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We address theoretically the puzzling similarity observed in the thermodynamic behaviour of
independent clouds of cold dipolar excitons in coupled semiconductor quantum wells. We argue that
the condensation of self-trapped exciton gas starts at the same critical temperature in all traps due
to the specific scaling rule. As a consequence of the reduced dimensionality of the system, the scaling
parameters appear to be insensitive to disorder.

PACS numbers: 71.35.Lk

Introduction.–The ring-shaped boundary between elec-
tron rich and hole rich regions in semiconductor quantum
wells remote from the central hot excitation spot pre-
sents the unique setting for studying of the critical beha-
viour in exciton gases [1]. Indirect excitons formed on the
ring have extremely long lifetimes and high cooling rates
which allow them reaching a thermodynamic equilibrium
with the cold lattice. On the other hand, the strong repul-
sion of exciton dipole moments oriented perpendicularly
to the plane of the structure prevents the system from for-
mation of biexcitons [2] and makes possible observation
of a Bose-Einstein condensed (BEC) metastable state [3].
The specifics of such BEC can be conveniently studied by
analysing the exciton photoluminescense (PL) [4, 5].

Intriguing phenomena have been recently observed in
the PL ring of dipolar excitons in coupled quantum wells
(CQW’s) [6, 7] and, independently, in a biased single
quantum well (SQW) structure [8]. With lowering of tem-
perature the exciton cloud at the ring squeezes and frag-
ments into an array of beads seen as bright spots in
the PL spectra. Shift-interferometry measurements re-
veal that each bead represents a macroscopically coherent
exciton state (a condensate). At the same time, no phase
correlations between different beads have been found [7].
These local condensates are formed in different external
conditions, and their sizes vary along the ring [Fig. 1].
Indeed, though the electrostatic interaction between ex-
citons results in screening of rapid fluctuations of the
in-plane potential [9], the weak disorder varying slowly
in space is always present. The effect of disorder on the
formation of patterns of exciton condensates is a challen-
ging problem which has not been addressed until now.

In this Letter we show that the pronounced dispersion
of sizes of the beads observed in the experiment [Fig. 1]
can be described accounting for a weak and smooth di-
sorder potential in the system. Surprisingly, the disorder
does not affect the value of the critical temperature Tc :
BEC starts in all the traps simultaneously, at the same
temperature as in the disorder free system. The situation

resembles one in multiband superconductors : in spite of
the diversity of coherence lengths and gaps of the Cooper
pairs in different bands at relatively low temperatures,
the system unifies close to the phase transition, and the
transition occurs at a unique critical temperature. This
important result of our model is consistent with the ex-
peremental studies [6–8].
In the absence of interactions and disorder, the cloud of

indirect excitons localized at the ring would condense ho-
mogeneously at some temperature corresponding to zero
chemical potential. However, the time to reach kinetic
equilibrium and build up the long-range order in such an
ideal gas would be infinitely long [10]. The strong dipole-
dipole repulsion between excitons ensures fast therma-
lization of the whole cloud, but BEC occurs at a lower
critical temperature Tc and would result in fragmenta-
tion of the ring into a perfectly periodic array of localised
condensates. In the thermodynamic limit, the number of
beads would be determined by the balance between the
kinetic and entropy terms in the free energy of the exci-
ton system [11]. The exciton bead density profile along
the ring reproduces the shape of the self-trapping poten-
tial. The latter can be assumed to be of a harmonic type
for all beads :

Vj(x, y) =
1

2
mω2

jx
2 +

1

2
mω2

yy
2, (1)

where x corresponds to the azimuthal and y to the ra-
dial direction, j = 1, 2...J is the index of the bead and,
in the absence of disorder, ω1 = ω2 = ... ≡ ωx. Loca-
lization of the clouds in the radial direction y is due to
the macroscopic in-plane charge separation (see Fig. 2
and Ref. [22]). Strictly speaking, the self-trapping poten-
tial oscillates along the ring and can be characterized by
{ωj} only in the vicinity of its local minima. The local
harmonic potential approximation (1) is valid if the traps
are deep enough and a large part of non-condensed ex-
citons is effectively localized in each site j. This is the
case in the experiments [6, 7]. The chemical potential of
each independent cloud µj can be calculated using the
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normalization condition

Nj(µj) =

∫

nj(x, y, µj)dxdy, (2)

where nj(x, y, µj) is the density profile of this cloud (see
Eq. (7) below),

∑

j

Nj(µj) = N0, (3)

with N0 being the total number of excitons at the ring
in a steady state, and

µ1 = µ2 = ... ≡ µ, (4)

so that the three equations (2), (3) and (4) determine,
in fact, the unique chemical potential µ of the interacting
disorder free system.
The effect of disorder can be studied considering a

perturbative correction to the self-induced part of the
localizing potential : the potential traps (1) acquire dif-
ferent curvature (characterized by ωj) and contain dif-
ferent number of excitons Nj, while the chemical poten-
tial µ defined by (2) remains unchanged and the condition
of kinetic equilibrium (4) is not violated. Below Tc the
latter is reached on a time scale of inverse temperature
due to strong fluctuations of the relative phases between
the adjacent condensates [12]. The fluctuations result in
damping of coherent exciton flows [13], which would be
induced if the condition (4) is violated. At higher tem-
peratures the fluctuations are due to thermal activation
of the phase, while close to the absolute zero they are
of quantum nature and, in terms of mechanical analogy,
correspond to the tunnelling of the phase between the
neighboring condensates [14].
For these reasons, the condition (4) holds for the whole

range of temperatures even in the presence of disorder.
Below we show, that at the experimentally achieved exci-
ton densities this implies that the critical point Tc is not
affected by disorder and remains unique for the whole
system. To obtain this non-trivial result we extend the
principle of scale invariance on a two-dimensional harmo-
nically trapped gas and show that all the beads belong
to the same universality class.
Scale invariance.–Self-trapping along the ring alters

dramatically the density of exciton states making it pos-
sible to observe the true second order phase transition
in the thermodynamic limit. In this case the scale in-
variance, generally taking place in the critical region
[17], was shown to be extended down to zero tempe-
rature [15, 16]. A physical reason for this specific sca-
ling is quenching of finite size effects (negligibility of
the kinetic energy term in the mean field equation for
a condensate) [15]. The relevant thermodynamic func-
tions of a trapped cloud can be expressed in terms of
two parameters : the critical temperature of BEC of non-
interacting particles in a harmonic trap T 0

c,j and the ratio

Figure 1. The sketch of a pattern of exciton beads similar to
one observed by L. Butov et al. [6] in CQW’s structure. Below
some critical temperature the exciton ring is fragmented into
an array of independent exciton condensates (beads). The size
of a bead varies weakly along the ring due to smooth in-plane
disorder. The thermal cloud of non-condensed excitons covers
all the beads.

Figure 2. Calculated potential profile for the radial motion of
an indirect exciton in the vicinity of the ring (solid line) and
the model harmonic trap (dashed line). Details of calculation
can be found in [22]. The localization is due to the macrosco-
pic charge separation (color inset on the left) which induces
in-plane electric field. The field tilts the exciton dipoles and
thus reduces their potential energy. At low temperatures, ex-
citons condense at the potential minimum located near the
charge boundary. As a consequence of strong repulsive inter-
actions the density profile of the exciton condensate is very
smooth and merely reproduces shape of the trap (dashed-dot
line).

ηj = µj(T = 0)/kBT
0
c,j. In what follows we show that the

scaling parameters are the same for all localized exciton
clouds.

By analogy with a three dimensional problem [15, 16],
the thermodynamic limit for a two dimensional harmoni-
cally traped gas can be formally obtained by letting the
total number of particles Nj in a trap increase to infinity,
and the oscillator frequency ωho,j = (ωjωy)

1/2 decrease
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to zero, while keeping fixed the product ωho,jN
1/2
j . The

latter defines the critical temperature of an ideal gas in
a harmonic trap

kBT
0
c,j = (6/π2)1/2~ωho,jN

1/2
j . (5)

To account for contact interactions between the exci-
tons in the trap domain, we take advantage of the fact
[10] that as ωho,j → 0 the density profile of the jth cloud
nj(x, y) is fixed by the condition of local equilibrium

µ̄[nj(x, y), T ] = µj(T )− Vj(x, y). (6)

Here µ̄(n̄, T ) is the value of a local chemical poten-
tial calculated for a uniform system having the density
n̄ = nj(x, y), while µj(T ) is the chemical potential of the
cloud. By inverting the condition (6) one can write the
density nj(x, y) in the form

nj(x, y) = n̄[µj(T )− Vj(x, y), T ], (7)

where n̄(µ̄, T ) is merely the density of the uniform gas
expressed in terms of its chemical potential and tem-
perature. At T = 0 one would obtain the well known
Thomas-Fermi result for the condensate :

nj(x, y, T = 0) =

1

V0

[µj(T = 0)− Vj(x, y)]θ[µj(T = 0)− Vj(x, y)], (8)

where θ(x) is the Heaviside step function. In practice,
tracing the local value of the chemical potential µ̄(x, y)
allows one to reproduce the density profile of a cloud and
vice versa [20].
Using the normalization condition (2) and Eq. (8) one

finds the chemical potential at T = 0 in the form

µj(T = 0) =

√

mV0

π~2
~ωho,jN

1/2
j , (9)

and the ratio

ηj ≡
µj(T = 0)

kBT 0
c,j

=

√

π

6

mV0

~2
. (10)

Crucially, in contrast to the case of a three dimensional
gas [15] the quantities ηj in (10) are independent on the
oscillator frequencies ωj and ωy characterizing the trap
and on the number of particles in a cloud Nj. Providing
that the condition (4) is satisfied, this implies that the
critical temperature of an ideal gas T 0

c,j is also the same
for all traps, so that one can write

η1 = η2 = ... ≡ η, (11a)

T 0
c,1 = T 0

c,2 = ... ≡ T 0
c . (11b)

In order to show that the quantities η and T 0
c are the

scaling parameters, we follow Ref. [10] and introducing a

new variable ξ ≡ Vj(x, y) rewrite the identity (2) in the
form

2(kBT
0
c )

−2

∫

6

π

~
2

m
n̄(µ− ξ, T )dξ = 1, (12)

where we have used Eq. (7) with µj replaced by µ ac-
cording to (4). Inversion of the equation (12) yields the
general dependence µ = µ(T, T 0

c , η) for the chemical po-
tential of the trapped cloud. Due to the dimensionality
arguments this expression can be recast in the form

µ = kBT
0
c f(t, η), (13)

where t ≡ T/T 0
c is the reduced temperature, f is a generic

function which satisfies f(0, η) = η.
Equation (13) exhibits the anticipated scaling in terms

of η and T 0
c . By analogy, one can show the scaling of all

other thermodynamic functions. Having in mind the re-
sult (11) one can conclude that all the beads belong to
the same universality class defined by η and T 0

c . In par-
ticular, the critical point is unique for the whole system
even in the presence of disorder. To illustrate this impor-
tant result, let us estimate Tc(η, T

0
c ) for a small η, where

the simplest Hartree-Fock scheme can be applied [16]. In
this approximation,

f(t, η) = η(1 − t2)1/2 (14)

and Tc can be found solving the transcendental equa-
tion µ(Tc, T

0
c , η) = ǫ[µ(Tc, T

0
c , η), Tc] with ǫ being the lo-

west eigenvalue of the single particle HamiltonianHsp,j =
Vj(x, y) + 2V0nj(x, y). Using Eqs. (7), (13), and (14) one
finds [22]

Tc = T 0
c

(

1 +
x2(η)

η2

)

−1/2

, (15)

where x(η) is a root of π2x = 6η2Li(e−x), Li(x) is the
Eulerian logarithmic integral [19].
The scaling arguments given above are based on the

local density approximation (LDA) given by Eq. (7) or,
equivalently, (6). Experimental [20] and ab initio [21] stu-
dies show that LDA for 2D gases is already valid to a
good accuracy for ∼ 104 particles. This corresponds to
the experimentally achieved exciton densities in a bead
[6]. However, since an exciton gas is quite different from
usual atomic gases, it is worth to discuss the applicability
of LDA for the beads in details.
The validity of the local density approximation for the

beads.–To verify the validity of the Thomas-Fermi ap-
proximation for exciton clouds, we notice that the local
chemical potential µ̄(x, y) given by Eq. (6) can be infer-
red from the PL energy profiles along the ring measured
in [5] and shown there in Fig. 2. Indeed, the chemical
potential µ̄(x, y) contributes to the energy of a photon
emitted by an exciton during recombination. Neglecting
the thermal component of the exciton gas, the average
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Figure 3. (top) The T = 0 Thomas-Fermi result µ̄/kBT 0

c =
η − x̃2 for the variation of exciton energy along the ring (x̃
axis) at ỹ = 0 (the dashed red line). The exciton resonance
position measured in [5] from PL spectra is shown by the
solid line. The scaling parameters are η = 1.6 and T 0

c = 4.5
K. The Thomas-Fermi radius of the bead is measured to be
Rx = 20 µm. (Bottom) The topological transformation of the
condensate density given by (19) conserving the total number
of particles N0 =

∫
n0dxdy and the Thomas-Fermi energy

ETF = V0

∫
n2

0dxdy.

PL energy measured in [5] for one bead can be written
as

EPL(x) − const =

∫

µ̄(x, y)n(x, y)dy
∫

n(x, y)dy
=

4

5
µ̄(x, y = 0)

(16)
with n(x, y) given by (8) where we have omitted the index
j for simplicity (this change in the notation will be kept
until the end of this section). We choose a bead in the
middle of Fig. 2 of Ref. [5], which has the most regular
shape compared to its neighbours. When expressed in
reduced units and multiplied by 5/4 to account for the
averaging along y axis [Eq. (16)], the energy profile of this
bead reads µ̄/kBT

0
c = η−x̃2 [Fig. 3], where x̃ = η1/2x/Rx

and

Rx = [2µ(T = 0)/mω2
x]

1/2 (17)

is the Thomas-Fermi radius. Here we have substituted
µ(T = 0) = ηkBT

0
c into the right-hand side of Eq. (6).

Note, that we do not adjust the scaling parameters : we
find η = 1.6 using Eq. (10), where we substitute V0 = 1.7
µeV × µm2 calculated using the plate capacitor formula
with the correction factor [2]. In what concerns the pa-
rameter T 0

c , it can be estimated from the experimental
temperature at which the fragmentation and the build
up of the extended coherence occur T 0

c = 4.5 K [5].
Furthermore, using the Thomas-Fermi approximation

(17) for available values of the parameters η and T 0
c one

can estimate the oscillator frequency ωy of the radial lo-

calizing potential which would correspond to the experi-
mentally observed ring width 2Ry ∼ 10 µm. Remarkably,
this potential can be obtained from the first principles,
see [22]. The result of this calculation is shown in Fig.
2 by solid line. The input parameters for the calcula-
tion procedure correspond to those typical of the expe-
riment. Dashed line shows the model harmonic potential.
We plot also the ground state density profile for η = 1.6
and T 0

c = 4.5 K (we have assumed ωx = ωy for sim-
plicity). As one could expect, the semiclassical condition
~ωy ≪ kBT

0
c is well satisfied.

The energy scale of the disorder–Finally, let us esti-
mate the energy scale of the disorder potential which
can induce the significant dispersion of bead sizes obser-
ved in practice [Fig. 1]. We do not wish to complicate the
issue by taking into account the thermal component of
the gas and, therefore, consider the fragmented exciton
condensate at T = 0. As we have already explained, in
the scaling regime this restriction does not imply any loss
of generality.
It is reasonable to assume that at T = 0 the adja-

cent condensates touch each other as it is shown sche-
matically in Fig. 3 (in order to minimize the interaction
energy ETF). In the Thomas-Fermi limit this means that
the oscillator frequencies {ωj} satisfy the ”continuity”
condition

∑

j

[2µ(T = 0)/mω2
j ]

1/2 = πR, (18)

where R is the ring radius. The smooth disorder can frag-
ment the condensate and make varying the bead sizes
along the ring, while conserving the parabolic shape of
the bead density profiles nj(x, y, T = 0). Interestingly,
such topological transformation of the exciton density
can be formally achieved by the replacement

{ωj} → {ωk}
∗, (19)

where {ωk}
∗ is a new set of oscillator frequencies, k =

1, 2...K, satisfying the condition (18) with k instead of j
and K 6= J in general. One can check [22] that the trans-
formation (19) conserves the total number of particles N0

[Eq.(3)].
This way, one can achieve the pronounced dispersion

of the bead sizes observed experimentally maintaining
the chemical potential µ(T = 0) corresponding to the
disorder free system. This suggests that the variation of
the disorder potential δ on the scale of the bead size
is much less than µ(T = 0). Indeed, not only the sum
∑

j

∫

nj(x, y, T = 0)dxdy = inv but also

∑

j

∫

n2
j(x, y, T = 0)dxdy = inv (20)

under the topological transformation defined by (19).
Equation (20) defines the energy accumulated in the
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clouds due to the repulsive interaction (the Thomas-
Fermi energy) ETF = V0

∑

j

∫

n2
j(x, y, T = 0)dxdy. To

estimate the lowest bound for δ one should go beyond the
scaling limit. It is shown in [11] that the kinetic energy
correction to the Thomas-Fermi approximation can be
estimated as kBT

0
c /η (per one bead). Therefore, it is suffi-

cient to introduce a weak disorder which varies smoothly
by

kBT
0
c /N̄jη < δ ≪ µ(T = 0) ≡ ηkBT

0
c (21)

on the scale of the bead size so that one could observe its
effect on the fragmented exciton condensate (N̄j is the
average number of particles in a bead). The high sensiti-
vity of condensate sizes to the disorder reflects the fact
that the trapping potential along the ring is essentially
self induced.

Conclusions.–We have shown that the fragmented ex-
citon ring represents an array of trapped Bose-Einstein
condensates close to the thermodynamical limit. The re-
levant thermodynamic functions of exciton clouds exhibit
scaling in terms of the parameters η and T 0

c . With lowe-
ring temperature the lakes of condensed excitons grow
maintaining the same chemical potential. The dispersion
of their sizes reveals weak and smooth structural disor-
der, which is hidden from an observer above Tc. As a
consequence of the reduced dimensionality, such disor-
der does not alter the scaling parameters. This explains
the experimentally observed universality in the thermo-
dynamic behaviour of statistically independent exciton
condensates.
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I. A 2D IDEAL GAS IN A HARMONIC TRAP

Consider two-dimensional non-interacting (ideal) gas in a harmonic trap Vext(x, y) =
1
2mω2

xx
2+

1
2mω2

yy
2. Let it be close to the thermodynamic limit. Then one can use the semiclassical relation

for density of states (DOS)

g(ǫ) =

∫

d2rd2p

(2π~)2
δ(ǫ− p2/2m− Vext(x, y)) (1)

The integration yields g(ǫ) = ǫ/(~ωho)
2, where ωho = (ωxωy)

1/2.

The number of particles in the thermal cloud below T 0
c (the chemical potential µ = 0)

NT =

∫

dǫ
g(ǫ)

eβǫ − 1
(2)

The condition NT = N yields the following equation for the critical temperature

kBT
0
c = (6/π2)1/2~ωhoN

1/2 (3)

II. 2D BOSE-EINSTEIN CONDENSATE WITH REPULSIVE INTERACTIONS AT T = 0

Bose-Einstein condensate of an interacting gas can exist in a 2D trap. As in the previous section,

consider a system of bosons close to the TD limit. This allows one to neglect the kinetic energy

term in GP equation and to calculate the relevant functions of the system in the Thomas-Fermi

approximation.

∗ Electronic adress : Sergey.Andreev@univ-montp2.fr
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The density profile

n(x, y) =
1

V0
(µ − Vext) (4)

if µ > Vext and is zero elsewhere. The chemical potential

µ(T = 0) =

√

mV0ωxωy

π
N1/2, (5)

Useful parameter is the ratio η = µ(T = 0)/kBT
0
c . One obtains

η =

√

π

6

mV0

~2
. (6)

In the thermodynamic limit the size of the condensate is limited by a boundary set by the

condition µ = Vext(x, y). This is valid also for T > 0. Noteworthy, the peak condensate density

n(x = 0, y = 0) is fixed by µ.

III. TOPOLOGICAL TRANSFORMATION OF THE FRAGMENTED CONDENSATE

CONSERVING THE TOTAL NUMBER OF PARTICLES AND THE CHEMICAL

POTENTIAL

In this section, we show that the transformation of the fragmented condensate density profile

n0 → n∗
0 defined by Eq. (19) in the main text [we have introduced n0(x, y) =

∑

j nj(x, y)] conserves

simultaneously the integrals

J1 =

∫

n0dxdy

J2 =

∫

n2
0dxdy

(7)

For that purpose let us calculate explicitly the volume V of the following object in (x, y, z)

space :

z

h
=

(

x

Rx

)2α

+

(

y

Ry

)2α

+ β

(

xy

RxRy

)α

, (8)

where (α = 1, β = 0) or (α = 2, β = 2). Introducing cylindrical coordinates x = r cos θ and

y = r sin θ we write the area S(z) of cross-section at the height z in the form

S(z) =

2π
∫

0

r(z)
∫

0

rdrdθ =
( z

h

)1/α
RxRy

+∞
∫

−∞

(1 + x2α + βxα)−1/αdx (9)

so that the volume reads as

V =

h
∫

0

S(z)dz =
RxRyh

1/α + 1

+∞
∫

−∞

(1 + x2α + βxα)−1/αdx. (10)
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One can see that the resulting expression is linear in Rx. Consequently, the volume of our object

is equal to the sum of volumes Vj of J objects (j=1,2,..., J) described by Eq. (8) with the fixed h

and Ry and different Rx,j if the sum of Rx,j equals Rx :

V = V1 + V2 + ...+ VJ (11)

The possibility of the decomposition (11) proves the statement at the beginning of this section.

Indeed, by definition the topological transformation of the exciton density defined by Eq. (19)

satisfies the condition (18) (see the main text), which is nothing but the condition
∑

j Rx,j = πR

[compare (18) with Eq. (17)].

IV. THE CRITICAL TEMPERATURE OF A WEAKLY INTERACTING 2D GAS IN A

HARMONIC TRAP

Let us derive Eq. (15) for the critical temperature of a weakly interacting gas in a 2D harmonic

trap. Due to the presence of the trap, the thermal density is much smaller than the condensate

density even if the fraction of uncondensed excitons is comparable with Nj . As a consequence, the

Thomas-Fermi result (5) can be straightforwardly extended to finite temperatures

µ(T ) = µ(T = 0)

(

Nc

N

)1/2

= ηkBT
0
c (1− t2)1/2, (12)

where we have used the ideal gas resultNc = N(1−t2) for the number of excitons in the condensate.

Equation (12) is valid for a weakly interacting gas, where the condition µ(T ) < kBT
0
c is satisfied.

Bose-Einstein condensation starts at the temperature Tc for which the chemical potential (12)

reaches the lowest eigenvalue ǫ of the single-particle Hamiltonian, which in the simplest Hartree-

Fock approximation can be recast as

Ĥsp = −
~
2∇2

2m
+ Vext(x, y) + 2V0n(x, y). (13)

In the scaling regime one can safely neglect the kinetic energy term for the ground state of (13)

and, using the semiclassical expression

n(x, y) =

∫

dp

(2π~)2

[

exp

(

Hsp(p
2, x, y)− µ

kBT

)

− 1

]−1

(14)

rewrite the condition µ(Tc) = ǫ(Tc) in the form (15) (see the main text), which holds for small η.
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V. BUILT-IN ELECTROSTATIC TRAP FOR INDIRECT EXCITONS

Since the first experimental realization of a cold exciton gas in CQW several trapping configu-

rations have been proposed and realized [2–5]. These proposals rely on the electrostatic interaction

of the exciton dipole moment with collinear electric field Ez (z is the structure growth direction).

The interaction energy is given by ε(x, y) = −edEz(x, y), showing that the excitons will seek for

the regions in the (x, y) plane where the electric field is stronger. The opportunity to realize the

desired potential landscape as well as the ability to control it on a time scale shorter than the

exciton lifetime opens large perspectives in manipulation of excitonic condensates.

Until now it has been assumed, that the excitons created on the ring diffuse out as nearly free

particles (if one neglects the exciton-exciton interaction) [6, 7]. Here we show that at the carrier

densities achieved in this kind of experiment the radial motion of the dipolar excitons is confined

by a spontaneously induced in-plane potential well, i. e. the excitons are localized at the ring. The

origin of this well can be understood from the following.

As we have already mentioned, the exciton ring appears on the boundary between the internal

hole-rich region and the external electron-rich region. Thus one can expect the existence of in-

plane electric field Er(r, θ) in the vicinity of the ring oriented everywhere outwards the center,

along the radii. In the ground state an exciton does not interact with this field, since the relative

two-dimensional motion of the electron-hole pair is characterized by a symmetric wavefunction [8].

However, the interaction is already possible in the first order of the perturbation theory due to

admixing of the 2p-exciton state. Classically, the electric field ”stretches” the exciton, tilting its

dipole moment. As in the case of the artificially created potential profiles discussed above, the

interaction of an in-plane component of the exciton dipole moment with the built-in electric field

at the boundary results in appearance of an electrostatic trap for an exciton in the radial direction,

which localizes the exciton gas on the ring.

Following the general rules of quantum mechanics one can obtain

ε(r) = −
|ea2DEr(r)|

2

ε2p − ε1s
(15)

for the corresponding interaction energy, where a2D is the 2D effective exciton Bohr radius. The

denominator can be estimated as the energy difference between the 1s ground state and the 2s

excited state of the indirect exciton. These have been calculated in Ref. 9 and can be easily

identified in Fig. 4 therein. Our main goal is to calculate the radial electric field Er as a function

of the distance r from the center of the ring.
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Figure 1. The carrier densitity distribution in the radial direction according to the analytic expressions

(16). The parameters p and n were adjusted to produce the trap shown in Fig. 2 in the main text, which is

close to the model parabolic trap discussed therein.

For that purpose one needs to know the electron and the hole density distributions, ne and nh.

These can be obtained from the reaction-diffusion model supplemented with the drift term due to

the induced electric field. Here we start with the simplest model proposed in Ref. 7, neglecting the

interaction with the electric field and allowing the analytic expressions for ne and nh :

nh(x) = p ln(x−1) 0 < x 6 1 (16a)

ne(x) = n
(

1− x−1/2e−ζ(x−1)
)

x > 1 (16b)

where we have introduced x ≡ r/R, ζ = R/l, R is the ring radius and l is the electron depletion

length. We assume R ≫ l since in the same limit the ring radius is predicted to change linearly

with the laser excitation power [7], that has been indeed observed experimentally, see Ref. [11].

The carrier density profiles (16) are shown in Fig. 1.

The further simplification is to neglect the curvature of the interface. The numerical study

shows that this is indeed correct at least for large enough ring radii (compared with the width of

the ring) and when one is interested in the field distribution in the vicinity of the interface [the

latter corresponds to x = 1 in (16)].

In this simplified geometry the total electric field at the point y ≡ r/R can be represented

as the superposition of electric fields from a large number of elementary filaments parallel to the

interface :

Er(y) =
e

2πǫǫ0





1
∫

nh(x)dx

y − x
−

∫

1

ne(x)dx

y − x



 (17)
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The calculation of integrals in Eq. (17) is not trivial. The integrals have logarithmic divergencies

at the point we are interested in and should be regularized in the sense of the principal value. The

resulting set of equations, suitable for numerical calculations, has the form

Er(y) =
e

2πǫǫ0







|y−1|
∫

0

±ne,h(y + x)∓ ne,h(y − x)

x
dx+

x0
∫

|y−1|

nh(y − x) + ne(y + x)

x
dx






|y − 1| 6 x0

(18a)

Er(y) =
e

2πǫǫ0

x0
∫

0

±ne,h(x+ y)∓ ne,h(x− y)

x
dx |y − 1| > x0

(18b)

where the sign +/− as well as the subscript e/h states for y > 1 or y 6 1 respectively.

Finally, one should bear in mind, that the CQW’s are surrounded by conducting contact layers

[10]. The contacts will contain electrostatic images of the electron and the hole lakes, located on

the distances 2kh from the QW’s, where h is the barrier width (we neglect the space between the

QW’s) and k = 1, 2... is an integer. The contribution from the images can be taken into account

by replacing

ne,h −→ ne,h

(

1 + 2x
∞
∑

k=1

(−1)k
√

x2 + k2ξ2

)

(19)

in the integrals (18), where ξ ≡ 2h/R.

The exciton potential energy profile calculated using Eqs. (15) and (18) is presented in Fig. 2

in the main text. We used the following set of parameters : p = 6× 1010 cm−2, n = 3× 1010 cm−2,

ǫ = 12.9, a2D = 20 nm, h = 200 nm, R = 100 µm, l = 14 µm and (ε2p − ε1s) = 2 meV. The upper

bound x0 in the integrals (18) was increased until the shape, the effective width and the height

of the trap saturated. This criterion is already achieved at x0 ∼ 0.2, that justifies the simplified

geometry we have used. Further increase of x0 leads to the shift of the whole picture towards higher

energies. Since we are only interested in the motion of the excitons in the vicinity of the ring, we

conveniently set the origin of the energy axis at the bottom of the trap.

We point out that even in this simplified model one has a large set of parameters. As expected,

the depth of the trap is strongly sensitive to the electron and hole densities. The latter can be

roughly estimated from the laser excitation density (see Ref. [12]). The background electron density

can in principle be determined by measuring the electron current through the sample in the absence

of photoexcitation [13], provided that the electron escape time from the QW due to tunneling is
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known in advance [7]. To the best of our knowledge, neither the electron current nor the tunneling

time haven’t been measured yet. Varying the electron and hole densities near some realistic values,

we could obtain trapping configuration which correspods to the experimentally measured size of a

condensate and the parameter T 0
c .
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