalli gvthat U # 1 for
|IDR| > ¢,/v/2, as already seen in the proof of Theorem kS 3 isee ) we have

|1 = U}, < C(E(IDRP?) + E(|D|DREP)),

so that

lpeu(y) —pa(y)| < &(1+ HR”Z@)K2 IRl for every y € R,

and the statement follows. As for the general case, it suffices to apply the already
proved estimate to F' = M_1/2( —12), G = MG_I/QG and R = Mgl/QR and then to
use the change of variable theorem.

i7) It immediately follows from pr(y) > pru(y). O

12
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3.2 Main results

In this section, we consider a time interval of the type [T" — 0,7, where T" > 0 is
a fixed horizon and 0 < § < T', and we use the Malliavin calculus with respect to
W, s € [T —6,T]. In particular, we take conditional expectations with respect to

Fr_s. Therefore, for V = (V1, ..., V%), V; € D¥P, we define the following conditional
Malliavin Sobolev norms:

L
IVIIE ., =EGVI | Frs) + Y E(DOVP| Fr_s). (3.2)

=1

Let F' denote a d-dimensional functional on the Wiener space which is measurable
w.r.t. Fr and assume that for 6 € (0, 7] the following decomposition holds:

F=Fr_s+Gs+ Rs (3.3)

where Fr_s is measurable w.r.t. Fr_s, Rs € (D**)¢ and

0 T
Cs = Z/T 6h’§(s)de.
k=1 -

Here hf(s),s € [T — §,T] are progressively measurable processes such that h%(s)
is Fr_s-measurable for every s € [T — 46,7 and >_,-, fTT;(S |hk(s)]?ds < oo a.s. In
particular, conditionally on Fr_s, the random variable G is centered and Gaussian
with covariance matrix

00 T
Y = Z/T §h’§’z(s)h§’j(s)ds 1<ij<d.
k=1 -

On the set {det C5 # 0} € Fr_s, we define the (random) norm
|z|s = |C’5_1/2x|, r € R?
and for ¢ € N, we consider the following (random) quantity
05 = [1C5 " Rslls 24 (3.4)

Set now Ps(w,-) the m asyre induced by Es(w, X) = E(X¢(|DRs|?) | Fr_s)(w),
where ¢ = 1) /5 is as in (3. L B S(geveloping in a conditional form the arguments as
in the proof of Proposition %.‘fﬁthe set {det Cs5 # 0} one gets that under Ps(w, -)
the law of F' has a regular density w.r.t. the Lebesgue measure. Therefore, there
exists a function prs(w, z) which is regular as a function of z and such that

E(f(F)6(DRs?) | Fros)(w) = / f(2)prslw, 2)dz, we {detCs £0}  (35)

for any measurable and bounded function f.

13
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Now, let us introduce the following sets: for y € R? and r > 0, we define

F(;’T(y) = {|FT_5 - y|5 S T} N {det Cg 7é 0} N {957% S aq G_TQ} (36)
ﬁ;yr(y) = {\FT,(; —yls < 7“/2} N { det Cy # 0} N {957% < ay e_’”Q}, (3.7)
where
B 1
aq = g2l 1 (27)d/2

exp-est
and qq, {4 and cq are the universal constants defined in (i) of Proposition &3. | [hen
we have

o dec d
Lemma 3.2. For j € (OgTéolet decomposition (23’.2‘)’3 hold and for y € R*, r > 0,

let Us,(y) be the set in (13.6). Then for every non negative and measurable function

f R =R andw € {det C5 # 0} one has

—r2

B (F) | Fr-s)) > g (@t C) ™ [ ()L, o

bardeltal
Proof. Let w € {det Cs # 0}. By using (E%g ), for any measurable and non negative
function f we have

B (F)Fr-s)(@) 2 EEEWIDRE) | Fr-)) = [ £)Prsles 2)a:
z/GQWMWaﬂmwﬂz

exp-est
Using Proposition BPi% conditional form (with respect to Fr_s) we obtain

Prs(w, 2) 2 gosw) (2 — Frs(w)) — e(Cs(w), Rs)(w)

theta

where, by using (B.4),
Cd

det 05
Cd

£(Cy, Ry)(w) < (1 +11C; 2 Rsll5:2,00)1C5 " Rs 15 2.0

]

If w € T5,(2) then 5., < age™ < 1 so that

1 1 2
Cs, R <c .
(G )W) = 5 X myinya G, ¢

For w € I's,.(2) we also have
(Cy Y (Frs —2),Fr_s — z) = |Fr_s — 2| < r?

so that )
gcs (Z - FT—(5) Z —r2.

(27T)d/2\/ det 05 c
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Then, by the choice of age™"" we obtain
Prsl,2) > =

w,z) > e
Prs (27)4/2/det Cy

We conclude that

E(f(F) | Frs)(w) > m / £(2) (et Cs)1r, =

2 1 2
" —¢(Cs, R > -
e(Cs, Rs)(w) = 2(2m)4/2/det 066

O

We are now ready for our main result. It involves the concept of “local densities”,
that we define as follows: we say that the law of a r.v. F taking values on R? admits
a local density around y € R? if there exists an open neighborhood V;, of y such that
the restriction of the law of F' in V, is absolutely continuous w.r.t. the Lebesgue
measure Leby on R?. So, we have:

dec
Theorem 3.3. For ¢ € (0,T], let decomposition (3’.33 hold and for y € RY, r > 0,
assume that

P(Ts,(y)) > 0,

where T, (y) is the set in (% 7). Then there egists n >0 and c(y) > 0 such that for
every Borel measurable set A C B,(y) one has

P(F e A) > ¢(y)Lebg(A).
As a consequence, if the law of F admits a local density pr around y then one has

pr(x) > c(y) for a.e. x € B,(y).
Proof. For € > 0, set

f(gma(y) = {|FT_5 - y’(g < 7‘/2} N {det Cs > 8} N {957% < ade_r2}.

If IP’(IN},T(y)) > 0 then there exists ¢ > 0 such that P(faw’a(y)) > 0. On the set
{det C5 > ¢}, one has
€ls < &7, ¢eR

Taking 1 = ¢%?r /2, one immediately has
fé,r,s(y) C Isp(x) for every z € B,(y)

0 1 -
where I's,.(x) is the set in (F%%ia Therefore, by applying Lemma &B?Zm:naforosevery
measurable and bounded function f whose support is included in B, (y) one has

B (P | Fr-0)) > gy (@t 007 P ey [ flo,

By (y)
and by passing to the expectation one gets the result with

1

—1/2
c(y) = WE((CI% Cs)Y 1r,,.@) > 0.
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t-examples

4 Examples

th-pos
We apply now Theorem 3.3 To two cases in which a support theorem is available

and we give results for the strict positivity and lower bounds for the density which
involve suitable local or global non degeneracy conditions on the skeleton.

4.1 Ito processes

We consider here a process Z; = (X;,Y;)*, taking values on R? x R™, which solves
the following stochastic differential equation: as t < T,

m t t

X, = x0+2/ aj(Xt,Yt)th]—ir/ b(X,, Y;)dt
j=1"0 0

o T (4.1)

Ve st Y [ ypdny + [ s v
j=1"0 0

We are interested in dealing with strict positivity and/or lower bounds for the prob-
ability denSi@ﬁ _fuglsction of one component at a fixed time, say X7, as a consequence
of Theorem %T?)‘.EThis is a case in which a support theorem is available, and we are
going to strongly use it. For diffusion processes (that is, if we deal with Zr and

not with Xz only), we get gxﬁﬂlg}f which is essentially the same as in the pa k. [A.K.S]
of Ben Arous and Leandre % and 1n the paper of Aida, Kusouka and Stroock [1].

Concerning the lower bounds, we will use lower estimates for the probability that
ItOFF%ﬁocesses remains in a tube around a path proved in Bally, Fernandez and Meda
in [[6].

it
So, in (1.0) we assume that 0;,b € C}H(R™R?) and a;, 8 € CHRIT™RY), j =
1,...,m, which implies that X}, Y}’ € D*>* for all £ and i.
For ¢ € L3([0, T]; R™), let z(¢) = (24(d), y¢(6)* denote the skeleton associated to

(b_l'), ie.

m@=m+2/q@m%wwma/wwmmwt
=1 ’ (4.2)

t
0

mw=m+zlwww%wWM+/MMmmm@

in which b = b'— %Z;’Ll Oy,05 and B = — %Z;’;l O, v, where we have used the
notation (9,f)" = (Vf*, g).
For a fixed z € R?, we set
C(zr) = {p € L*([0,TER™) : 2r(¢) = a}. (4.3)
We finally consider the following set of functions: for fixed 4 > 1 and A > 0,
L(p,h) ={f : [0,T] = Ry ; f; < ufs for all t, s such that |t —s| < h}.  (4.4)
We have

16



it
Theorem 4.1. Let Z = (X,Y)* denote the solution of &70), with 0j,b € Cp(RH™;
RY) and a;, 8 € CHRY™R"), j=1,...,m. Let x € R? be z éitggd suppose that
C(x) # 0. For ¢ € C(a), let (6) = (i(0),ui(6))* be as in (§ ?;
i) Suppose there exists ¢ € C(x) such that oo*(z,yr(¢)) > 0. Then there exists
n >0 and c(x) > 0 such that for every Borel measurable set A C B,(z) one has

P(X7 € A) > c(z)Leby(A).

In particular, if Xt admits a local density px, around x then px, > c(x) > 0 a.e.
on the ball B,(z).

it) Suppose there exists ¢ € C(x) such that |0z:(¢)| € L(u, h), for some p > 1 and
h >0, and

00" (z(¢),y) > A >0 forallt €[0,T] and y € R™.

Then if the law of X1 admits a continuous local density px, around x one has

pxa (@) > Texp [— Q(\If n %/OT |8txt(q§)|dt)],

where T, Q, ¥ are all positive constants depending on d, T, i, h, \x and vector fields
oj,05,j=1,...,m, and b, 3.

rop-ito
In next Proposition E‘.S"’ﬁtudy the existence of a local density and we prove in
particular that under the requirement in part ii), the local density really exj s,
Actually, a little bit mgre work would show that the non degeneracy condition (ET{T
holds and by Lemma 2.1 the local density is indeed continuous. But we are not

interested here to enter in these technical arguments.
th-ito
Proof of Theorem 4.1. 7) We take 0 < § < T and we consider the decomposition

X7 = X7r_s+ Gs + Rs, where

m .7
Gi=Y [ oy(Xrs Vi)W
o T

T

m_ T
s = Z/ (0j(X0,Yy) — 05 (Xp_5, Yr_5)) AW} +/ b(X,,Y,)dt.
j=1/T-9 T—6

Conditionally on Fr_s, the covariance matrix of the Gaussian r.v. G is

C% 2200}()CT_5,Y&*5)5

|[sect—perturbation .

So, we ar tl11n the framework studied in Section B and we proceed in order to apply
Theorem 3 359) is proved as soon as we find ,7 > 0 such that P(F(;T( )) > 0.

For ¢ € C(x), we denote 2?(z) = (z,yr(¢)) and we take ¢ such that oo*(2¢(z)) > 0.
We denote by A\, > 0 the lower eigenvalue of 0o*(2?(z)). Then, there exists ¢ > 0
such that

A
oo*(z) > 5 I; for every z such that |z — 2¢(z)| < e.

17



For a fixed § € (0,7], we have [2?(x) — z1_5(¢)| = |210(¢) — 2r_s5(¢)| < C(1 +
16]l2)V/0 = CyV/6, so that if | Zr_s— 2r_s(¢)| < CypV/6 then | Zr_s—2%(2)| < 20¢\/_
We choose 8y such that 20,6 < ¢ for all § < &y. So, if |Zp_s — 2p_5(¢)| < Cy/8
we get

s
Cs > 5 014

and in particular,

2
)

2 \1/2
_ .9
<(55) 12r-s =) <

1/2
) X x|

VA2

[Xros = als = |G (X5 — ) < (

Moreover, for ¢ > 2, a standard reasoning gives

2
1 Rs15 2,4 = E(|Rs|* | Fr—s) +E<Z </

/2
‘Dsl Sledel...dSl)q | .FT_5>

= NJr-sy
S (Clyq(s)q?
so that ]
= HC(;]-/2R6H§727(1 < \/ﬁ HR[‘,‘H&Q’(I < 027(]\/5. (45) ]theta—th—ito

We take § < &g in order that C’Qq\/_ < age™™". For such a § we get that {|Zr_s —
zr_s5(@)] < Cy/8} C Ts,(x) and by the support theorem one has P(|Zr_5 —
zr_s(@)] < Cy\/8) > 0, so that P(Ts,(z)) > 0.
ii) For £ : [0,T] — R% and R > 0, we set
TR(E) = inf{t : [& — ()] > R}.
We know that there exists ¢ € C(z) and € > 0 such that if 72(£) > T then
00" (&,y) = Ala

for any t € [0,7] and y € R™. So, on the set {72(X) > T} one gets C; > \,01,.
Moreover, if 7¢(X) > T then for 0 < § < T

\Xr_s — | =|Xr_s — 20(9)| < | Xrs — 20-5(0)| + |21-5(0) — 21(0)|

T
<€+ / latxt(¢)|dt

T—6

theta-th-it
Since again (&I.Seiaﬁolasl We take § < T such that fT 5 0w (@)|dt 1< e and 65, <
emma—-pos
age~(2)” Therefore, {r?(X) > T} C I's2:(x) and by using Lemma }3.2 we get

(1) > ——
PXri) = 9 0nn0) iR

P(r(X)>T) =Y xP(72(X) > T).

18



Now, the hypothesis allow one to use Theorem 1 in Bally, Fernandez and Meda h%!‘
one has

B0 > 1) z e (- Qw4 - [ 0doar))

and the statement holds. [

Example 4.2. Let n > 1 and k > 0 be fived integers and let (X,Y) be the 2-
dimensional process solution to

t t
Xt:xo—i—/ 3;”de+/ YFds,

0 0
m:yO_FWE?

W denoting a Brownian motion on R%. The pair (X,Y) then follows the well-known
Grushin d?ﬁugion. Here, we are interested in the study of the éomponent )gh _017?&@;
because this gives an example in between the two cases studied in Theorem Wn
fact, one has oo*(z,y) = y*", and this vanishes as y = 0, so there is no hope that
part 1i) holds. Nevertheless, 1) is always true. In fact, since the strong Hérmander
condition holds for the diffusion pair (X,Y), the law of (Xr,Yr) has a smooth
density on R?, so that X has a smooth density as well. Moreover, the associated
skeleton is given by

n(0) = w0t [ r@ldeeg [ @) —n o)

t
y(®) = wo +/ ¢; dt,
0
so it is clear that for every x € R one has C(x) # 0 and one can choose ¢ € C(x)
such that oo*(x,yr(¢)) > 0, that gives px,.(x) > 0.

We propose now a sufficient condition for the existence otﬁm_}%gal density, that in
particular says that under the hypothesis of i) in Theorem A.T, a local density really
exists.

Proposition 4.3. Set
O={zxeR: Ploo*(z,Yr) > 0) = 1}.

Then for every x € O the law of Xp admits a local density px, around x. As
a consequence, if x € O is such that C(x) # 0 and for some ¢ € C(x) one has
oo*(x,yr(¢)) > 0, then the local density px,. is a.e. strictly positive around x.

Proof. For z € O, set D, = {y € R" : oo*(x,y) > 0}. D, is an open set, so there
exist a sequence {y;} C R and a sequence {r;}; C R, such that D, = U;enB 1r, (ys)

and B, (y;) C D,. Moreover 00™(Z,y) > A; > 0 for every y € By {y:) and T € B, (x).
For any fixed i, we consider a localizing r.v. U; of the form (2:20): we set

Ui = 92| Xp — 22 (1Y — yil”).
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By (g%lﬁl,’le is a good localizing r.v. (that is, (g.éll'lTlholds), and we set dP; = U,dP.
We also notice that if U; # 0 then oo*(Xr,Yr) > A; > 0. This property allows
one to use a standard argument showing that the Malliavin covariance matrix of
F = as finite inverse moments of gny order with respect to IP;, which means
that (2.3) holds. So, we can use Lemma 2.1 and we can conclude that the law of X
with respect to P; is absolutely continuous with respect to the Lebesgue measure.

Take now A C B,/3(x) a set of Lebesgue measure equal to zero. Since x € O we
have P(Yr € D,) =1 so

P(Xr € A)=P(Xr € AYr€D,) <Y P(XreAVYre By, (%))

the last equality being true because ¥,2(| X7 — z|*)ih,2(|Yr — yi|°) = 1if X7 € A and
Yr € By, (y;). Since the law of Xr under P; is absolutely continuous with respect
to the Lebesgue measure we obtain P;(Xr € A, Yy € B%m(yi)) = 0 for every i, and
this proves that a local dens’fccg Dy around z exists. The final statement comes now
immediately from Theorem A.T.

Example 4.4. Consider the diffusion process

t t

Xt =ah+ [Callxvleaw+ [ Ixoaw?,
Ot Ot

Xt =ab+ [Callxvloaw?+ [ |xoan?,
0 0
t

dY; = yo +/ B(X) o dW}!
0

where W is a standard Brownian motion taking values on R* and o, 8 are C}} func-
tions. We suppose that {r : a(r) # 0} = By(0) and that B(xy) # 0, the latter
requirement ensuring in particular that the law of Yr has a density. Therefore, o _ivo
every x € By(0) one has P(oo*(x,Yr) > 0) = 1 and by applying Proposition é.i?

one gets that X has a local density around every point in By1(0). Now, in order to
study its positivity property, let us write down the associated skeleton: for a square
integrable control path ¢, one has

£H(6) =} + / a([24(6)]) [ye(6)] 61dds + / 12.(6)| dds
22(6) =22 + / o[(0)) lo:(8)] 62ds + / 22(6)] 3ds,

yi(9) =o + / Ba(9)))6hds.
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We recall that the support theorem of Stroock and Varadhan asserts that the law
of (X}, X2, Y:)s0 is the closure (with respect to the uniform norm) of the points
of the skeleton as above. Notice that if |z (¢)| > 1 then a(|zi(¢)]) = 0 and so
Orwr(¢) = |ze(9)| 3 = 0yx?(¢). This means that outside the unit ball the skeleton
(1 (9), 22(¢)) may travel on a line which is parallel to the principal diagonal (i.e.
' = 2%), but only on this line. If |z} (¢)| < 1 then one may use the controls ¢*
and ¢* and then (z} (), x?(¢)) may travel in any direction inside the open unit ball.
Having this in mind, we define the strip S = {(z*,2%) : |2' —2?| < v/2} and thanks
to the above discussion and the support theorem we have the following three cases.

1. 29 ¢ S. Here, for every s the law of X is concentrated on the line which is
parallel to the principal diagonal and contains xo. In particular, a(|Xs|) =0
a.s. for every s, so X is actually a diffusion process satisfying

t t
thzx(l)—i—/ | X,| 0 dW?2, Xf:x§+/ | X,| 0 dW?2.
0 0

2. zp € S but zy ¢ Bl(Or.rO[{%eo the support of the law of Xp is the whole S.
By using Proposition 1.3, we can say that Xt has a local density around any

point in B1(0) and moreover, there exists a version of the local density which
18 strictly positive in the ball. But we have no information outside the ball.

3. zg € B1(0). We can assert the same statements as in case 2 but with some
refinements. In fact, here if yo # 0 then a(xg)yo # 0, so that the law of Xr
has a smooth global density which is strictly positive on the unit ball B1(0).

. . . th-ito
Concerning point ii) of Theorem b I, it does not apply except when o,z € B1(0).

4.2 Diffusion processes satisfying a weak Hormander condi-
tion: an example

asian

In this section we treat an example of diffusion process which satisfies the w kb [B. KH]
Hormander condition and has been recently studied in Bally and Kohatsu-Higa )Lg -

(we are going to use the ideas and the estimates fro t%w[tg% er). Since lower
bounds for the density have been already discussed in 5 _we dea, t}lil_elrgsonly with

the strict positivity. So, we give an application of our Theorem B3.3in a case of
degenerate diffusion coefficients.

We consider the diffusion process
t t t
th = ! —|—/ o1(Xs)dW; +/ b1(X5)ds, Xf =2 —i—/ bo(Xs)ds (4.6)
0 0 0

and we assume that o1,b1,b € Ci°(R?%; R). Actually, it suffices that they are four
times differentiable - but we do not focus on this aspect here. Moreover, we fix some
point y € R? and we assume that

lo1(y)] > c. >0 and |01b2(y)| > ¢ > 0. (4.7)
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Let 0 = (01,0)* and b = (b1, by)*. The Lie bracket [o,b] is computed as

(2)01b1(x) — by(x)0109(x) — bQ(a:)agal(x))

[0,b](x) = 0,b(x) — Oyo(x) = <01 o1 (w)a;;(:c)

So assumption (E{lg?) is equivalent with the fact that o(y) and [o, b](y) span R?, and
this is the weak Hormander condition in y.

We set b = b— 19,0 and for a measurable function ¢ € L?([0, 7], R) we consider the
skeleton z(¢), i.e. the solution of the equation

o) =+ [ (otr0)os-+Br.(0))ds.

2
Proposition 4.5. Assume that o1,b1,by € C3°(R?) and &‘7) holds. Then the law
of Xt has a local smooth density pr(z,-) in a neighborhood of y. Moreover, if there

exists a control ¢ € L*([0,T]) such that xr(p) =y then pr(z,y) > 0.

Before starting with the proof of Proposition 4.5, Tet us consider the following de-
composition: for ¢ € (0, 7], we set

F=Xr—xp(¢) and F =Fr_s+ Gs+ Rs (4.8)
where FT,(; = XT,(; — ZTT,(;((ﬁ) and

T T
G}; = / o1 (XT_(;)dWS, Gg = 80b2(XT—5>(T - S>dW3

) )
Rl = /T Té <01(X5) —al(XT_(;))dWS+ /T Tébl(Xs)dsqL
- ' 01($5(¢))¢s "‘El(foé((ﬁ)) ds
T-6

R | (B0alX0) = O (T = )W, + 8 (a(Xg) — ba(rr0)) ) +

T—6

+ /T Lby(X)(T — s)ds — /T <b2 (25(¢)) — ba (xT_5(¢))>d5

T—6 T—6

in which L = £60*9? + b9, denotes the infinitesimal generator of X.
The covariance matrix of the conditional (on Fr_s) Gaussian r.v. Gy is given by

1 O1ba(X7-5)3
Obo(Xr_5)d (Ohbo)2(Xr )% )

ib: [B.KH
We need now some estimates which can be easily deduced from 5T, In or%er to be
self contained, we propose here the following

Lemma 4.6. Let p; = max(d, fTT_é |ps|?ds). Then, there exist &g > 0 such that for
every 0 < &y, on the set {|Fr_s| < §%2ps} the following properties hold:

05 = (50%(XT_5) (
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4

. )
i) det Cs > iy

it) for every & € R?, |§|§ < %

it) for every q > 2, 05, < Lyps.

(52|§1|2 + |§2|2>; in particular, |Fr_s|s < caps;

Here, c1, co and Ly are suitable positive constants depending on c, and upper bounds
for o, b and their derivatives up to order 4, L, depending on q also, and we recall

that |¢|s = |C; 2.

Proof. First, by recalling that ¢ and b are bounded, for some positive constant C
we have

|27-5(9) — 21(9)| < Cpj

so that
X715 —yl < | Xr_s — 27_5(9)| + Cp3.

Therefore, we can choose dy such that for all 6 < dy the following holds: if |Fr_s| =
|XT_§ — .’L’T_(s(gf))| < 53/2p5 then

lo1(Xr—s)| > ce >0 and |01bo(X7r_5)| > ¢, > 0.

Therefore,
2 2 4
det C(; _ (0181[?2)1;XT—5)5 > 01(54
and 7) holds. Moreover, we have
o-1_ 1 4(01b2)*(X7_5)0% —6(01by)(X7_6)d
J (0181b2)2(XT_5)53 —6(81()2)(XT_5)6 12

so that for ¢ € R2,

1
(Ulalbg)Q(XT_g)(S?’

(52|§1|2 + |fz’2)

C5 %) = (C5 e, €) =
C

<
ek

((281b2(XT_5)5§1 - 362)2 + 3§§>

where C' depends on o and b. Then, if |Fr_;| < 6°/2p5 one gets

C
0*p3(0° +1) < capj

-1/2
|Fr_sl? = |C5 2 Fr_4]? < 53

and i) is proved. As for iii), for ¢ > 2 we have
E(|C; " Rsl) < A, (E(072R}%) + E(0~*2R}") ),

23



where A, depends on ¢, c,, 0 and b. Now, by using the Burkholder inequality and
the boundedness of the coefficients b and ¢ and of their derivatives, one has

),

E(|0"Y2R}7) < C,679/2 [E(‘ /T: (01(Xs) — o1(X7_5) ) dW

+E(’/T:b1(Xs)ds q)+
+E<‘ /TT5 (01 (2:(¢)) s + by (xT—5(¢))>d8

< chfgfq/? ) (5«1 + 511/2</T ]¢s]2dS)Q/2) < 2C,Cpl

T—6

)]

where C, depends on ¢ only and C' depends on the bounds of the diffusion coeffi-
cients. Similarly (in the following C' denotes a suitable constant),

q

)+

T
E(|5—3/2R§|q) < Oq5—3q/2 [E(‘ / (8(7()2()(8) — anQ(XT_g))CT — S)dWS
T-6

+ ]E<5q|bz(XT—5) = by(21-5(9)) ‘q> *
ve(| [ e - o)+

+ ‘ /TT5 <b2($s(¢)) - b2(mT_5(¢>)>d3 q]
< 20,0072 (8% 4 §1|Fr |7 + 8 sup|a,(6) — a7-5(0)]")

T—6§<s<T

< 20,087%9/2 (6% 4 1 52 1 o1 - (574 6972 / ) |¢sl2ds)q/2]>
)
< C,Cpi.

The same arguments may be used to give upper estimates for the remaining terms
in HC’(;I/ 2R5H§72’ , that contain the Malliavin derivatives. So, we deduce that

1C5 2 Rills2.q < Laps
and the proof is completed. [J

We are now ready for theo

s T-prop | " %_ogr,#
Proof of Proposition 4.5. Consider the decomposition (1.8): we have px, (y) =
an

pr(0). We use Lemma 4. heorem 3.3 So, there exists dy such that for
§ < & if |Fr_s| < 0%2ps then |Fr_s|s < cops. We take now &, < & and r = cyp;,.
So, there exists < ¢&; such that 65, = ||C’5_1/2R5||5727qd < age™"”. Therefore,

T5.(0) D {|Fr_s| < 6%2ps} and by the support theorem one has P(|Fr_s| <
532ps) = P(|Xr_s — x7_s(¢)| < 6*2ps) > 0, so Theorem B.3 allows one to con-
clude. U
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