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ABSTRACT

We present a general Fourier-based formalism which pro-
vides an accurate prediction of the approximation error, when
the derivative of a signal s(t) is continuously reconstructed
from uniform point samples or generalized measurements on
s. At the heart of the formalism is the frequency error kernel,
which can be minimized to design efficient reconstruction
schemes which are near optimal in the least-squares sense.

1. INTRODUCTION

Reconstruction of a continuous function and its derivatives
from a set of samples is one of the fundamental operations in
signal processing, numerical analysis, and many other fields.
Edge detection, segmentation, motion estimation and super-
resolution are applications where partial derivatives may be
required at subpixel resolution. In visualization, the gradient
is employed for shading [1]; it has to be evaluated at arbi-
trary locations and not only at the discrete points where the
underlying signal has been sampled.

1.1 Motivation

We denote by s(t) ∈ L2(R) a continuously defined function
(the signal) which is prefiltered and sampled at uniform lo-
cations to yield the discrete measurements

u[k] =
∫

R

s(t)ϕ̃
(
k− t

T

)
d

t

T
∀k ∈ Z, (1)

where T is the sampling step and the analysis function ϕ̃(t)
is, typically, the impulse response of the acquisition device.
This generalized sampling scenario encompasses the case
where ideal point samples u[k] = s(T k) are available, sim-
ply by letting ϕ̃(t) be the Dirac distribution δ (t).

The signal s(t) is unknown and the sequence u =
(u[k])k∈Z represents the only available data. We are inter-
ested in constructing from u an estimate of the N-th deriva-

tive s(N)(t) of s(t), for some integer N ≥ 1. We look for
a reconstruction in a linear shift-invariant space VT (ϕ) =
Span({ϕ( t

T
− k)}k∈Z) generated by the translates of a tem-

plate function ϕ(t) ∈ L2(R):

f (t) =
1

T N ∑
k∈Z

c[k]ϕ(
t

T
− k) ∀t ∈ R, (2)

where the coefficients c[k] are obtained by discrete filtering

with the stable prefilter p ∈ ℓ1:

c[k] = (u ∗ p)[k] ∀k ∈ Z. (3)

Using this general recipe for reconstruction, we denote
by fapp an estimate of s (with N = 0 in (2)), while an esti-

mate of the derivative s(N) is denoted by fder. We remark
that the reconstruction method involves a discrete prefilter-
ing step followed by the fit of the continuous model itself.
In practical applications, the prefiltering step is performed
once. Its computation time is negligible in comparison with
the many calls to (2) to evaluate f at the desired locations.

Estimating s(t) itself is the classical problem of interpo-
lation, for which there is a vast amount of literature; see e.g.
the survey paper [2] and some recent developments [3, 4, 5].
Of course, once an estimate fapp(t) of s(t) has been recon-

structed, one can consider its derivative f
(N)
app (t) as a valid

estimate of s(N)(t). But there is no a priori guarantee that
whenever fapp is close to s in the least-squares sense, then

f
(N)
app is close to s(N). Moreover, since efficiency consider-

ations generally steer the design of the method, one may

be interested in deriving direct estimation schemes of s(N),
without the conceptual intermediary step of evaluating s,
which unnecessarily constrains the conditions on accuracy
and smoothness. In this work, we show how to evaluate the
error between s(N) and its estimate fder, so that the design of
reconstruction schemes minimizing this error is made easy.

1.2 Related Work

There is a vast literature on designing so-called digital dif-
ferentiators, which are digital filters estimating the deriva-
tive at the grid points Tk only. In [6], point-wise estimates
of the derivative are derived, which are optimal in the mini-
max sense. By contrast, we consider the context in which the
derivative is reconstructed continuously in a shift-invariant
space, so that it can be evaluated at every arbitrary location.

Shannon’s theory provides an exact way to recover a ban-
dlimited signal from its samples, using the sinc interpola-
tor. Similarly, the “ideal” derivative reconstruction filter was
shown in [7] to be the derivative of the sinc. However, its
slow decay and the ringing artifacts it may introduce, pre-
vent its practical use. Moreover, for non-bandlimited signals,
the sinc-based theory is not valid any more [8]. That is why
practitioners rely on convolutions with more localized ker-
nels having compact support, like windowed sinc [9, 10] or
piecewise polynomial functions [2, 7]. But in none of these
works, there is an analytic comparison of different methods
or a quantitative analysis of the estimation error.

In [11], absolute error bounds for the spatial analysis
of both interpolation and derivative filters of arbitrary order
are derived. Approximation theory also provides a general
framework, which focuses on the asymptotic error behavior



of the reconstruction method as T tends to zero. These error
bounds are generally not sharp enough to be of direct use to
practitioners and more accurate ways of predicting the ap-
proximation error are desirable. For this, Blu et al. proposed
a remarkable Fourier-based method which provides an accu-
rate estimate of the approximation error, with a wide range
of applicability [12]. Their approach makes the design of re-
construction algorithms simple and accurate, and it is at the
heart of recent developments in interpolation theory [3, 4, 5].
In this paper, we show that this theory can be extended to the
setting of derivative reconstruction.

1.3 Notations and Mathematical Safeguards

The Fourier transform of a function f (t) is denoted by

f̂ (ω) =
∫

R
f (t)e− jωtdt. We require ϕ̃ in (1) to have a well-

defined bounded Fourier transform. The Z -transform of
a discrete signal v = (v[k])k∈Z is V (z) = ∑Z v[k]z−k and its

Fourier transform is v̂(ω) = V (e jω).
For any real r > 0, the Sobolev space W r

2 is the set of

functions f such that
∫

R
(1+ω2)r| f̂ (ω)|2dω < ∞. Therefore,

the Sobolev regularity of f is the maximum value of r such
that f ∈ W r

2 . We assume that s has Sobolev regularity r >

N + 1
2
, so that it has at least N continuous derivatives in L2.

Pn is the space of polynomial functions of degree at
most n ∈ N. We define the centered B-spline β n(t) of de-

gree n ∈ N by β 0 = 1l[− 1
2 , 1

2 ) and β n = β n−1 ∗ β 0, where ∗
denotes the convolution.

We introduce the dual φd of a function φ ∈ L2(R) by

φ̂d(ω) = φ̂(ω)∗/âφ (ω), where the discrete autocorrelation
filter aφ is defined by aφ [k] =

∫
R

φ(t)φ(t − k)dt and the star
is for complex conjugation.

To a reconstruction method characterized by ϕ and p, we
associate the impulse response ψ defined by

ψ(t) = ∑
k∈Z

p[k]ϕ(t − k) ⇔ ψ̂(ω) = p̂(ω)ϕ̂(ω). (4)

Then, fder(t) = 1
T N ∑k∈Z u[k]ψ( t

T
− k). We assume that the

following equivalent conditions on ψ—which are equivalent
as shown in [13, App. A]—are satisfied, so that fder does not
blow up as T tends to zero:

fder = 0 if s ∈ P
N−1, (5)

⇔ ∑
k∈Z

P(k)ψ(t − k) = 0, ∀t ∈ R, ∀P ∈ P
N−1, (6)

⇔ ψ̂(n)(2kπ) = 0, ∀k ∈ Z, ∀n = 0 . . .N −1. (7)

Our second requirement is that ψ can be decomposed as

ψ(t) = ∑
k∈Z

q[k]χ(t − k) ⇔ ψ̂(ω) = q̂(ω)χ̂(ω), (8)

where q ∈ ℓ1 is a discrete filter and the integer translates of
the function χ ∈ L2 form a Riesz basis; that is, there ex-
ist two constants B ≥ A > 0 such that A ≤ âχ(ω) ≤ B al-
most everywhere. Thus, each function of the reconstruction
space VT (χ) has a unique and stable expansion in terms of
the shifts of χ . Note that this condition is not restrictive; in
particular, there is no requirement that χ be compactly sup-
ported, even if ϕ is.

The different functions and filters used throughout the pa-
per are illustrated by the flowgraph in Fig. 1.

u[k]

1
T N ψ( t

T
)

1
T N ϕ( t

T
)p[k]

∑k∈Z δ (t −Tk)

1
T N χ( t

T
)q[k]

fder(t)
≈

s(N)(t)dN ·/dtNs(t)1
T

ϕ̃( t
T
)

t = T k

Figure 1: Flowgraph of the different equivalent procedures
for the sampling process s 7→ u and the derivative reconstruc-
tion process u 7→ fder.

1.4 Paper Organization

The outline of this paper is as follows. In Sect. 2, we in-
troduce the frequency error kernel. In Sect. 3, we discuss
the consequences of the formalism for the design of efficient
reconstruction methods. Finally, in Sect. 4, we illustrate our
methodology by the study of methods reconstructing the sec-
ond derivative.

2. THE FREQUENCY ERROR KERNEL

We define the new error kernel characterizing derivative re-
construction by

E(ω)= 1− |ϕ̂(ω)|2
âϕ(ω)︸ ︷︷ ︸

Emin(ω)

+ âϕ(ω)

∣∣∣∣̂̃ϕ(ω)p̂(ω)
1

( jω)N
− ϕ̂d(ω)

∣∣∣∣
2

︸ ︷︷ ︸
Eres(ω)

.

(9)
Then, we have the following results, proved in [13, App. B]:

Theorem 1. ‖s(N)− fder‖L2 = η
s(N)(T )+o(T r−N), where

η
s(N)(T ) =

(
1

2π

∫

R

|ŝ(ω)|2ω2N

︸ ︷︷ ︸∣∣ŝ(N)(ω)
∣∣2

E(T ω)dω

)1/2

(10)

Moreover, the correction term o(T r−N) vanishes if s is ban-
dlimited in [− π

T
, π

T
], or if ϕ̃ and ϕ are both bandlimited in

[−π ,π ].

Theorem 2. In a stochastic framework where s is a real-
ization of a random stationary process with power spectrum
density ĉs(ω), instead of a deterministic function of L2, we
have

1

T

∫ T

0
E {|s(N)(t)− fder(t)|2}dt = η

s(N)(T )2, (11)

by replacing |ŝ(ω)|2 by ĉs(ω) in (10).

In Fig. 2, we give an example of the error estimate ηs′(T )
for a practical experiment in which we reconstruct the deriva-
tive of a Gaussian from point samples. This shows that
η

s(N)(T ) is an accurate, shift invariant approximation of the
true error. We note that if s ∈ W r

2 for every r ≥ 0, which is
the case in our example, then the difference between η

s(N)(T )



Figure 2: Approximation error as a function of the sampling

step T . We estimate the first derivative s′(t) of s(t) = e−
(t−1)2

2

by the first derivative of the cubic spline interpolating the
point samples u[k] = s(T k). Thus, we have ϕ̃ = δ , ϕ = (β 3)′

et P(z) = 6/(z+4+ z−1). The error estimate ηs′(T ) (dashed
line) is close to the true error ‖s′− fder‖L2 (solid line). The

dotted line is the asymptote C‖s(4)‖L2 T 3, where the asymp-

totic constant C = 1/
√

30240 is obtained from the Taylor de-

velopment E(ω)1/2 ∼Cω3.

and the true error decays faster than every polynomial in T
as T tends to zero. This means that η

s(N)(T ) can be consid-
ered as the exact value of the error in some non-infinitesimal
interval; e.g. for T ∈ [0,0.9] in Fig. 2. In the general case,
η

s(N)(T ) is a reliable estimate of the error for practical values
of T . By contrast, error analysis approaches based on Taylor
series only apply to the asymptotic regime where s is highly
oversampled.

In practical situations, |ŝ(ω)|2 or ĉs(ω) is unknown, but
the multiplicative form in the integral (10) ensures that the
error is small if E(ω) is close to zero. Hence, the frequency
error kernel is a tool of choice for characterizing a recon-
struction scheme. More precisely, the value E(ω) at a given
frequency ω can be interpreted as the average power of the

approximation error, in case s(N)(t) is the pure unit sinusoid

e jωt/T [12, Thm. 3]. Therefore, the study of E(ω) allows
to characterize the behavior of a reconstruction method at
different frequency components. For instance, E(ω) for ω
close to π indicates to which extent the salient features, fine
details and textures are preserved and aliasing is enhanced.
By contrast, an asymptotic study for ω around 0 character-
izes the reconstruction quality for the low frequency content
of the signal s.

Thus, ϕ and p can be tuned to minimize the error ker-
nel, so that the reconstruction quality is improved for vir-
tually every function s [3, 4, 5, 14]. Given the reconstruc-
tion space VT (ϕ), the error kernel E(ω) attains its minimum
value Emin(ω), for every ω ∈ R, when fder is the minimum

error reconstruction of s(N) in VT (ϕ); that is, its orthogo-
nal projection onto VT (ϕ). Thus, the prefilter p should be
designed so that E(ω) is close to Emin(ω), in order for the
method to behave like this optimal, but generally unattain-
able, least-squares approximation [12, 5].

3. ASYMPTOTIC APPROXIMATION
PERFORMANCE

In this section, we focus on the reconstruction of lowpass

signals; that is, we assume that s(N) has most of its energy
around ω = 0. This is the case for natural images, at least for
N = 1. For other types of signals, the same study could be
performed around another frequency than 0.

3.1 The Approximation Order

From Theorem 1, due to the closed form of η
s(N)(T ), it is

easy to expand this estimate in a power series of T to obtain

the exact behavior of the error as T → 0. Specifically, if s(N)

has at least Sobolev regularity L, we have the equivalence

E(ω)1/2 ∼C ωL as ω → 0 (12)

iff ‖s(N) − fder‖L2 ∼C‖s(N+L)‖L2T L as T → 0. (13)

In that case, we speak about a Lth-order approximation
scheme. When most of the spectral energy of the signal is
concentrated in the neighborhood of ω = 0, the approxima-
tion order L is the most crucial determinant of the reconstruc-
tion quality and should be chosen as large as possible. To
have an approximation order L, it is necessary that χ , defined
in (8), satisfies the Strang-Fix conditions of order L [15]:

χ̂(0) 6= 0 and χ̂ (n)(2kπ) = 0 for

{
k 6= 0
n = 0 . . .L−1

. (14)

It was shown in [3] that a function χ with approximation
L has a support size S ≥ L with equality iff χ is a MOMS.
Therefore, the reconstruction schemes having the optimal
tradeoff between the reconstruction quality and the compu-
tational complexity are obtained by choosing the reconstruc-
tion kernel ϕ as a MOMS.

3.2 The choice of the Prefilter

We now assume that ϕ is fixed. This determines χ and its
approximation order L (eqn. (14)). Then, we have to choose
p so as to exploit at best the properties of the reconstruction
space VT (ϕ); that is, so that the scheme has approximation
order L (eqns (12),(13)). In fact, fder ∈ VT (ϕ) ⊂ VT (χ) and

p controls which approximation of s(N) in VT (ϕ) is picked
by the method. The best possible reconstruction is the or-

thogonal projection of s(N) in VT (ϕ). The error between this

optimal approximation and s(N) decays like T L and is char-
acterized by the error kernel Emin given in (9). Thus, the
reconstruction scheme has approximation order L if and only
if

E(ω) = Emin(ω)+ O(ω2L). (15)

This is equivalent to the quasi-biorthogonality conditions:

p̂(ω)

( jω)N
̂̃ϕ(ω)ϕ̂(ω + 2kπ) = δk + O(ωL), ∀k ∈ Z, (16)

or, equivalently,

p̂(ω)̂̃ϕ(ω) =
( jω)N

ϕ̂(ω)
+ O(ωL+N). (17)

Thus, we have to choose p so that these L + N linear con-
straints are satisfied. There is a great freedom in this respect.



4. CASE STUDY: RECONSTRUCTION OF THE
SECOND DERIVATIVE

To illustrate the benefits of the framework, we compare sev-
eral methods reconstructing the second derivative from point
samples (N = 2, ϕ̃ = δ ), by means of their error kernels.

1. The first method consists in applying the finite difference
filter P(z) = z−2 + z−1 to the data, then in interpolating

the obtained sequence using the linear B-spline ϕ = β 1.
Thus, the reconstructed function fder is piecewise linear
and has global regularity C 0.

2. The second method is similar to the first one, with cu-
bic spline instead of linear spline interpolation. p is the
combination of the finite difference filter and of the inter-
polation prefilter [2]: P(z) = 6(z−2+z−1)/(z+4+z−1),
and ϕ = β 3 is the cubic B-spline. Thus, the reconstructed
function fder is piecewise cubic and has global regularity
C 2.

3. The third method consists in computing the second
derivative of the cubic spline interpolating the samples
u[k]. Then, we have P(z) = 6/(z + 4 + z−1) and ϕ =
(β 3)′′. Since we have the property (β 3)′′(t) = β 1(t −
1)− 2β 1(t − 1)+ β 1(t + 1), the method can also be im-

plemented by using P(z) = 6(z− 2 + z−1)/(z + 4 + z−1)
and ϕ = β 1. We notice that this third method is hybrid
between the two previous ones, with the generator ϕ of
the first method and the prefilter of the second one.

4. The last method, by ε-differentiation, consists in apply-
ing a finite difference to the spline fapp(t) interpolating
the samples u[k] :

fder(t) =
1

ε2

(
fapp(t − ε)−2 fapp(t)+ fapp(t + ε)

)
,

(18)
for some ε > 0. This method is particularly interesting
for applications where estimates of both s(t) and s′′(t)
have to be reconstructed at the same time, for instance
in volume rendering [16]. We remark that when ε → 0,
fder converges to the second derivative f ′′app, which corre-

sponds to method 3). Moreover, if ε = 1, the method is
equivalent to method 2). In the general case, the method
formally amounts to take P(z) = 6/(z + 4 + z−1) and

ϕ(t) =
(
β 3(t − ε)−2β 3(t)+ β 3(t + ε)

)
/ε2. The recon-

structed function fder is a cubic spline, with global reg-
ularity C 2, but with non-uniform knots. The question
arises how to chose the optimal value of ε . We will see
that the error kernel provides us with a simple way of
deriving this value.

We first notice that the four methods have approximation

order 2. Indeed, we have the Taylor series E(ω)1/2 ∼ Cω2,
where the asymptotic constant C is, for the first three meth-

ods, C =
√

105
60

≈ 0.17, C = 1
12

≈ 0.08, C =
√

5
60

≈ 0.04, re-
spectively. For the fourth method, the value of C depends on
ε . For ε ∈ (0,1/2], we have:

C2 =
1

720
− 1

72
ε2 +

31

1260
ε3 − 1

180
ε4 (19)

and C is higher for ε > 1/2. Thus, we can choose ε so that C
is minimized, which yields the optimal value

εo =
93

56
− 1

56

√
4729 ≈ 0.43, (20)

Figure 3: Square-rooted frequency error kernel E(ω)1/2 for
the reconstruction methods 1 to 4 described in Sect. 4, de-
noted M1 to M4, respectively. Only the values in the half
Nyquist band ω ∈ [0,π ] are plotted, since E(ω) is symmetri-
cal in 0.

for which C ≈ 6.10−4.

We depicted the error kernels associated to the four meth-
ods in Fig. 3, with ε = εo for the method 4). We observe that
the hierarchy of the methods with respect to their asymptotic
constants C is respected. In other words, the minimization of
C, which is an asymptotic constraint in ω = 0, provides error
kernels whose good behavior extends in the whole Nyquist
band ω ∈ [−π ,π ]. This observation, which is not expected a
priori, was already done for interpolation [3, 4, 5, 14]. Thus,
the minimization of the asymptotic constant, for a given ap-
proximation order, is a simple and efficient way of design-
ing reconstruction methods of high quality. Applying this
methodology to the reconstruction of derivatives is new and
the authors are not aware, for instance, of results similar
to (20) in the literature.

It is interesting to determine a function χ corresponding
to the method 4). In fact, the translates of ϕ do not form a
Riesz basis. We can define χ by

χ̂(ω) =
ϕ̂(ω)

2cos(ω)−2
=

2cos(εω)−2

ε2
(
2cos(ω)−2

) β̂ 3(ω), (21)

which satisfies the Strang-Fix conditions of order 2. Actu-

ally, one can show that χ = β 1 ∗β 1
ε where β 1

ε (t) = 1
ε β 1( t

ε ).
χ has compact support in [−1− ε,1 + ε], is piecewise cubic

and has global regularity C 2.

There is an important remark concerning method 3). We
observe that E = Emin and, indeed, fder is the orthogonal pro-
jection of s′′ in VT (β 1). In other words, the method yields the
best possible piecewise linear approximation of s′′, although
this function is unknown. More generally, it is possible to

obtain the orthogonal projection of s(N) in the spline space
VT (β N−1) from point samples of s, for every N ≥ 1. This is
a remarkable property of spline spaces.



(a) analytic (b) proposed in [1]
12.46 o, 1.05 10.21o, 0.92

Figure 4: The 0.5 isosurface of the synthetic Marschner-
Lobb function is shaded using two gradient reconstruction
schemes from the sampled data (41× 41× 41) [1]. The an-
alytic function is used to reconstruct the isosurface and the
left half of each image shows the truth. The mean angular
error and the mean length of the error vector are indicated.
(a) the analytic gradient of the cubic spline interpolation of
the samples is used. (b) the CC-s scheme proposed in [1] is
used, which is based on the formalism proposed in this paper.

Finally, we note that the reconstruction spaces of meth-
ods 1), 3), 4) have approximation order 2, while the cubic
spline space of method 2) has approximation order 4. Hence,
for method 2), the prefilter p does not fully exploit the repre-
sentation power of VT (β 3). We can propose another prefilter
so that the method has approximation order 4. After (17),
this is equivalent to have

p̂(ω) =−ω2β̂ 3
d (ω)+O(ω6) =−ω2− 1

6
ω4 +O(ω6). (22)

For instance, a solution is P(z) = 120(z− 2 + z−1)/
(
66 +

26(z+ z−1)+ z2 + z−2
)

and the method amounts to compute
the second derivative of the spline of degree 5 interpolating
the samples u[k].

5. CONCLUSION

We introduced a generic Fourier methodology to evaluate
the quality of shift-invariant methods that continuously re-
construct the derivative of a function from discrete measure-
ments. In our future work, we will focus on the applications
to visualization [1], as illustrated in fig. 4, and investigate the
extension of the formalism to noisy measurements [17, 18].

Since the frequency error kernel can be defined for multi-
dimensional signals on lattices, like in [14], the extension
of this work to the evaluation of partial derivatives of multi-
dimensional signals is straightforward [1]. Interesting appli-
cations include finite difference methods and the numerical
resolution of PDEs.
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[2] P. Thévenaz, T. Blu, and M. Unser, “Interpolation re-
visited,” IEEE Trans. Med. Imag., vol. 19, no. 7, pp.
739–758, Jul. 2000.
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